JPS6338643A - Electronically controlled fuel injection device for internal combustion engine - Google Patents

Electronically controlled fuel injection device for internal combustion engine

Info

Publication number
JPS6338643A
JPS6338643A JP61182011A JP18201186A JPS6338643A JP S6338643 A JPS6338643 A JP S6338643A JP 61182011 A JP61182011 A JP 61182011A JP 18201186 A JP18201186 A JP 18201186A JP S6338643 A JPS6338643 A JP S6338643A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
engine
rate
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61182011A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Seiichi Otani
大谷 精一
Yukio Hoshino
星野 行男
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP61182011A priority Critical patent/JPS6338643A/en
Publication of JPS6338643A publication Critical patent/JPS6338643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent fuel from becoming excessively rich at the time of acceleration from a high load in which the rate of load change is small, by making the fuel increment at the time of acceleration nearly proportional to the rate of change in throttle valve opening and further making it nearly inversely proportional to the engine load. CONSTITUTION:A control unit 6 calculates a basic fuel injection quantity by means of the intake air quantity from an air flowmeter 8 and the number of revolutions from an engine speed sensor 5. And it calculates the rate of change in throttle valve opening on the basis of the detected value from a throttle valve opening sensor 4 and the engine load from the intake air quantity and number or revolutions. At the time of acceleration, the factor of acceleration increment is set so as to be nearly proportional to the rate of change in throttle valve opening, and further to be nearly inversely proportional to the engine load.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関し、詳し
くは機関加速時における燃料噴射量の増量制御に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more particularly to increasing control of the fuel injection amount during engine acceleration.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置としては従来以下のよ
うなものがある。
<Prior Art> Conventionally, electronically controlled fuel injection devices for internal combustion engines include the following.

即ち、エアフローメータにより検出される吸入空気流i
Qとクランク角センサ等によって検出される機関回転速
度Nとから基本燃料噴射ff1Tp (=KXQ/N;
には定数)を演算し、更に、機関温度等の機関運転状態
に応じた各種補正係数C0EFと空燃比フィードバック
補正係数αとバッテリ電圧による補正分子sとを演算し
た後、前記基本燃料噴射量’rpを補正演算して最終的
な燃料噴射量Tt  (=TpxCOEFxα+Ts)
を設定する。
That is, the intake air flow i detected by the air flow meter
Basic fuel injection ff1Tp (=KXQ/N;
After calculating various correction coefficients C0EF according to engine operating conditions such as engine temperature, air-fuel ratio feedback correction coefficient α, and correction numerator s depending on battery voltage, the basic fuel injection amount' is calculated. rp is corrected and the final fuel injection amount Tt (=TpxCOEFxα+Ts)
Set.

そして、設定された燃料噴射lTiに相当するパルス巾
の噴射パルス信号を電磁式燃料噴射弁に出力することに
より、機関に所定量の燃料を噴射供給するようにしてい
た(特開昭59−203.828号公報等参照)。
Then, by outputting an injection pulse signal with a pulse width corresponding to the set fuel injection lTi to the electromagnetic fuel injection valve, a predetermined amount of fuel was injected and supplied to the engine (JP-A-59-203 (See Publication No. 828, etc.).

ところで、機関加速時には、燃料の供給遅れやエアフロ
ーメータによる吸入空気流量の検出遅れ、更に燃料噴射
量の演算遅れ等によって空燃比がオーバーリーン化して
しまうおそれがあるため、定常運転時の燃料噴射量より
も増量して噴射供給することによって空燃比のオーバー
リーン化を回避するようにしていた。
By the way, when the engine is accelerating, there is a risk that the air-fuel ratio may become over-lean due to a delay in fuel supply, a delay in the detection of the intake air flow rate by the air flow meter, a delay in the calculation of the fuel injection amount, etc. By injecting and supplying the fuel in an amount larger than that of the fuel, the air-fuel ratio was avoided from becoming over lean.

具体的には、スロットル弁の開側への開度変化率Δθに
略比例して設定される加速増量係数K accを前記各
種補正係数C0FFに含めて、スロットル弁開度変化率
Δθが大きいときほど即ち急加速時はど燃料噴射量Ti
を増大させるようにしていた。また、通常の噴射パルス
信号の間に増量燃料噴射量(やはりスロットル弁開度変
化率Δθに基づいて設定される)に相当するパルス巾の
l’lt 射パルス信号を割り込ませることによって燃
料噴射量の増量を図るようにしたものもある(特願昭6
1−081187号等参照)。
Specifically, the acceleration increase coefficient K acc, which is set approximately in proportion to the rate of change in the opening degree Δθ of the throttle valve toward the open side, is included in the various correction coefficients C0FF, and when the rate of change in the throttle valve opening degree Δθ is large. In other words, during sudden acceleration, the fuel injection amount Ti
I was trying to increase it. In addition, by inserting an l'lt injection pulse signal with a pulse width corresponding to the increased fuel injection amount (also set based on the throttle valve opening change rate Δθ) between the normal injection pulse signals, the fuel injection amount can be increased. Some are designed to increase the amount of
1-081187 etc.).

〈発明が解決しようとする問題点〉 ところで、このようにしてスロットル弁の開度変化率Δ
θに基づいて加速時の燃料噴射量の増量補正量を設定す
る場合には、第4図に示すA点及びB点からの加速のよ
うに検出されたスロットル弁開度化率Δθが同一であれ
ば、そのときの機関負荷の変化とは無関係に同じレベル
(同−増量割合若しくは同一量)の加速増量がなされる
ことになる。
<Problem to be solved by the invention> By the way, in this way, the throttle valve opening change rate Δ
When setting the increase correction amount of the fuel injection amount during acceleration based on θ, it is necessary to make sure that the throttle valve opening rate Δθ detected as in the case of acceleration from points A and B shown in Fig. 4 is the same. If there is, the acceleration increase will be made at the same level (same increase rate or same amount) regardless of the change in engine load at that time.

しかしながら、本来機関の増量要求量は、機関負荷の変
化率に比例して増大するものであり、第5図に示すよう
に例えばA点からの加速とB点からの加速ではスロット
ル弁開度変化率Δθが同一であるが、そのときの機関負
荷変化率はB点からの加速の方が大きい(図から明らか
なように同じスロットル弁開度変化率Δθであれば低負
荷からの加速の方が機関負荷の変化率が大きくなる)た
め、本来はA点からの加速のときよりもB点からの加速
のときにより多く増量すべきである。
However, the amount of increase required by the engine originally increases in proportion to the rate of change in the engine load, and as shown in Figure 5, for example, when accelerating from point A and accelerating from point B, the throttle valve opening changes. Although the rate Δθ is the same, the engine load change rate at that time is greater for acceleration from point B (as is clear from the figure, if the throttle valve opening change rate Δθ is the same, acceleration from low load is higher). (increases the rate of change in engine load), so the amount should originally be increased more when accelerating from point B than when accelerating from point A.

このため、従来では、低負荷からの加速にマツチングさ
せて加速増量を設定しであると、高負荷からの加速にお
いて増量される燃料が多すぎて空燃比がオーバーリフチ
化し、機関の息つき2点火栓の燻り、排気性状の悪化、
燃費悪化等の問題が発生するおそれがあった。
For this reason, in the past, if the acceleration increase was set to match the acceleration from a low load, too much fuel would be increased when accelerating from a high load, resulting in an overlift of the air-fuel ratio, resulting in engine breathlessness and two ignitions. Smoking of the stopper, deterioration of exhaust properties,
There was a risk that problems such as deterioration of fuel efficiency would occur.

本発明は上記問題点に鑑みなされたものであり、機関の
要求量に見合った加速時の燃料噴射量の増量設定が行え
るようにすることを口約とする。
The present invention has been developed in view of the above-mentioned problems, and is intended to enable the setting of an increase in the amount of fuel injection during acceleration commensurate with the amount required by the engine.

く問題点を解決するための手段〉 そのため本発明では、第1図に示すように、内燃機関の
吸入空気流量と回転速度とに基づいて燃料噴射量を設定
する燃料噴射量設定手段と、機関の吸気通路に介装され
たスロットル弁の開側への開度変化率を検出するスロッ
トル弁開度変化率検出手段と、機関の負荷を検出する機
関負荷検出手段と、前記スロットル弁開度変化率検出手
段によって検出されたスロットル弁開度変化率に略比例
させかつ前記機関負荷検出手段によって検出された機関
負荷に略反比例させて増量燃料噴射量を設定する増量燃
料噴射量設定手段と、この増量燃料噴射量設定手段によ
って設定された増量燃料噴射量及び前記燃料噴射量設定
手段によって設定された燃料噴射量に応じて燃料噴射弁
を駆動制御する燃料噴射弁駆動制御手段と、を備えて内
燃機関の電子制御燃料噴射装置を構成するようにした。
Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. a throttle valve opening change rate detecting means for detecting a rate of change in opening of a throttle valve to the open side, which is installed in an intake passage of the engine; an engine load detecting means for detecting a load on the engine; increased fuel injection amount setting means for setting the increased fuel injection amount substantially proportional to the throttle valve opening change rate detected by the rate detection means and substantially inversely proportional to the engine load detected by the engine load detection means; a fuel injection valve drive control means for driving and controlling the fuel injection valve according to the increased fuel injection amount set by the increased fuel injection amount setting means and the fuel injection amount set by the fuel injection amount setting means; The engine's electronically controlled fuel injection system was configured.

く作用〉 かかる内燃機関の電子制御燃料噴射装置によると、検出
されたスロットル弁開度の開側への変化率に応じて即ち
変化率が大きい急加速時はど多くの増量燃料噴射量が設
定され、更に、この増量燃料噴射量が機関負荷に反比例
して補正される。即ち、スロットル弁開度変化率が同一
であっても、より機関負荷の低いときの加速状態におい
て多くの増量燃料噴射量が設定され、機関負荷の変化率
に対応した増量設定が行える。
According to this electronically controlled fuel injection system for an internal combustion engine, the increased fuel injection amount is set according to the detected rate of change in the throttle valve opening toward the open side, that is, during sudden acceleration where the rate of change is large. Further, this increased fuel injection amount is corrected in inverse proportion to the engine load. That is, even if the rate of change in the throttle valve opening degree is the same, a larger amount of increased fuel injection is set in an acceleration state when the engine load is lower, and the amount of increased fuel injection can be set in accordance with the rate of change in the engine load.

〈実施例〉 以下に本発明の一実施例を図面に基づいて説明する。<Example> An embodiment of the present invention will be described below based on the drawings.

第2図に本実施例のハードウェア構成を示す。FIG. 2 shows the hardware configuration of this embodiment.

内燃機関1の吸気通路2に介装されたスロットル弁3の
開度θを検出するスロットル弁開度センサ4と、機関回
転速度Nを検出するクランク角センサ等の回転速度セン
サ5と、機関1の吸入空気流IQを検出するエアフロー
メータ8とを設け、これらからの各検出信号をマイクロ
コンピュータを内蔵したコントロールユニット6に入力
する。
A throttle valve opening sensor 4 that detects the opening θ of a throttle valve 3 installed in the intake passage 2 of the internal combustion engine 1, a rotation speed sensor 5 such as a crank angle sensor that detects the engine rotation speed N, and the engine 1. An air flow meter 8 for detecting the intake air flow IQ is provided, and each detection signal from these is input to a control unit 6 having a built-in microcomputer.

コントロールユニット6は、これらの検出信号に基づい
て機関1の加速時には増量補正して燃料噴射iTiを設
定し、この燃料噴射4]Tiに対応するパルス巾の噴射
パルス信号を燃料噴射弁7に出力する。即ち、本実施例
において、コントロールユニット6は、燃料噴射量設定
手段、増量燃料噴射量設定手段、燃料噴射弁駆動制御手
段に相当すると共にし、スロットル弁開度センサ4とに
よってスロットル弁開度変化率検出手段を構成し、また
、回転速度センサ5とエアフローメータ8とによって機
関負荷検出手段を構成する。
Based on these detection signals, the control unit 6 sets the fuel injection iTi by increasing the amount when the engine 1 accelerates, and outputs an injection pulse signal with a pulse width corresponding to this fuel injection 4]Ti to the fuel injection valve 7. do. That is, in this embodiment, the control unit 6 corresponds to a fuel injection amount setting means, an increased fuel injection amount setting means, and a fuel injection valve drive control means. The rotation speed sensor 5 and the air flow meter 8 constitute engine load detection means.

ここで、コントロールユニット6による燃料噴射量Ti
の設定を第3図のフローチャートに基づいて説明する。
Here, the fuel injection amount Ti by the control unit 6
The settings will be explained based on the flowchart in FIG.

ステップ(図中では「S」としてあり、以下同様とする
)Iでは、検出された吸入空気流IQ。
In step I (indicated as "S" in the figure, the same applies hereinafter), the detected intake air flow IQ.

機関回転速度N及びスロットル弁開度θを入力する。Input the engine rotation speed N and throttle valve opening θ.

ステップ2では、ステップ1で入力した吸入空気流IQ
と機関回転速度Nとによって基本燃料噴射ff1Tp 
(−KXQ/N;には定数)を演算する。
In step 2, the intake air flow IQ input in step 1 is
Basic fuel injection ff1Tp is determined by
(-KXQ/N; is a constant) is calculated.

ステップ3では、前回入力したスロットル弁開度θ、と
今回入力したスロットル弁開度θとに基づいてスロット
ル弁開度θの変化率Δθを演算する(Δθ−(θ−θI
)/Δt;Δtはかかるフローチャートの実行タイミン
グである)。
In step 3, the rate of change Δθ of the throttle valve opening θ is calculated based on the throttle valve opening θ input last time and the throttle valve opening θ input this time (Δθ−(θ−θI
)/Δt; Δt is the execution timing of this flowchart).

ステップ4では、ステップ3で演算したΔθによって機
関1が加速状態であるか否かを判定する。
In step 4, it is determined whether the engine 1 is in an accelerating state based on Δθ calculated in step 3.

即ち、スロットル弁3が所定以上の割合で開かれている
ことを前記Δθが示しているときには、機関1が加速状
態であるとして次のステップ5へ進み、機関1が加速状
態でないときにはステップ5〜8の加速増量係数Kac
c設定をジャンプしてステップ9へ進む。
That is, when the Δθ indicates that the throttle valve 3 is opened at a rate equal to or higher than a predetermined rate, the engine 1 is assumed to be in an accelerating state and the process proceeds to the next step 5, and when the engine 1 is not in an accelerating state, steps 5 to 5 are performed. 8 acceleration increase coefficient Kac
c Jump to settings and proceed to step 9.

ステップ5では、ステップ3で演算したΔθに基づいて
加速増量係数K acclをマツプから検索する。この
加速増量係数Kacclのマツプは、Δθに略比例して
加速増量係数Kacclを設定してあり、Δθが大きい
ときほど加速増量係数K acclが大きく設定されて
、より多くの加速増量がなされるようにしである。即ち
、Δθが大きいときは機関1の急加速状態であるため、
より多くの燃料を増量して燃料の供給遅れ等を回避しよ
うとするものである。
In step 5, the acceleration increase coefficient K accl is searched from the map based on Δθ calculated in step 3. In this map of the acceleration increase coefficient Kaccl, the acceleration increase coefficient Kaccl is set approximately in proportion to Δθ, and the larger Δθ is, the larger the acceleration increase coefficient Kaccl is set, so that more acceleration is increased. It's Nishide. That is, when Δθ is large, the engine 1 is rapidly accelerating, so
The aim is to increase the quantity of fuel to avoid delays in fuel supply.

ステップ6では、ステップ2で演算した基本燃料噴射量
’rpに基づいて加速増量係数K acc2をマツプか
ら検索する。この加速増量係数K acc2のマツプは
、基本燃料噴射ITpに略反比例して加速増量係数K 
acc2を設定してあり、基本燃料噴射量’rp即ち機
関負荷が小さいときほど加速増量係数K acc2が大
きく設定されて、より多くの加速増量がなされるように
しである。即ち、第5図に示すように同じスロットル弁
開度変化率Δθであっても、低負荷状態からの加速の場
合がより負荷の変化率が大きくなるため、このような負
荷の変化に対応して燃料噴射量Tiの増量割合を変化さ
せるようにしたものであり、これによって、機関負荷の
変化率に対応した増量補正を行うことができる。
In step 6, the acceleration increase coefficient K acc2 is searched from the map based on the basic fuel injection amount 'rp calculated in step 2. The map of this acceleration increase coefficient K acc2 is approximately inversely proportional to the basic fuel injection ITp.
acc2 is set, and the smaller the basic fuel injection amount 'rp, that is, the engine load, the larger the acceleration increase coefficient Kacc2 is set, so that a larger amount of acceleration can be increased. In other words, as shown in Fig. 5, even if the rate of change in throttle valve opening is the same Δθ, the rate of change in load is greater when accelerating from a low load state, so the The increase rate of the fuel injection amount Ti is thereby changed, thereby making it possible to perform an increase correction corresponding to the rate of change in the engine load.

また、加速増量係数K acc2を以下に示す式に基づ
いて演算により設定するようにしても良い。
Further, the acceleration increase coefficient K acc2 may be set by calculation based on the formula shown below.

K acc2 = (4/4 T 1)−加速前Tp)
/(4/4Tp−R/LTp) 但し、4/4Tpはスロットル弁の全開時における基本
燃料噴射IT p SR/LT pはRoad L o
adの基本燃料噴射量’rpを示す。尚、Road L
 oadTpの代わりに減速時の最小基本燃料噴射IT
p旧Nを用いるようにしても良い。
K acc2 = (4/4 T 1) - Tp before acceleration)
/(4/4Tp-R/LTp) However, 4/4Tp is the basic fuel injection IT p when the throttle valve is fully open. SR/LT p is the Road Lo
The basic fuel injection amount 'rp of ad is shown. Furthermore, Road L
Minimum basic fuel injection IT during deceleration instead of oadTp
p old N may be used.

この場合、加速増量係数K acc2をマツプによる設
定の場合に比ベコントロールユニソト6の演算時間の短
縮、制御精度の向上が図れる。
In this case, when the acceleration increase coefficient K acc2 is set by a map, the computation time of the comparison control unit 6 can be shortened and the control accuracy can be improved.

尚、本実施例では、機関負荷を代表するものとして基本
燃料噴射ITpを用いたが、この基本燃料噴射量’rp
の他、吸入負圧、吸入空気流ff1Q/機関回転速度N
、スロットル弁開口面積/機関回転速度N等を用いても
良く、更に、所定回転速度条件下における吸入空気流i
Qやスロットル弁開度θを用いるようにしても良い。
In this example, the basic fuel injection ITp was used as a representative of the engine load, but this basic fuel injection amount 'rp
In addition, suction negative pressure, suction air flow ff1Q/engine rotation speed N
, throttle valve opening area/engine rotational speed N, etc. may be used, and furthermore, intake air flow i under a predetermined rotational speed condition may be used.
Q or throttle valve opening θ may be used.

ステップ7では、加速増量係数K acc3を冷却水温
度Twに対応したマツプから検索する。そして、低冷却
水温度時には、加速増量係数K accを増量するよう
にしである。
In step 7, the acceleration increase coefficient K acc3 is searched from the map corresponding to the cooling water temperature Tw. Then, when the cooling water temperature is low, the acceleration increase coefficient K acc is increased.

ステップ8では、ステップ5〜7において検索した加速
増量係数Kaccl、  Kacc2. Kacc3を
乗算して、最終的な燃料噴射量Tiを演算する際に補正
係数として用いる加速増量係数Kacc  (この加速
増量係数K accは各種補正係数C0EFの中に含ま
れる)を設定する。
In step 8, the acceleration increase coefficients Kaccl, Kacc2. By multiplying by Kacc3, an acceleration increase coefficient Kacc (this acceleration increase coefficient Kacc is included in various correction coefficients C0EF) is set, which is used as a correction coefficient when calculating the final fuel injection amount Ti.

ステップ9では、各種補正係数C0EFと空燃比フィー
ドバック補正係数αとバッテリ電圧による補正分子sと
を演算した後、ステップ2で演算した基本燃料噴射ff
1Tpを補正演算して最終的な燃料噴射lTi  (=
TpXCOEFXα+Ts)を設定する。ここで、前記
各種補正係数C0EFは、水温補正係数Ktw、始動補
正係数Kas+ アイドル後増量補正係数Kai、空燃
比補正係数Kmr、更に、ステップ8で設定される加速
増量係’IJ Kaccによって構成される(COE 
F = Ktin+ Kas+ Kai+ Kmr+ 
Kacc )。
In step 9, after calculating various correction coefficients C0EF, air-fuel ratio feedback correction coefficient α, and correction numerator s based on battery voltage, the basic fuel injection ff calculated in step 2 is
1Tp is corrected and the final fuel injection lTi (=
TpXCOEFXα+Ts). Here, the various correction coefficients C0EF are composed of a water temperature correction coefficient Ktw, a starting correction coefficient Kas+, an after-idle increase correction coefficient Kai, an air-fuel ratio correction coefficient Kmr, and an acceleration increase coefficient 'IJ Kacc set in step 8. (COE
F = Ktin+ Kas+ Kai+ Kmr+
Kacc).

前記水温補正係数KL−は、冷機時に燃料噴射量Tiを
増量して機関運転性を良くするためのものであり、冷却
水温度Twに反比例するように設定される。始動補正係
数Kasは、機関lの始動性を向上させるためにやはり
冷却水温度Twに反比例するように設定され、イグニッ
ションスイッチのON時に増量補正するようにしである
。アイドル後増量補正係数Kaiは、発進を滑らかにす
るため、発進直後に冷却水温度Twに応じた増量を行わ
せる。空燃比補正係数Kmrは、基本燃料噴射ff1T
pと機関回転速度Nとに対応させて記憶されており、高
速・高負荷時はど大きくなるようにして機関1の運転状
態に見合った空燃比補正がなされるようにしである。
The water temperature correction coefficient KL- is used to improve engine operability by increasing the fuel injection amount Ti when the engine is cold, and is set to be inversely proportional to the cooling water temperature Tw. The start correction coefficient Kas is also set to be inversely proportional to the cooling water temperature Tw in order to improve the startability of the engine 1, and is designed to increase the amount when the ignition switch is turned on. The post-idle increase correction coefficient Kai causes the amount to be increased in accordance with the coolant temperature Tw immediately after starting, in order to smooth the start. The air-fuel ratio correction coefficient Kmr is the basic fuel injection ff1T
p and the engine rotational speed N are stored in correspondence with each other, and the air-fuel ratio correction is made in accordance with the operating state of the engine 1 by increasing the value at high speeds and high loads.

また、加速増量係数K accは、前記のようにスロッ
トル弁開度変化率Δθと機関負荷である基本燃料噴射量
’rpに基づいて加速状態の緩急及び機関負荷の変化に
対応して設定されるものであるため、加速時に機関の要
求量に見合った増量補正を行うことができる。
Further, as described above, the acceleration increase coefficient K acc is set based on the throttle valve opening change rate Δθ and the basic fuel injection amount 'rp, which is the engine load, in response to changes in the acceleration state and the engine load. Therefore, it is possible to make an increase correction in accordance with the amount required by the engine during acceleration.

尚、本実施例においては、機関負荷に反比例させた燃料
噴射量Tiの増量補正(増量燃料噴射量の設定)を、各
種補正係数C0EF (具体的には加速増量係数Kac
c)を変化させることによって行うようにしたが、加速
増量係数K accを従来と同様にスロットル弁開度変
化率Δθのみによって設定するようにして、基本燃料噴
射量’rpの演算に用いる検出された吸入空気流fiQ
をそのときの機関負荷に略反比例させて補正するように
しても良い。但し、この場合加速増量係数K acc2
に相当する補正量は、加速前の’rpではなく加速途中
のTp (増加1頃向を示す)にてリアルタイムに加速
増量係数K acc2を求めるようにする。
In this embodiment, the increase correction (setting of increased fuel injection amount) of the fuel injection amount Ti, which is inversely proportional to the engine load, is performed using various correction coefficients C0EF (specifically, acceleration increase coefficient Kac
c), but the acceleration increase coefficient K acc is set only by the throttle valve opening change rate Δθ as in the past, and the detected value used for calculating the basic fuel injection amount 'rp is set by changing the acceleration increase coefficient K acc. intake air flow fiQ
may be corrected by making it substantially inversely proportional to the engine load at that time. However, in this case, the acceleration increase coefficient K acc2
For the correction amount corresponding to , the acceleration increase coefficient K acc2 is determined in real time not at 'rp before acceleration but at Tp (indicating the direction of increase of 1) during acceleration.

また、通常の燃料噴射の間で追加の燃料噴射を行わせる
所謂非同期の割り込み噴射において、その噴射量を前記
のようにしてスロットル弁開度変化率Δθと機関負荷に
基づき設定するようにしても良い。
Furthermore, in so-called asynchronous interrupt injection in which additional fuel injection is performed between normal fuel injections, the injection amount may be set based on the throttle valve opening change rate Δθ and the engine load as described above. good.

〈発明の効果〉 以上説明したように本発明によると、機関加速時におい
て、機関の要求量に見合った燃料噴射量の増量が行える
ようになり、空燃比のオーバーリツチ化等を回避して、
機関加速時における息つき。
<Effects of the Invention> As explained above, according to the present invention, when the engine is accelerating, the amount of fuel injection can be increased in accordance with the amount required by the engine, avoiding overriching of the air-fuel ratio, etc.
Breathing during engine acceleration.

排気性状の悪化等を防止できるという効果がある。This has the effect of preventing deterioration of exhaust properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は本発明の一実施例を
示すシステム図、第3図は同上実施例における燃料噴射
量設定を示すフローチャート、第4図は従来の問題点を
説明するためのタイムチャート、第5図はスロットル弁
開度と機関負荷との関係を示すグラフである。 1・・・内燃機関  2・・・吸気通路  3・・・ス
ロットル弁  4・・・スロットル弁開度センサ5・・
・回転速度センサ  6・・・コントロールユニット 
 7・・・燃料噴射弁  8・・・エアフローメータ特
許出願人  日本電子機器株式会社 代理人゛ 弁理士  笹 島 富二雄 第2図 第4図 (邦1関1荷棗化率) 第5図 く 機関回転上よ 手3ダε十甫正書(自発) 昭和62年5月29日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第182011号 2、発明の名称 内燃機関の電子制御燃料噴射装置 3、補正をする者 事件との関係 特許出願人           j住
 所 群馬県伊勢崎市粕用町1671番地1名 称 日
木電子機器株式会社 代表者 杉野 重巳 4、代理人 住 所  東京都港区西新橋−丁目4番10号第三森ビ
ル 6、補正の内容 (1)明細書第3頁第2行に「燃料の供給遅れ」とある
を「噴射した燃料のシリンダーへの供給遅れ」と補正す
る。 (2)明細書第4頁第18行に「増量すべき」とあるを
「増量補正すべき」と補正する。 (3)明細書第4頁第19行に「低負荷」とあるを「例
えば低負荷(B点)」と補正する。 (4)明細書第4頁第20行に「高負荷」とあるを「高
負荷(A点)」と補正する。 以上
Fig. 1 is a configuration diagram of the present invention, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 3 is a flowchart showing fuel injection amount setting in the same embodiment, and Fig. 4 shows problems of the conventional method. A time chart for explanation, FIG. 5, is a graph showing the relationship between the throttle valve opening and the engine load. 1... Internal combustion engine 2... Intake passage 3... Throttle valve 4... Throttle valve opening sensor 5...
・Rotation speed sensor 6...Control unit
7...Fuel injection valve 8...Air flow meter Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 2 Figure 4 (Japanese 1 Seki 1 cargo conversion rate) Figure 5 Ku engine Rotating upper hand 3 da ε Juho Seisho (self-proposal) May 29, 1988 Commissioner of the Patent Office Black 1) Akio Yu Tono 1, Indication of the incident 1986 Patent Application No. 182011 2, Name of the invention Internal combustion engine Electronically controlled fuel injection device 3, relationship with the case of the person making the amendment Patent applicant: Address: 1, 1671 Kasuyo-cho, Isesaki City, Gunma Prefecture Name: Hiki Electronics Co., Ltd. Representative: Shigemi Sugino 4, Agent address: Daisan Mori Building 6, 4-10 Nishi-Shinbashi-chome, Minato-ku, Tokyo Contents of the amendment (1) In the second line of page 3 of the specification, the phrase ``delay in fuel supply'' has been replaced with ``delay in the supply of fuel to the cylinder.'' ``Delay in supply.'' (2) On page 4, line 18 of the specification, the phrase "the amount should be increased" should be amended to "the amount should be corrected to increase." (3) On page 4, line 19 of the specification, the phrase "low load" is corrected to "for example, low load (point B)." (4) On page 4, line 20 of the specification, the phrase "high load" is corrected to "high load (point A)."that's all

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の吸入空気流量と回転速度とに基づいて燃料噴
射量を設定する燃料噴射量設定手段と、機関の吸気通路
に介装されたスロットル弁の開側への開度変化率を検出
するスロットル弁開度変化率検出手段と、機関の負荷を
検出する機関負荷検出手段と、検出された前記スロット
ル弁開度変化率に略比例させかつ検出された機関負荷に
略反比例させて増量燃料噴射量を設定する増量燃料噴射
量設定手段と、該増量燃料噴射量設定手段によって設定
された増量燃料噴射量及び前記燃料噴射量設定手段によ
って設定された燃料噴射量に応じて燃料噴射弁を駆動制
御する燃料噴射弁駆動制御手段と、を備えてなる内燃機
関の電子制御燃料噴射装置。
A fuel injection amount setting means that sets the fuel injection amount based on the intake air flow rate and rotational speed of the internal combustion engine, and a throttle that detects the rate of change in the opening degree of a throttle valve installed in the intake passage of the engine toward the open side. a valve opening change rate detection means; an engine load detection means for detecting engine load; and an increased fuel injection amount approximately proportional to the detected throttle valve opening change rate and approximately inversely proportional to the detected engine load. an increased fuel injection amount setting means for setting the increased fuel injection amount, and a fuel injection valve is driven and controlled according to the increased fuel injection amount set by the increased fuel injection amount setting means and the fuel injection amount set by the fuel injection amount setting means. An electronically controlled fuel injection device for an internal combustion engine, comprising: fuel injection valve drive control means.
JP61182011A 1986-08-04 1986-08-04 Electronically controlled fuel injection device for internal combustion engine Pending JPS6338643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182011A JPS6338643A (en) 1986-08-04 1986-08-04 Electronically controlled fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182011A JPS6338643A (en) 1986-08-04 1986-08-04 Electronically controlled fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6338643A true JPS6338643A (en) 1988-02-19

Family

ID=16110766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182011A Pending JPS6338643A (en) 1986-08-04 1986-08-04 Electronically controlled fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6338643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190699A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Control device of internal combustion engine
WO2023105820A1 (en) * 2021-12-08 2023-06-15 日立Astemo株式会社 Air-fuel ratio control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144633A (en) * 1982-02-23 1983-08-29 Toyota Motor Corp Method for electronically controlling fuel injection in internal-combustion engine
JPS58214629A (en) * 1982-06-09 1983-12-13 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device in internal-combustion engine
JPS5974339A (en) * 1982-10-20 1984-04-26 Hitachi Ltd Fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144633A (en) * 1982-02-23 1983-08-29 Toyota Motor Corp Method for electronically controlling fuel injection in internal-combustion engine
JPS58214629A (en) * 1982-06-09 1983-12-13 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device in internal-combustion engine
JPS5974339A (en) * 1982-10-20 1984-04-26 Hitachi Ltd Fuel injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190699A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Control device of internal combustion engine
WO2023105820A1 (en) * 2021-12-08 2023-06-15 日立Astemo株式会社 Air-fuel ratio control device
JP2023085057A (en) * 2021-12-08 2023-06-20 日立Astemo株式会社 Air-fuel ratio control device

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPH07103054A (en) Controller of number of idling revolution of internal combustion engine
US4877002A (en) Electronic control device for internal-combustion engines
JPS6338643A (en) Electronically controlled fuel injection device for internal combustion engine
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS60132043A (en) Fuel injection controller
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2510170B2 (en) Air-fuel ratio control device
JP3116720B2 (en) Fuel supply control device for internal combustion engine
JP2001090581A (en) Control device for internal combustion engine
JPS63113140A (en) Decelerating decrement control device for electronic control fuel injection system internal combustion engine
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6365150A (en) Fuel controller for engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH01151773A (en) Ignition timing controller
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JP2001329899A (en) Fuel control device for internal combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPH09287509A (en) Control device for number of idle revolutions of internal combustion engine
JPH0874621A (en) Fuel control device for engine
JPS6332138A (en) Electronic-controlled fuel injector for internal combustion engine
JPS6371535A (en) Electronic control type fuel injector for internal combustion engine
JPH0364643A (en) Idle air-fuel ratio learning and reflecting method
JPH0325620B2 (en)