JPS6371535A - Electronic control type fuel injector for internal combustion engine - Google Patents

Electronic control type fuel injector for internal combustion engine

Info

Publication number
JPS6371535A
JPS6371535A JP21412886A JP21412886A JPS6371535A JP S6371535 A JPS6371535 A JP S6371535A JP 21412886 A JP21412886 A JP 21412886A JP 21412886 A JP21412886 A JP 21412886A JP S6371535 A JPS6371535 A JP S6371535A
Authority
JP
Japan
Prior art keywords
fuel injection
air flow
flow rate
intake air
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21412886A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Seiichi Otani
大谷 精一
Yukio Hoshino
星野 行男
Naomi Tomizawa
富澤 尚己
Toshiaki Yoshii
吉井 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP21412886A priority Critical patent/JPS6371535A/en
Publication of JPS6371535A publication Critical patent/JPS6371535A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed

Abstract

PURPOSE:To prevent the overlean conversion of the air-fuel ratio due to the air quantity which is not detected by an air flow meter installed into an intake system on the downstream side of a throttle valve by increasing the fuel injection quantity by a prescribed quantity for a prescribed time in deceleration. CONSTITUTION:In a control unit 6, the fundamental fuel injection quantity is calculated based on the intake air quantity supplied from an air flow meter and the number of revolutions supplied from a crank angle senwor 5, and the correction in deceleration is performed based on each detection value of an idle switch 4, car speed sensor 9, etc. In other words, deceleration is judged when the idle switch 4 is in ON-state and the car speed is over 8 km/h, and the increase correction coefficient for the intake air quantity in the reverse proportion to the number of revolutions is set, and the correction quantity is gradually reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関し、詳し
くは吸気通路に介装されたスロットル弁の上流側に吸入
空気流量検出手段を備えると共に、前記スロットル弁の
下流側に燃料噴射弁を備えた内燃機関における減速時の
燃料噴射量制御に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more specifically, the present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more specifically, the present invention relates to an electronically controlled fuel injection device for an internal combustion engine. , relates to fuel injection amount control during deceleration in an internal combustion engine equipped with a fuel injection valve downstream of the throttle valve.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置としては従来以下のよ
うものがある。
<Prior Art> Conventionally, electronically controlled fuel injection devices for internal combustion engines include the following.

即ち、エアフローメータにより検出される1幾関の吸入
空気流量Qとクランク角度センサ等によって検出される
機関回転速度Nとから基本燃料噴射量Tp  (←KX
Q/N;には定数)を演算し、更に、機関温度等の機関
運転状態に応じた各種補正係数C0EFと空燃比フィー
ドバック補正係数αとバッテリ電圧による補正分子sと
を演算した後、前記基本燃料噴射量Tpを補正演算して
最終的な燃料噴射量Ti、(−TpxCOEFxα→−
Ts)を設定する。
That is, the basic fuel injection amount Tp (←KX
Q/N; is a constant), and furthermore, after calculating various correction coefficients C0EF according to engine operating conditions such as engine temperature, air-fuel ratio feedback correction coefficient α, and correction numerator s depending on battery voltage, the above-mentioned basic The fuel injection amount Tp is corrected and the final fuel injection amount Ti, (-TpxCOEFxα→-
Ts).

そして、設定された燃料噴射lTiに相当するパルス巾
の噴射パルス信号を電磁式燃料噴射弁に出力することに
より、機関に所定量の燃料を噴射供給するようにしてい
た(特開昭5!1203828号公報等参照)。
Then, by outputting an injection pulse signal with a pulse width corresponding to the set fuel injection lTi to the electromagnetic fuel injection valve, a predetermined amount of fuel was injected and supplied to the engine (JP-A-5!1203828 (Refer to the publication number, etc.)

〈発明が解決しようとする問題点〉 ところで、吸気通路に介装されたスロットル弁の上流側
に吸入空気流量検出手段としてのエアフローメータを備
え、かつ、前記スロットル弁の下流側の吸気ポート等に
燃料噴射弁を各気筒毎に備えた所謂マルチポイントイン
ジェクションシステム(MPrシステム)においては、
スロットル弁の上流側で吸入空気流量を検出する関係上
、スロットル弁が全閉になってからスロットル弁下流側
の吸気マニホルドのコレクタ部やブランチ部に充填され
た吸入空気流量を検出できない(第5図参照)。
<Problems to be Solved by the Invention> By the way, an air flow meter as an intake air flow rate detection means is provided upstream of a throttle valve interposed in an intake passage, and an air flow meter is provided at an intake port etc. on the downstream side of the throttle valve. In the so-called multi-point injection system (MPr system), which has a fuel injection valve for each cylinder,
Because the intake air flow rate is detected on the upstream side of the throttle valve, the intake air flow rate filled in the collector section and branch section of the intake manifold on the downstream side of the throttle valve cannot be detected after the throttle valve is fully closed. (see figure).

しかしながら、燃料噴射量は前記のように吸入空気流量
の検出値に応じて設定されるため、このようにエアフロ
ーメータによって検出されない吸入空気がスロットル弁
下流側に充填されると、スロットル弁の下流側(一般的
には燃焼室近傍)に燃料噴射弁が配設される場合には、
この充填分とは全く無関係に燃料噴射制御を行うことに
なり、スロ・νl・ル弁が全閉されてから恰も混合気中
に余分な空気を送り込んだようになって部分的な空燃比
のオーバーリーン化が発生し易くなる。
However, since the fuel injection amount is set according to the detected value of the intake air flow rate as described above, if intake air that is not detected by the air flow meter fills the downstream side of the throttle valve, If the fuel injection valve is installed near the combustion chamber (generally near the combustion chamber),
Fuel injection control is performed completely unrelated to this filling amount, and after the throttle valve is fully closed, excess air is sent into the mixture, resulting in a partial air-fuel ratio change. Over-leaning is more likely to occur.

スロットル弁の上流側に燃料噴射弁が配設される場合で
は、非検出吸入空気を含んだ空気に対して上流側から燃
料が供給されることになるため、スロットル弁の下流側
に燃料噴射弁が配設される場合に比べ局部的な空燃比の
オーバーリーン化は発生し難い。
If the fuel injection valve is installed upstream of the throttle valve, fuel will be supplied from the upstream side to the air containing undetected intake air, so the fuel injection valve will be installed downstream of the throttle valve. Local air-fuel ratio over-leaning is less likely to occur than in the case where the air-fuel ratio is provided.

このように、マルチポイントインジェクションシステム
においては、減速時に空燃比のオーバーリーン化が発生
し易く、この空燃比のオーバーリーン化によって減速シ
ョックが生しるおそれがあるという問題があった。
As described above, in the multi-point injection system, there is a problem in that the air-fuel ratio tends to become over-lean during deceleration, and this over-lean air-fuel ratio may cause a deceleration shock.

本発明は上記問題点に鑑みなされたものであり、吸気通
路に介装されたスロワ(・ル弁の上流側に吸入空気流量
検出手段を備えると共に、前記スロットル弁の下流側に
燃料噴射弁を備えた内燃機関における空燃比のオーバー
リーン化を回避して減速ショックの発生を未然に防止す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and includes an intake air flow rate detection means on the upstream side of the throat valve installed in the intake passage, and a fuel injection valve on the downstream side of the throttle valve. The purpose of the present invention is to prevent the occurrence of deceleration shock by avoiding over lean air-fuel ratio in an internal combustion engine equipped with the above-mentioned internal combustion engine.

く問題点を解決するための手段〉 そのため本発明では、第1図に示すように、吸気通路に
介装されたスロットル弁の上流側に機関の吸入空気流量
を検出する吸入空気流量検出手段を備えると共に、前記
スロットル弁の下流側に燃料噴射弁を備える一方、前記
吸入空気流量検出手段によって検出された機関の吸入空
気流量に基づいて燃料噴射量を設定する燃料噴射量設定
手段と、これによって設定された燃料噴射量に基づいて
燃料噴射弁を駆動制御する燃料噴射弁駆動制御手段と、
を備えてなる内燃機関の電子制御燃料噴射装置において
、機関の減速運転状態を検出する減速時増量補正手段と
、これによって減速運転状態が検出されたときに前記燃
料噴射量設定手段によって設定された燃料噴射量を所定
時間所定量だけ増量補正する減速時増量補正手段と、を
設けるようにした。
Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. 1, an intake air flow rate detection means for detecting the intake air flow rate of the engine is provided on the upstream side of the throttle valve installed in the intake passage. a fuel injection amount setting means for setting a fuel injection amount based on the intake air flow rate of the engine detected by the intake air flow rate detection means; a fuel injection valve drive control means for driving and controlling the fuel injection valve based on the set fuel injection amount;
In an electronically controlled fuel injection system for an internal combustion engine, the fuel injection amount is set by the fuel injection amount setting means when the deceleration operation state is detected by the deceleration increase correction means for detecting the deceleration operation state of the engine. A deceleration increase correction means for increasing the fuel injection amount by a predetermined amount for a predetermined time is provided.

く作用〉 かかる構成によると、機関の減速運転が検出されると、
そのとき検出された吸入空気流量に基づいて設定された
燃料噴射量が所定時間所定量だけ増量補正される。即ち
、減速時には、実際の吸入空気流量よりも少ない量を検
出して機関の要求量よりも少ない燃料噴射量が設定され
ることになるため、減速時に燃料噴射量を増量補正する
ことによって機関要求量に見合った燃料噴射量が設定さ
れるようにしたものである。
According to this configuration, when deceleration of the engine is detected,
The fuel injection amount set based on the detected intake air flow rate is increased by a predetermined amount for a predetermined time. In other words, during deceleration, an amount smaller than the actual intake air flow rate is detected and a fuel injection amount smaller than the required amount of the engine is set, so by increasing the fuel injection amount during deceleration, the engine request The fuel injection amount is set in accordance with the fuel injection amount.

〈実施例〉 以下に本発明の一実施例を図面に基づいて説明する。<Example> An embodiment of the present invention will be described below based on the drawings.

第2図に本実施例のハードウェア構成を示す。FIG. 2 shows the hardware configuration of this embodiment.

図に示す内燃機関1は、吸気通路2に介装されたスロッ
トル弁3の上流側に吸入空気流量検出手段としてのエア
フローメータ8を備えると共に、スロットル弁3の下流
側の吸気通路2に各気筒毎燃料噴射弁7が介装された所
謂マルチボイントインジヱクションシステム(MPIシ
ステム)のものである。
The internal combustion engine 1 shown in the figure is equipped with an air flow meter 8 as an intake air flow rate detection means on the upstream side of a throttle valve 3 installed in an intake passage 2, and an air flow meter 8 as an intake air flow rate detection means installed in the intake passage 2 on the downstream side of the throttle valve 3. This is a so-called multi-point injection system (MPI system) in which each fuel injection valve 7 is installed.

ここで、内燃機関1の吸気通路2に介装されたスロット
ル弁3の全閉位置くアイドル位置)でONとなるアイド
ルスイッチ4と、機関回転速度Nを検出するクランク角
センサ等の回転速度センサ5と、機関1の吸入空気流N
Qを検出するエアフローメータ8と、機関1が搭載され
た車両の車速■SPを検出する車速センサ9とが設けら
れ、ごれらからの各検出信号をマイクロコンピュータを
内蔵したコントロールユニット6に入力する。コントロ
ールユニット6は、これらの検出信号に基づいて機関1
の燃料噴射量Tiを設定し、この燃料噴射量Tiに対応
するパルス中の噴射パルス信号を燃料噴射弁7に出力す
る。
Here, an idle switch 4 that is turned on when a throttle valve 3 installed in an intake passage 2 of the internal combustion engine 1 is turned ON (fully closed position (idle position)), and a rotation speed sensor such as a crank angle sensor that detects the engine rotation speed N. 5 and the intake air flow N of engine 1
An air flow meter 8 that detects Q and a vehicle speed sensor 9 that detects the vehicle speed SP of the vehicle on which the engine 1 is mounted are provided, and each detection signal from the sensor is input to a control unit 6 that has a built-in microcomputer. do. The control unit 6 controls the engine 1 based on these detection signals.
A fuel injection amount Ti is set, and an injection pulse signal in a pulse corresponding to this fuel injection amount Ti is output to the fuel injection valve 7.

即ち、本実施例において、コントロールユニット6は、
燃料噴射量設定手段、燃料噴射弁駆動制御手段、減速時
増量補正手段を兼ねるものであり、また、アイドルスイ
ッチ4と車速センサ9とによって減速時増量補正手段を
構成する。
That is, in this embodiment, the control unit 6:
It serves as a fuel injection amount setting means, a fuel injection valve drive control means, and an amount increase correction means during deceleration, and the idle switch 4 and the vehicle speed sensor 9 constitute an amount increase correction means during deceleration.

ここで、燃料噴射量Tiの演算に用いる吸入空気流量Q
の設定を、第3図のフローチャート(1回転毎に実行さ
れるQ設定ルーチン)に基づいて説明する。
Here, the intake air flow rate Q used for calculating the fuel injection amount Ti
The setting will be explained based on the flowchart of FIG. 3 (Q setting routine executed every rotation).

ステップ1では、アイドルスイッチ4のON・OFF及
び各センサ5,8.9によって検出された機関回転速度
N、吸入空気流量Q、車速vspを人力する。
In step 1, the engine rotation speed N, intake air flow rate Q, and vehicle speed vsp detected by the ON/OFF of the idle switch 4 and each sensor 5, 8.9 are manually input.

ステップ2では、ステップ1において入力した車速vs
pが例えば3km/h等の所定低速度以上であるか否か
を判別する。これは、低速度走行状態と減速状態とを判
別するためのものであり、ここで車速■SPが81un
/h以上であり、然も、次のステップ3においてアイド
ルスイッチ4がON状態であるときに、車両が減速状態
であると判定される。従って、車速■SPが8km/h
未満であるときには車両が減速状態でないと判定して、
ステップ】3へ進む。
In step 2, the vehicle speed input in step 1 vs.
It is determined whether p is equal to or higher than a predetermined low speed, such as 3 km/h. This is to distinguish between a low-speed running state and a deceleration state, and here, if the vehicle speed SP is 81un.
/h or more, and when the idle switch 4 is in the ON state in the next step 3, it is determined that the vehicle is in the deceleration state. Therefore, the vehicle speed SP is 8km/h
If the value is less than 1, it is determined that the vehicle is not decelerating, and
Step] Proceed to 3.

ステップ3では、アイドルスイッチ4のON・OFFを
判定する。ここで、アイドルスイッチ4がOFFである
とき、即ち、スロットル弁3が開かれていて機関1が減
速状態でないときには、車速■SPが8−/h未満であ
るときと同様に、ステップエ3へ進んでエアフローメー
タ8によって検出された吸入空気流量Q(検出Q)を基
本燃料噴射量’rpの演算に用いる吸入空気流量Qとし
て設定する。
In step 3, it is determined whether the idle switch 4 is ON or OFF. Here, when the idle switch 4 is OFF, that is, when the throttle valve 3 is open and the engine 1 is not in a deceleration state, the process proceeds to step E 3 in the same way as when the vehicle speed SP is less than 8-/h. The intake air flow rate Q (detection Q) detected by the air flow meter 8 is set as the intake air flow rate Q used for calculating the basic fuel injection amount 'rp.

一方、アイドルスイッチ4がONであるとき、即ち、ス
ロットル弁3が全閉で機関1がアイドル状態であるとき
には、次のステップ4へ進む。
On the other hand, when the idle switch 4 is ON, that is, when the throttle valve 3 is fully closed and the engine 1 is in an idle state, the process proceeds to the next step 4.

ステップ4では、アイドルスイッチ4のON判定が初回
であるか否かを判定する。ここでいう初回とは、アイド
ルスイッチ4がOFF状態であったのが、今回ON状態
となり機関1が減速状態であることを意味するものであ
り、初回であると判定されたときにはステップ12へ進
んでカウンター値Cをゼロにリセツトし、その後、ステ
ップ13へ進み吸入空気流量Qの検出値を基本燃料噴射
量’r pの演算に用いる最終的な吸入空気流量Qとし
て設定する。
In step 4, it is determined whether or not the idle switch 4 is turned on for the first time. The first time here means that the idle switch 4 was in the OFF state, but now it is in the ON state and the engine 1 is in a decelerating state. When it is determined that this is the first time, the process proceeds to step 12. The counter value C is reset to zero at step 13, and the process then proceeds to step 13, where the detected value of the intake air flow rate Q is set as the final intake air flow rate Q used for calculating the basic fuel injection amount 'rp.

一方、アイドルスイッチ4のON判定が初回でないと判
定されたときには、ステップ5へ進んでカウンタ値Cと
所定値CIとを比較し、カウンタ値C≦所定値CIであ
るときには、ステップ6へ進み機関回転速度Nに反比例
して設定されている吸入空気流iQの増量補正係数Qa
をステップ1で入力した機関回転速度Nに基づいて検索
し、カウンタ値C〉所定値C1であるときには、ステッ
プ9へ進んで増量補正係数Qa同様機関回転速度Nに反
比例して設定されている吸入空気流量Qの増量補正係数
Qbを検索する。即ち、アイドルスイッチ4がONとな
ってからカウンタ値Cが所定値C】になるまでは増量補
正係数Qaが検索され、所定値C1を越えると増量補正
係数Qbが検索される。
On the other hand, when it is determined that the ON determination of the idle switch 4 is not the first time, the process proceeds to step 5 and compares the counter value C and the predetermined value CI, and when the counter value C≦the predetermined value CI, the process proceeds to step 6 and the engine Increase correction coefficient Qa of intake air flow iQ, which is set in inverse proportion to rotational speed N
is searched based on the engine rotational speed N input in step 1, and when the counter value C>predetermined value C1, the process proceeds to step 9 and the intake increase correction coefficient Qa, which is set in inverse proportion to the engine rotational speed N, is searched. Search for the increase correction coefficient Qb of the air flow rate Q. That is, the increase correction coefficient Qa is searched from when the idle switch 4 is turned on until the counter value C reaches the predetermined value C], and when it exceeds the predetermined value C1, the increase correction coefficient Qb is searched.

ステップ6で増量補正係数Qaを検索すると、ステップ
7で前回のカウンタ値Cに1を加算してカウントアツプ
し、ステップ8においてエアフローメータ8によって検
出された吸入空気流量Qに、検索した増量補正係数Qa
Oカウンタ値がゼロのときから今回までの積算値を乗算
して、基本燃料噴射量’rpの演算に用いる最終的な吸
入空気流量Qとして設定する。
When the increase correction coefficient Qa is searched for in step 6, the previous counter value C is incremented by 1 in step 7, and the searched increase correction coefficient is added to the intake air flow rate Q detected by the air flow meter 8 in step 8. Qa
Multiplying the accumulated value from the time when the O counter value is zero to the current time is set as the final intake air flow rate Q used for calculating the basic fuel injection amount 'rp.

ステップ9で増量補正係数Qbを検索すると、ステップ
10でカウンタ値がゼロから01までの増量補正係数Q
aの積算値から、カウンタ値がclを越えてから今回ま
での増量補正係数Qbの積算値を減算しくこの減算値が
吸入空気流量Qの補正係数となる)、その値がゼロに近
似しているが否かを判定する。即ち、本実施例において
は、吸入空気流量Qの検出値を三角増量しようとするも
のであるため、カウンタ値がCIを越えてから徐々に増
量割合を減らすようにするが、増量補正係数Qbの積算
値が大きくなり過ぎて検出吸入空気流量Qに対してマイ
ナスの補正係数が乗算されるようなことがないようにす
るため、ステップ1oの判定を設けるようにしである。
When the increase correction coefficient Qb is searched in step 9, in step 10 the increase correction coefficient Q whose counter value is from zero to 01 is searched.
From the integrated value of a, subtract the integrated value of the increase correction coefficient Qb from the time when the counter value exceeds cl until this time (this subtracted value becomes the correction coefficient of the intake air flow rate Q), and the value approaches zero. Determine whether or not there is. That is, in this embodiment, since the detected value of the intake air flow rate Q is to be increased triangularly, the increase rate is gradually decreased after the counter value exceeds CI, but the increase correction coefficient Qb is In order to prevent the integrated value from becoming too large and causing the detected intake air flow rate Q to be multiplied by a negative correction coefficient, the determination in step 1o is provided.

一般的に、減速時におけるエアフローメータ8による検
出誤差(マイナス側の誤差)は、減速初期から徐々に増
大してその後徐々に実際値に近似するような傾向を示ず
1ま ため、上記のようにして三角増量補正することによって
、基本燃料噴射量’rpの演算に用いられる吸入空気流
量Qを実際値に近似したものに補正することができるよ
うになる。
In general, the detection error (error on the negative side) by the air flow meter 8 during deceleration does not tend to increase gradually from the beginning of deceleration and then gradually approximate the actual value. By performing the triangular increase correction, the intake air flow rate Q used for calculating the basic fuel injection amount 'rp can be corrected to approximate the actual value.

ステップ10でマイナス補正される惧れがないと判定さ
れたときには、ステップ11で前記補正係数によって検
出吸入空気流量Qの増量補正を行う。
If it is determined in step 10 that there is no risk of negative correction, then in step 11 the detected intake air flow rate Q is corrected to increase using the correction coefficient.

かかるフローチャートに示すようにして吸入空気流量Q
を設定すると、その後従来例で示したように、この吸入
空気流量Qと機関回転速度Nとに基づいて基本燃料噴射
量Tp (−KXQ/N;にば定数)を演算し、更に、
機関温度(冷却水温度で代表される)等の機関運転状態
に応じた各種補正係数C0EFと空燃比フィードバック
補正係数αとバッテリ電圧による補正分子s(燃料噴射
弁7の開弁遅れ補正)とを演算した後、前記基本燃料噴
射量’rpを補正演算して最終的な燃料噴射量Ti  
(・TpXCOEFXα+Ts)を設定する。
The intake air flow rate Q is determined as shown in this flowchart.
After that, as shown in the conventional example, the basic fuel injection amount Tp (-KXQ/N; Niva constant) is calculated based on this intake air flow rate Q and engine rotational speed N, and further,
Various correction coefficients C0EF according to engine operating conditions such as engine temperature (represented by cooling water temperature), air-fuel ratio feedback correction coefficient α, and correction numerator s based on battery voltage (valve opening delay correction of fuel injection valve 7) are calculated. After the calculation, the basic fuel injection amount 'rp is corrected and calculated to obtain the final fuel injection amount Ti.
Set (・TpXCOEFXα+Ts).

このようにして、燃料噴射量Tiを設定するようにする
と、基本燃料噴射量Tpの演算に用いられる吸入空気流
量Qが実際値に近似補正されているため、減速時に吸入
空気流量の誤検出によって基本燃料噴射量’rpが機関
1の要求量よりも少なく設定されて空燃比がオーバーリ
ーン化することがなく、減速時における空燃比を所望値
に制御できるため、減速ショック等の発生を回避するこ
とができるという効果ある。
If the fuel injection amount Ti is set in this way, the intake air flow rate Q used to calculate the basic fuel injection amount Tp is corrected to approximate the actual value, so the intake air flow rate may be incorrectly detected during deceleration. The air-fuel ratio does not become over-lean due to the basic fuel injection amount 'rp being set lower than the required amount of the engine 1, and the air-fuel ratio during deceleration can be controlled to a desired value, thereby avoiding the occurrence of deceleration shock, etc. It has the effect of being able to

即ち、スロットル弁3が全閉になってからスロットル弁
3の下流側に空気が充填されても、スロットル弁3の上
流側に設けられるエアフローメータ8によってこの充填
分が検出されないため、エアフローメータ8による検出
吸入空気流量Qば実際値よりも少なくなって、機関1の
要求量よりも少ない量の基本燃料噴射量Tpが設定され
ることになってしまうが、」二元のようにして減速時の
未検出吸入空気流量を見込んで増量補正するようにする
ことによって、機関1の要求量に見合った基本燃料噴射
量’rpが設定されて、空燃比を所望の値に制御できる
ようになるものである。
That is, even if the downstream side of the throttle valve 3 is filled with air after the throttle valve 3 is fully closed, the air flow meter 8 provided upstream of the throttle valve 3 will not detect this amount of air. If the intake air flow rate Q detected by By making an increase correction in anticipation of the undetected intake air flow rate, the basic fuel injection amount 'rp corresponding to the amount required by the engine 1 is set, and the air-fuel ratio can be controlled to a desired value. It is.

〈発明の効果〉 以上説明したように本発明によると、吸気通路に介装さ
れたスロットル弁の上流側に吸入空気流量検出手段を備
えると共に、前記スロットル弁の下流側に燃料噴射弁を
備えた内燃機関において、機関の減速時に燃料噴射量を
増量補正するようにしたことにより、実際の吸入空気流
量よりも少ない空気量に応じた燃料噴射量が設定される
ことが回避され、空燃比のオーバーリーン化による減速
ショックの発生等を回避することができるという効果が
ある。
<Effects of the Invention> As explained above, according to the present invention, an intake air flow rate detection means is provided upstream of a throttle valve interposed in an intake passage, and a fuel injection valve is provided downstream of the throttle valve. In an internal combustion engine, by increasing the fuel injection amount when the engine decelerates, it is possible to avoid setting the fuel injection amount according to an air amount smaller than the actual intake air flow rate, and prevent the air-fuel ratio from overshooting. This has the effect of being able to avoid occurrence of deceleration shock due to lean.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は本発明の一実施例を
示すハードウェア構成図、第3図は同」二実施例におけ
る吸入空気流量設定ルーチンを示すフローチャート、第
4図は同上実施例における吸入空気流量の増量補正を示
すタイムチャート、第5図は従来の問題点を説明するた
めのタイムチャー l−である。 1・・・内燃機関  2・・・吸気通路  3・・・ス
ロットル弁  4・・・アイドルスインチ  5・・・
回転速度センサ  6・・・コントロールユニット7・
・・燃料噴射弁  8・・・エアフローメータ  9・
・・車速センサ
Fig. 1 is a block diagram of the present invention, Fig. 2 is a hardware block diagram showing one embodiment of the present invention, Fig. 3 is a flowchart showing the intake air flow rate setting routine in the second embodiment, and Fig. 4 is a FIG. 5 is a time chart showing the increase correction of the intake air flow rate in the above embodiment, and FIG. 5 is a time chart 1- for explaining the conventional problems. 1... Internal combustion engine 2... Intake passage 3... Throttle valve 4... Idle inch 5...
Rotational speed sensor 6...Control unit 7.
・・Fuel injection valve 8・Air flow meter 9・
・Vehicle speed sensor

Claims (1)

【特許請求の範囲】[Claims] 吸気通路に介装されたスロットル弁の上流側に機関の吸
入空気流量を検出する吸入空気流量検出手段を備えると
共に、前記スロットル弁の下流側に燃料噴射弁を備える
一方、検出された機関の吸入空気流量に基づいて燃料噴
射量を設定する燃料噴射量設定手段と、設定された燃料
噴射量に基づいて燃料噴射弁を駆動制御する燃料噴射弁
駆動制御手段と、を備えてなる内燃機関の電子制御燃料
噴射装置において、機関の減速運転状態を検出する減速
運転検出手段と、減速運転状態が検出されたときに前記
燃料噴射量設定手段によって設定された燃料噴射量を所
定時間所定量だけ増量補正する減速時増量補正手段と、
を設けたことを特徴とする内燃機関の電子制御燃料噴射
装置。
An intake air flow rate detection means for detecting the intake air flow rate of the engine is provided upstream of a throttle valve installed in the intake passage, and a fuel injection valve is provided downstream of the throttle valve. An electronic system for an internal combustion engine comprising: a fuel injection amount setting means for setting a fuel injection amount based on an air flow rate; and a fuel injection valve drive control means for driving and controlling a fuel injection valve based on the set fuel injection amount. In the control fuel injection device, there is provided a deceleration operation detection means for detecting a deceleration operation state of the engine, and when the deceleration operation state is detected, the fuel injection amount set by the fuel injection amount setting means is corrected to increase by a predetermined amount for a predetermined time. a deceleration increase correction means,
An electronically controlled fuel injection device for an internal combustion engine, characterized in that it is provided with:
JP21412886A 1986-09-12 1986-09-12 Electronic control type fuel injector for internal combustion engine Pending JPS6371535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21412886A JPS6371535A (en) 1986-09-12 1986-09-12 Electronic control type fuel injector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21412886A JPS6371535A (en) 1986-09-12 1986-09-12 Electronic control type fuel injector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6371535A true JPS6371535A (en) 1988-03-31

Family

ID=16650685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21412886A Pending JPS6371535A (en) 1986-09-12 1986-09-12 Electronic control type fuel injector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6371535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180195449A1 (en) * 2015-06-19 2018-07-12 Nissan Motor Co., Ltd. Fuel Injection Control Device and Control Method for Internal Combustion Engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677527A (en) * 1980-11-07 1981-06-25 Nippon Denso Co Ltd Method of and apparatus for controlling fuel injection to internal combustion engine
JPS5946340A (en) * 1982-09-10 1984-03-15 Toyota Motor Corp Air-fuel ratio controlling method for internal- combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677527A (en) * 1980-11-07 1981-06-25 Nippon Denso Co Ltd Method of and apparatus for controlling fuel injection to internal combustion engine
JPS5946340A (en) * 1982-09-10 1984-03-15 Toyota Motor Corp Air-fuel ratio controlling method for internal- combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180195449A1 (en) * 2015-06-19 2018-07-12 Nissan Motor Co., Ltd. Fuel Injection Control Device and Control Method for Internal Combustion Engine
US10260440B2 (en) * 2015-06-19 2019-04-16 Nissan Motor Co., Ltd. Fuel injection control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JP2589214B2 (en) Fuel supply control device for internal combustion engine with supercharger
JP2583662B2 (en) Engine air-fuel ratio control device
US4976242A (en) Fuel injection control device of an engine
JPS6371535A (en) Electronic control type fuel injector for internal combustion engine
JPH057546B2 (en)
JPS63186944A (en) Electronically controlled fuel injection device for internal combustion engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH07117023B2 (en) Engine controller
JPS63205438A (en) Deceleration and quantity reduction controller for electronic control fuel injection internal combustion engine
JPH0463933A (en) Fuel injection control device
JPH0452450Y2 (en)
JP2531063Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS62258143A (en) Electronic control fuel injection device for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS60230533A (en) Fuel feeding apparatus for internal-combustion engine
JPS63113140A (en) Decelerating decrement control device for electronic control fuel injection system internal combustion engine
JPH0745843B2 (en) Fuel supply control device for internal combustion engine
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JPS61192823A (en) Fuel injection quantity controller for internal-combustion engine equipped with supercharger
JPS62247138A (en) Electronically controlled fuel injector for internal combustion engine
JPH05187294A (en) Air-fuel ratio control device for internal combustion engine of vehicle