JPH0833133B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH0833133B2
JPH0833133B2 JP11589090A JP11589090A JPH0833133B2 JP H0833133 B2 JPH0833133 B2 JP H0833133B2 JP 11589090 A JP11589090 A JP 11589090A JP 11589090 A JP11589090 A JP 11589090A JP H0833133 B2 JPH0833133 B2 JP H0833133B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
correction amount
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11589090A
Other languages
Japanese (ja)
Other versions
JPH0417749A (en
Inventor
純一 古屋
精一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP11589090A priority Critical patent/JPH0833133B2/en
Publication of JPH0417749A publication Critical patent/JPH0417749A/en
Publication of JPH0833133B2 publication Critical patent/JPH0833133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、
特に空燃比センサを排気浄化触媒の上流側及び下流側に
備え、これら2つの空燃比センサの検出値に基づいて空
燃比を高精度にフィードバック制御する装置に関する。
TECHNICAL FIELD The present invention relates to a device for controlling an air-fuel ratio of an internal combustion engine,
In particular, the present invention relates to an apparatus that includes air-fuel ratio sensors on the upstream side and the downstream side of an exhaust purification catalyst and that controls the air-fuel ratio with high accuracy based on the detection values of these two air-fuel ratio sensors.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例
えば特開昭60-240840号公報に示されるようなものがあ
る。
<Prior Art> As a conventional general air-fuel ratio control device for an internal combustion engine, there is, for example, one disclosed in Japanese Patent Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q
及び回転数Nを検出してシリンダに吸入される空気量に
対応する基本燃料供給量TP(=K・Q/N;Kは定数)を演
算し、この基本燃料供給量TPを機関温度等により補正
したものを排気中酸素濃度の検出によって混合気の空燃
比を検出する空燃比センサ(酸素センサ)からの信号に
よって設定される空燃比フィードバック補正係数(空燃
比補正量)を用いてフィードバック補正を施し、バッテ
リ電圧による補正等をも行って最終的に燃料供給量TI
を設定する。
Explaining the outline of this, the intake air flow rate Q of the engine
And detects the rotational speed N corresponding to the quantity of air sucked into the cylinder basic fuel supply quantity T P (= K · Q / N; K is a constant) is calculated, and the engine temperature the basic fuel supply quantity T P Corrected by the air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount) set by the signal from the air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. Finally, the fuel supply amount T I
Set.

そして、このようにして設定された燃料供給量TI
相当するパルス巾の駆動パルス信号を所定タイミングで
燃料噴射弁に出力することにより、機関に所定量の燃料
を噴射供給するようにしている。
Then, by outputting a drive pulse signal having a pulse width corresponding to the fuel supply amount T I set in this way to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine. .

上記空燃比センサからの信号に基づく空燃比フィード
バック補正は空燃比を目標空燃比(理論空燃比)付近に
制御するように行われる。これは、排気系に介装され、
排気中のCO,HC(炭化水素)を酸化すると共にNOXを還元
して浄化する排気浄化触媒(三元触媒)の転化効率(浄
化効率)が理論空燃比燃焼時の排気状態で有効に機能す
るように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed so as to control the air-fuel ratio near the target air-fuel ratio (theoretical air-fuel ratio). This is interposed in the exhaust system,
The conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that oxidizes CO and HC (hydrocarbons) in the exhaust gas and reduces and purifies NO X functions effectively in the exhaust state during stoichiometric combustion. This is because it is set to do.

前記、空燃比センサの発生起電力(出力電圧)は理論
空燃比近傍で急変する特性を有しており、この出力電圧
0と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比が理論空燃比に対してリッ
チかリーンかを判定する。そして、例えば空燃比がリー
ン(リッチ)の場合には、前記基本燃料供給量TPに乗
じるフィードバック補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数Iずつ徐々に増大(減少)していき燃料供
給量TIを増量(減量)補正することで空燃比を理論空
燃比近傍に制御する。
The electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic of abruptly changing in the vicinity of the theoretical air-fuel ratio, and the output voltage V 0 and a reference voltage (slice level) SL corresponding to the theoretical air-fuel ratio SL.
Is compared to determine whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. Then, for example, when the air-fuel ratio is lean (rich), after the feedback correction coefficient α that multiplies the basic fuel supply amount T P is turned lean (rich), the large proportional constant P is increased (decreased) at the first time, The air-fuel ratio is controlled near the stoichiometric air-fuel ratio by gradually increasing (decreasing) the predetermined integration constant I and correcting the fuel supply amount T I by increasing (decreasing).

また、かかる空燃比制御装置にあっては、空燃比の非
フィードバック制御領域での空燃比の目標値からのずれ
或いはフィードバック制御中の運転領域が移動する過渡
運転時における理論空燃比からのずれを抑制するため、
空燃比フィードバック制御時に所定の定常運転条件で空
燃比フィードバック補正係数αの平均値を基準値に近づ
けるように学習補正値Klを設定して学習制御を行うこと
が一般化してきている。
Further, in such an air-fuel ratio control device, the deviation of the air-fuel ratio from the target value in the non-feedback control region or the deviation from the stoichiometric air-fuel ratio during the transient operation in which the operation region during feedback control moves. To control
It is becoming common to perform learning control by setting a learning correction value Kl so that the average value of the air-fuel ratio feedback correction coefficient α approaches a reference value under a predetermined steady-state operating condition during air-fuel ratio feedback control.

ところで、上記のような通常の空燃比フィードバック
制御装置では1個の空燃比センサを応答性を高めるた
め、できるだけ燃焼室に近い排気マニホールドの集合部
分に設けているが、この部分は排気温度が高いため空燃
比センサが熱的影響や劣化により特性が変化し易く、ま
た、気筒毎の排気の混合が不十分であるため全気筒の平
均的な空燃比を検出しにくく空燃比の検出精度に難があ
り、延いては空燃比制御精度を悪くしていた。
By the way, in the normal air-fuel ratio feedback control device as described above, one air-fuel ratio sensor is provided in the collection portion of the exhaust manifolds as close to the combustion chamber as possible in order to improve the responsiveness, but this portion has a high exhaust temperature. Therefore, the characteristics of the air-fuel ratio sensor are likely to change due to thermal influences and deterioration, and it is difficult to detect the average air-fuel ratio of all cylinders due to insufficient mixing of exhaust gas for each cylinder, making it difficult to detect the air-fuel ratio accurately. However, the air-fuel ratio control accuracy was deteriorated.

この点に鑑み、排気浄化触媒の下流側にも空燃比セン
サを設け、2つの空燃比センサの検出値を用いて空燃比
をフィードバック制御するものが提案されている(特開
昭58-48756号公報参照)。
In view of this point, it has been proposed that an air-fuel ratio sensor is provided on the downstream side of the exhaust purification catalyst and feedback control of the air-fuel ratio is performed by using the detection values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-48756). See the bulletin).

即ち、下流側の空燃比センサは燃焼室から離れている
ため応答性には難があるが、排気浄化触媒の下流である
ため、排気成分(CO,HC,NOx,CO2)のばらつきによる特
性のばらつきを生じにくく、排気中の毒性成分による被
毒量が少ないため被毒による特性変化も受けにくく、し
かも排気の混合状態がよいため全気筒の平均的な空燃比
を検出できる等上流側の空燃比センサに比較して、高精
度で安定した検出性能が得られる。
That is, the air-fuel ratio sensor on the downstream side is difficult to respond because it is far from the combustion chamber, but because it is on the downstream side of the exhaust purification catalyst, the characteristics due to variations in exhaust components (CO, HC, NOx, CO 2 ) Is less likely to occur, the amount of poisoning due to toxic components in the exhaust is small, and it is less susceptible to characteristic changes due to poisoning, and the mixed state of the exhaust is good, so the average air-fuel ratio of all cylinders can be detected. As compared with the air-fuel ratio sensor, highly accurate and stable detection performance can be obtained.

そこで、2つの空燃比センサの検出値に基づいて前記
同様の演算によって夫々設定される2つの空燃比フィー
ドバック補正係数を組み合わせたり、或いは上流側の空
燃比センサにより設定される空燃比フィードバック補正
係数の制御定数(比例分や積分分)、上流側の空燃比セ
ンサの出力電圧の比較電圧や遅延時間を補正すること等
によって上流側空燃比センサの出力特性のばらつきを下
流側の空燃比センサによって補償して高精度な空燃比フ
ィードバック制御を行うようにしている。
Therefore, two air-fuel ratio feedback correction coefficients set by the same calculation as described above based on the detection values of the two air-fuel ratio sensors are combined, or the air-fuel ratio feedback correction coefficient set by the upstream air-fuel ratio sensor Compensation of variations in the output characteristics of the upstream air-fuel ratio sensor by correcting the control constants (proportional and integral), the comparison voltage of the output voltage of the upstream air-fuel ratio sensor, and the delay time, etc. by the downstream air-fuel ratio sensor By doing so, highly accurate air-fuel ratio feedback control is performed.

また、このものにおいても前述の空燃比フィードバッ
ク補正係数の学習を、2個の空燃比センサを備えた空燃
比制御装置においても、実行したものが例えば特開昭62
-60965号等に開示されている。
Also in this case, the learning of the above-mentioned air-fuel ratio feedback correction coefficient is also executed in an air-fuel ratio control device equipped with two air-fuel ratio sensors, for example, in Japanese Patent Laid-Open No. 62-62.
-60965, etc.

〈発明が解決しようとする課題〉 ところで、上記のように空燃比センサを2個備えたも
ので空燃比補正量としての空燃比フィードバック補正係
数を学習するものでは、下流側の空燃比センサによる空
燃比補正は、あくまでも上流側空燃比センサの出力特性
のバラツキに対する補正であるため、学習によって上流
側空燃比センサのバラツキ以外の要因で生じる空燃比の
ずれの影響は無くした上で、上流側空燃比センサのバラ
ツキのみにより生じる空燃比のずれを補正する必要があ
る。
<Problems to be Solved by the Invention> By the way, as described above, in a case where two air-fuel ratio sensors are provided and an air-fuel ratio feedback correction coefficient as an air-fuel ratio correction amount is learned, the air-fuel ratio sensor on the downstream side is used. Since the fuel ratio correction is a correction for variations in the output characteristics of the upstream side air-fuel ratio sensor, the effects of deviations in the air-fuel ratio caused by factors other than variations in the upstream side air-fuel ratio sensor due to learning are eliminated, and the upstream side air-fuel ratio It is necessary to correct the deviation of the air-fuel ratio that is caused only by the variation of the fuel ratio sensor.

しかしながら、従来のものでは学習が進行していない
間に下流側の空燃比検出値に基づく補正が行われていた
ため、上流側空燃比センサのバラツキ以外の要因も含め
て補正してしまい、かかる誤った空燃比補正により却っ
て排気エミッション特性を悪化させてしまうことがあっ
た。
However, in the conventional one, since the correction was made based on the downstream air-fuel ratio detection value while the learning was not in progress, the correction was made including factors other than the variation of the upstream side air-fuel ratio sensor. On the contrary, the air-fuel ratio correction sometimes deteriorates the exhaust emission characteristics.

特に、下流側空燃比センサが検出するガスは、触媒に
より空燃比変動がなまらされているため、反転周期が長
く(1回当りの更新値が小さく)、一度誤補正となって
しまうと、正規の補正量に戻るまでの間、非常に時間が
かかるため、その間ずっと空燃比のずれにより排気エミ
ッション等への影響が大きくなってしまうものである。
In particular, the gas detected by the downstream side air-fuel ratio sensor has a long reversal cycle (the update value per time is small) because the air-fuel ratio fluctuation is blunted by the catalyst. Since it takes a very long time to return to the correction amount of, the influence on the exhaust emission and the like becomes great due to the deviation of the air-fuel ratio during that time.

更に、このように誤補正が行われた状態で学習が行わ
れると、学習値の正規の値への収束まで遅れて、学習に
よる過渡時の空燃比性能の向上にも遅れを生じてしま
う。
Further, if learning is performed in such a state where the erroneous correction is performed, there is a delay until the learning value converges to a normal value, and there is also a delay in improving the air-fuel ratio performance during the transition due to learning.

本発明は、このような従来の問題点に鑑みなされたも
ので、排気浄化触媒の上流及び下流に空燃比センサを備
えた内燃機関の空燃比制御装置において、学習の進行度
に応じた空燃比補正を行うことにより上記問題点を解決
した内燃機関の空燃比制御装置を提供することを目的と
する。
The present invention has been made in view of such conventional problems, and in an air-fuel ratio control device for an internal combustion engine equipped with air-fuel ratio sensors upstream and downstream of an exhaust purification catalyst, an air-fuel ratio according to the degree of progress of learning. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine, which solves the above problems by performing correction.

〈課題を解決するための手段〉 このため本発明は第1図に示すように、 機関の排気通路に備えられた排気浄化触媒の上流側及
び下流側に夫々設けられ、空燃比によって変化する排気
中特定気体成分の濃度比に感応して出力値が変化する第
1及び第2の空燃比センサと、 前記第1の空燃比センサの出力値に応じて第1の空燃
比補正量を演算する第1の空燃比補正量演算手段と、 前記第2の空燃比センサの出力値に応じて第2の空燃
比補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量及び第2の空燃比補正量に基
づいて最終的な空燃比補正量を演算する空燃比補正量演
算手段と、 空燃比補正量の学習補正値を運転領域毎に記憶する学
習補正値記憶手段と、 前記学習補正値記憶手段から検索した学習補正値と前
記最終的な空燃比補正量とに基づいて該空燃比補正量の
平均値を所定値に収束させるように新たな学習補正値を
設定すると共に、該学習補正値で前記学習補正値記憶手
段の対応する運転領域の学習補正値を更新する学習補正
値更新手段と、 を備えた内燃機関の空燃比制御装置において、 前記学習補正値更新手段により空燃比補正量を所定値
に近づける学習の進行度を判定する学習進行度判定手段
と、 前記学習進行度が所定以上となるまでの間、第2の空
燃比補正量演算手段による第2の空燃比補正量の演算を
禁止させる第2の空燃比補正量演算禁止手段と、を備え
て構成した。
<Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention is provided on the upstream side and the downstream side of the exhaust purification catalyst provided in the exhaust passage of the engine, and the exhaust gas changes depending on the air-fuel ratio. First and second air-fuel ratio sensors whose output values change in response to the concentration ratio of the medium specific gas component, and a first air-fuel ratio correction amount is calculated according to the output values of the first air-fuel ratio sensor. First air-fuel ratio correction amount calculation means, second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount according to the output value of the second air-fuel ratio sensor, and the first air-fuel ratio correction amount calculation means Air-fuel ratio correction amount calculation means for calculating a final air-fuel ratio correction amount based on the fuel ratio correction amount and the second air-fuel ratio correction amount, and a learning correction value for storing a learning correction value of the air-fuel ratio correction amount for each operating region. Storage means, the learning correction value retrieved from the learning correction value storage means, and the final correction value. A new learning correction value is set so that the average value of the air-fuel ratio correction amount converges to a predetermined value based on the effective air-fuel ratio correction amount, and the learning correction value corresponds to the learning correction value storage means. In an air-fuel ratio control apparatus for an internal combustion engine, comprising: a learning correction value updating means for updating a learning correction value in an operating region; and a learning progress for making the air-fuel ratio correction amount approach a predetermined value by the learning correction value updating means. And a second air-fuel ratio correction amount that prohibits calculation of the second air-fuel ratio correction amount by the second air-fuel ratio correction amount calculation device until the learning progress degree exceeds a predetermined value. And a calculation prohibiting means.

〈作用〉 第1の空燃比補正量演算手段は、第1の空燃比センサ
からの検出値に基づいて、第1の空燃比補正量を設定
し、第2の空燃比補正量演算手段は、学習進行度判定手
段により学習進行度が所定以上となった後に第2の空燃
比センサからの検出値に基づいて、第2の空燃比補正量
を設定する。
<Operation> The first air-fuel ratio correction amount calculation means sets the first air-fuel ratio correction amount based on the detection value from the first air-fuel ratio sensor, and the second air-fuel ratio correction amount calculation means The second air-fuel ratio correction amount is set on the basis of the detection value from the second air-fuel ratio sensor after the learning progress determination means has made the learning progress above a predetermined level.

そして空燃比補正量演算手段は、第1の空燃比補正量
及び第2の空燃比補正量に基づいて最終的な空燃比補正
量を演算する。
Then, the air-fuel ratio correction amount calculation means calculates a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount.

一方、学習補正値更新手段は、空燃比補正量の学習補
正値を運転領域毎に記憶した学習補正値記憶手段から、
対応した運転領域の学習補正値を検索し、該学習補正値
と前記最終的な空燃比補正量とに基づいて該空燃比補正
量の平均値を所定値に収束させるように新たな学習補正
値を設定すると共に、該学習補正値で前記学習補正値記
憶手段の対応する運転領域の学習補正値を更新する。
On the other hand, the learning correction value updating means stores the learning correction value of the air-fuel ratio correction amount for each operating region from the learning correction value storage means.
A learning correction value for a corresponding operating region is searched for, and a new learning correction value is set so that the average value of the air-fuel ratio correction amount converges to a predetermined value based on the learning correction value and the final air-fuel ratio correction amount. And the learning correction value of the corresponding operating region of the learning correction value storage means is updated with the learning correction value.

但し、学習判定手段により判定される学習の進行度が
所定以上となるまでの間は、第2の空燃比補正量演算禁
止手段により、第2の空燃比補正量演算手段による第2
の空燃比補正量の演算が禁止される。
However, until the degree of progress of the learning determined by the learning determination means becomes equal to or higher than a predetermined value, the second air-fuel ratio correction amount calculation inhibiting means causes the second air-fuel ratio correction amount calculation means to perform the second operation.
The calculation of the air-fuel ratio correction amount is prohibited.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Below, the Example of this invention is described based on drawing.

一実施例の構成を示す第2図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメータ
13及びアクセルペダルと連動して吸入空気流量Qを制御
する絞り弁14が設けられ、下流のマニホールド部分には
気筒毎に電磁式の燃料噴射弁15が設けられる。
2, an air flow meter for detecting an intake air flow rate Q is provided in an intake passage 12 of an engine 11.
A throttle valve 14 for controlling the intake air flow rate Q in cooperation with the accelerator pedal 13 and the accelerator pedal is provided, and an electromagnetic fuel injection valve 15 is provided for each cylinder in the downstream manifold portion.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって開
弁駆動し、図示しない燃料ポンプから圧送されてプレッ
シャレギュレータにより所定圧力に制御された燃料を噴
射供給する。更に、機関11の冷却ジャケット内の冷却水
温度Twを検出する水温センサ17が設けられる。一方、排
気通路18にはマニホールド集合部に排気中酸素濃度を検
出することによって吸入混合気の空燃比を検出する第1
の空燃比センサ19が設けられ、その下流側の排気管に排
気中のCO,HCの酸化とNOXの還元を行って浄化する排気浄
化触媒としての三元触媒20が設けられ、更に該三元触媒
20の下流側に第1空燃比センサと同一の機能を持つ第2
の空燃比センサ21が設けられる。
The fuel injection valve 15 is opened and driven by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel which is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 for detecting the cooling water temperature Tw in the cooling jacket of the engine 11 is provided. On the other hand, in the exhaust passage 18, the air-fuel ratio of the intake air-fuel mixture is detected by detecting the oxygen concentration in the exhaust gas at the manifold collecting portion.
An air-fuel ratio sensor 19 is provided, and a three-way catalyst 20 as an exhaust purification catalyst that purifies the exhaust pipe by oxidizing CO and HC and reducing NO X in the exhaust is provided in the exhaust pipe on the downstream side of the exhaust pipe. Original catalyst
The second side which has the same function as the first air-fuel ratio sensor on the downstream side of 20
The air-fuel ratio sensor 21 is provided.

また、第2図で図示しないディストリビュータには、
クランク角センサ22が内蔵されており、該クランク角セ
ンサ22から機関回転と同期して出力されるクランク単位
角信号を一定時間カウントして、又は、クランク基準角
信号の周期を計測して機関回転数Nを検出する。
In addition, the distributor not shown in FIG.
The crank angle sensor 22 is built-in, and the crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time, or the cycle of the crank reference angle signal is measured to determine the engine rotation. Detect the number N.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10ms)毎に行われる。
Next, the air-fuel ratio control routine by the control unit 16 will be described with reference to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed every predetermined period (for example, 10 ms).

ステップ(図ではSと記す)1では、エアフローメー
タ13によって検出された吸入空気流量Qとクランク角セ
ンサ22からの信号に基づいて算出した機関回転数Nとに
基づき、単位回転当たりの吸入空気量に相当する基本燃
料噴射量TPを次式によって演算する。このステップ1
の機能が基本燃料供給量設定手段に相当する。
In step (denoted as S in the figure) 1, the intake air amount per unit rotation is calculated based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 22. The basic fuel injection amount T P corresponding to is calculated by the following equation. This step 1
The function of corresponds to the basic fuel supply amount setting means.

P=K×Q/N (Kは定数) ステップ2では、水温センサ17によって検出された冷
却水温度Tw等に基づいて各種補正係数COEFを設定する。
T P = K × Q / N (K is a constant) In step 2, various correction coefficients COEF are set based on the cooling water temperature Tw detected by the water temperature sensor 17.

ステップ3では、後述する空燃比フィードバック補正
係数設定ルーチンにより設定された空燃比フィードバッ
ク補正係数α及び該空燃比フィードバック補正係数αの
後述する学習補正係数Klを機関回転数Nと基本燃料噴射
量TPとに基づいてRAMの対応する運転領域から検索して
読み込む。
In step 3, the air-fuel ratio feedback correction coefficient α set by the air-fuel ratio feedback correction coefficient setting routine described later and the learning correction coefficient Kl described later of the air-fuel ratio feedback correction coefficient α are set to the engine speed N and the basic fuel injection amount T P. Based on and, search and read from the corresponding operation area of RAM.

ステップ4では、バッテリ電圧値に基づいて電圧補正
分TSを設定する。これは、バッテリ電圧変動による燃
料噴射弁15の噴射流量変化を補正するためのものであ
る。
In step 4, the voltage correction amount T S is set based on the battery voltage value. This is for correcting a change in the injection flow rate of the fuel injection valve 15 due to the battery voltage fluctuation.

ステップ5では、最終的な燃料噴射量(燃料供給量)
Iを次式に従って演算する。このステップ5の機能が
燃料供給量設定手段に相当する。
In step 5, the final fuel injection amount (fuel supply amount)
Calculate T I according to the following equation: The function of step 5 corresponds to the fuel supply amount setting means.

I=TP×COEF×α×Kl+TS ステップ6では、演算された燃料噴射弁TIを出力用
レジスタにセットする。
T I = T P × COEF × α × Kl + T S In step 6, the calculated fuel injection valve T I is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射
タイミングになると、演算した燃料噴射量TIのパルス
巾をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射が行われる。
As a result, at a predetermined fuel injection timing synchronized with engine rotation, a drive pulse signal having a calculated pulse width of the fuel injection amount T I is given to the fuel injection valve 15 to perform fuel injection.

次に、空燃比フィードバック補正係数設定ルーチンを
第4図に従って説明する。このルーチンは機関回転に同
期して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be described with reference to FIG. This routine is executed in synchronization with the engine rotation.

ステップ10では、空燃比のフィードバック制御を行う
運転条件であるか否かを判定する。運転条件を満たして
いないときには、このルーチンを終了する。この場合、
フィードバック補正係数αは前回のフィードバック制御
終了時の値若しくは一定の基準値にクランプされ、フィ
ードバック制御は停止される。
In step 10, it is determined whether or not the operating conditions are such that feedback control of the air-fuel ratio is performed. When the operating conditions are not satisfied, this routine is ended. in this case,
The feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップ11では、第1の空燃比センサ19からの信号電
圧VO2及び第2の空燃比センサ21からの信号電圧V′O2
を入力する。
In step 11, the signal voltage V O2 from the first air-fuel ratio sensor 19 and the signal voltage V ′ O2 from the second air-fuel ratio sensor 21.
Enter

ステップ12では、ステップ10で入力した第1の空燃比
センサ19の信号電圧VO2と目標空燃比(理論空燃比)相
当の基準値SLとを比較する。
In step 12, the signal voltage V O2 of the first air-fuel ratio sensor 19 input in step 10 is compared with the reference value SL corresponding to the target air-fuel ratio (theoretical air-fuel ratio).

そして、VO2>SLであるとき、即ち、リッチと判定さ
れた時には、更にステップ13へ進み、リーン→リッチの
反転直後か否かを判定する。
Then, when V O2 > SL, that is, when it is determined to be rich, the process further proceeds to step 13, and it is determined whether or not immediately after lean → rich inversion.

反転時にはステップ14へ進んで、空燃比フィードバッ
ク補正係数αの現在値α0と前回の第1の空燃比センサ1
9の出力反転時の値α-1(比例分PL付与前の値)との平
均値αMを演算する。
When reversing, the routine proceeds to step 14, where the current value α 0 of the air-fuel ratio feedback correction coefficient α and the previous first air-fuel ratio sensor 1
The average value α M of 9 and the value α −1 when the output is inverted (the value before the proportional portion P L is applied ) is calculated.

ステップ15では、前記平均値αMと所定値αCとの偏差
Δαの絶対値を正の基準値Δα0と比較する。ここで、
前記所定値αCは、後述する空燃比フィードバック補正
係数αの学習が十分に進行した場合に空燃比フィードバ
ック補正係数αが収束する値であり、換言すれば空燃比
フィードバック補正係数αをこの値αCにクランプした
時に目標空燃比(理論空燃比)が得られる値に設定され
ている。
In step 15, the absolute value of the deviation Δα between the average value α M and the predetermined value α C is compared with the positive reference value Δα 0 . here,
The predetermined value α C is a value at which the air-fuel ratio feedback correction coefficient α converges when learning of the air-fuel ratio feedback correction coefficient α described later progresses sufficiently, in other words, the air-fuel ratio feedback correction coefficient α is set to this value α C. The target air-fuel ratio (theoretical air-fuel ratio) is set to a value that can be obtained when clamped to C.

そして、|Δα|≦Δα0となって学習が十分に進行
したと判定された時には、ステップ16に進み、第2の空
燃比センサ21からの信号電圧V′O2と目標空燃比(理論
空燃比)相当の基準値SLとを比較する。
When | Δα | ≦ Δα 0 and it is determined that the learning has progressed sufficiently, the routine proceeds to step 16, where the signal voltage V ′ O2 from the second air-fuel ratio sensor 21 and the target air-fuel ratio (theoretical air-fuel ratio ) Compare with the corresponding reference value SL.

そして空燃比がリッチ(V′O2>SL)と判定されたと
きにはステップ17へ進んで空燃比フィードバック補正係
数α設定用の反転時に与える比例分Pを補正するための
第2の空燃比補正量PHOSを現在値PHOS-1から所定量Δ
DPHOS引いた値で更新した後ステップ18へ進み、比例分
Rの基準値PR0から前記第2の空燃比補正量PHOSを減
少した値で更新してからステップ21へ進む。
When it is determined that the air-fuel ratio is rich ( V'O2 > SL), the routine proceeds to step 17, where the second air-fuel ratio correction amount PHOS for correcting the proportional portion P given at the time of reversal for setting the air-fuel ratio feedback correction coefficient α is set. From the current value PHOS -1 by a predetermined amount Δ
After updating by the value obtained by subtracting DPHOS, the routine proceeds to step 18, and after updating the second air-fuel ratio correction amount PHOS from the reference value P R0 of the proportional portion P R by a value, the routine proceeds to step 21.

また、空燃比がリーン(V′O2<SL)と判定されたと
きにはステップ19へ進んで第2の空燃比補正量PHOSを
現在値PHOS-1に所定量ΔDPHOS加えた値で更新した後ス
テップ20へ進み、比例分PLの基準値PL0に前記第2の
空燃比補正量PHOSを増加した値で更新してからステッ
プ21へ進む。
When it is determined that the air-fuel ratio is lean ( V'O2 <SL), the routine proceeds to step 19, where the second air-fuel ratio correction amount PHOS is updated to a value obtained by adding a predetermined amount ΔDPHOS to the current value PHOS -1, and then step 20. to proceeds, then, the process proceeds updated with increased value of the second air-fuel ratio correction amount PHOS the reference value P L0 of proportional portion P L to step 21.

一方、ステップ15で|Δα|>Δα0と範囲された時
には、未だ十分に空燃比フィードバック補正係数αの学
習が進行していないため、第2の空燃比補正量PHOSに
よる比例分PRの補正を行うことなく、ステップ21へ進
む。
On the other hand, when | Δα |> Δα 0 is satisfied in step 15, the learning of the air-fuel ratio feedback correction coefficient α has not yet progressed sufficiently, so that the proportional amount P R is corrected by the second air-fuel ratio correction amount PHOS. Without performing step 21, proceed to step 21.

ステップ21では、空燃比フィードバック補正係数αを
現在値から前記比例分PRを減じた値で更新する。
In step 21, the air-fuel ratio feedback correction coefficient α is updated with a value obtained by subtracting the proportional P R from the current value.

このようにして、空燃比フィードバック補正係数αを
設定した後、ステップ22へ進み、次のようにして空燃比
フィードバック補正係数αの学習補正係数Klを設定更新
する。まづ、機関回転数Nと基本燃料噴射量TPとからR
AMのマップに記憶された対応する運転領域の学習補正係
数(空燃比補正量の学習補正値)Klを検索し、次式に従
って検索された現在の学習補正係数Klに前記偏差Δαを
所定割合加算することによって新たな学習補正係数Klを
演算し、同一領域の学習補正係数Klのデータを修正して
書き換える。即ち、学習補正係数Klを記憶したRAMが学
習補正値記憶手段に相当し、ステップ22の機能が学習補
正値更新手段に相当する。
In this way, after setting the air-fuel ratio feedback correction coefficient α, the routine proceeds to step 22, and the learning correction coefficient Kl of the air-fuel ratio feedback correction coefficient α is set and updated as follows. First, from the engine speed N and the basic fuel injection amount T P , R
The learning correction coefficient (learning correction value of the air-fuel ratio correction amount) Kl stored in the map of AM is searched, and the deviation Δα is added to the current learning correction coefficient Kl searched according to the following equation by a predetermined ratio. By doing so, a new learning correction coefficient Kl is calculated, and the data of the learning correction coefficient Kl in the same area is corrected and rewritten. That is, the RAM storing the learning correction coefficient Kl corresponds to the learning correction value storage means, and the function of step 22 corresponds to the learning correction value updating means.

Kl←Kl+Δα/M (Mは定数で、M>1) 又、ステップ13でリッチであるが反転直後でないと判
定された時にはステップ23へ進み、空燃比フィードバッ
ク補正係数αを現在値から積分分Iを減じた値で更新す
る。
Kl ← Kl + Δα / M (M is a constant, M> 1) When it is determined in step 13 that the fuel is rich but not immediately after reversal, the routine proceeds to step 23, where the air-fuel ratio feedback correction coefficient α is integrated from the current value by the integral I Update with the value obtained by subtracting.

一方、ステップ12でVO2<SLと判定されたとき、即
ち、リーンと判定された時には、ステップ24へ進み、リ
ッチ→リーンの反転直後か否かを判定し、反転時にはス
テップ25へ進んで、ステップ14と同様にして平均値αM
を演算し、ステップ26でステップ15同様偏差Δαの絶対
値を正の基準値Δα0と比較する。
On the other hand, when it is determined in step 12 that V O2 <SL, that is, when lean is determined, the process proceeds to step 24, it is determined whether it is immediately after the rich-to-lean reversal, and when reversing, the process proceeds to step 25, Similar to step 14, average value α M
Is calculated, and the absolute value of the deviation Δα is compared with a positive reference value Δα 0 in step 26.

そして、同様に|Δα|≦Δα0となって学習が十分
に進行したと判定された時にはステップ27に進み、第2
の空燃比センサ21の信号電圧電圧V′O2と基準値SLとを
比較し、リッチ判定時はステップ28へ進んで第2の空燃
比補正量PHOSを所定量ΔDPHOS減じた値で更新した後、
ステップ29へ進んで比例分PRを基準値PR0から第2の
空燃比補正量PHOSを減少した値で更新し、リーン判定
時はステップ30へ進んで第2の空燃比補正量PHOSは所
定量ΔDPHOS加算した値で更新した後ステップ31へ進
み、比例分PLを基準値PL0に第2の空燃比補正量PHOS
を増加した値で更新してからステップ32へ進む。
Similarly, when | Δα | ≦ Δα 0 is determined and it is determined that the learning has progressed sufficiently, the routine proceeds to step 27, where the second
Of the air-fuel ratio by comparing the signal voltage voltage V 'O2 sensor 21 and the reference value SL, after the rich determination time is updated in value the second air-fuel ratio correction amount PHOS by subtracting a predetermined amount ΔDPHOS proceeds to step 28,
The routine proceeds to step 29, where the proportional amount P R is updated with a value obtained by reducing the second air-fuel ratio correction amount PHOS from the reference value P R0, and at the time of lean determination, it proceeds to step 30 and the second air-fuel ratio correction amount PHOS is set. After updating the value by adding the fixed amount ΔDPHOS, the process proceeds to step 31, and the proportional amount P L is set to the reference value P L0 to the second air-fuel ratio correction amount PHOS.
Is updated with the increased value, and the process proceeds to step 32.

ステップ32で空燃比フィードバック補正係数αを現在
値に前記比例分PLを増加した値で更新した後、ステッ
プ22へ進んで前記学習補正係数Klを更新設定する。
In step 32, the air-fuel ratio feedback correction coefficient α is updated with a value obtained by increasing the proportional amount P L to the current value, and then the process proceeds to step 22 to update and set the learning correction coefficient Kl.

又、ステップ24で反転直後でないと判定された時には
ステップ33へ進み、空燃比フィードバック補正係数αを
現在値に積分分Iを増加した値で更新する。
If it is determined in step 24 that it is not immediately after reversal, the routine proceeds to step 33, where the air-fuel ratio feedback correction coefficient α is updated with a value obtained by increasing the integral I by the current value.

かかる構成とすれば、空燃比フィードバック補正係数
αの学習が十分に進行していない間に第2の空燃比補正
量PHOSによる比例分PR,PLの補正を行うと、上流側の
第1の空燃比センサ19の特性バラツキ以外の要因に対し
て補正が行われるため、誤った空燃比補正が行われ空燃
比のずれを生じるが、この間は前記補正が禁止されるた
め、誤補正による空燃比のずれを防止でき、良好な空燃
比フィードバック制御を維持できる。
With such a configuration, if the proportional components P R and P L are corrected by the second air-fuel ratio correction amount PHOS while the learning of the air-fuel ratio feedback correction coefficient α has not progressed sufficiently, the upstream first Since the correction is performed for factors other than the characteristic variation of the air-fuel ratio sensor 19, the incorrect air-fuel ratio correction is performed and the air-fuel ratio shifts.However, the correction is prohibited during this period, so the The deviation of the fuel ratio can be prevented, and good air-fuel ratio feedback control can be maintained.

尚、本実施例では第1の空燃比センサ19の検出値に基
づく空燃比フィードバック制御を基調としつつ、その空
燃比フィードバック補正係数の比例分を第2の空燃比セ
ンサの検出値に基づいて補正するものに適用した例を示
したが、これに限らず夫々の空燃比センサによって空燃
比フィードバック補正係数を設定し、双方の値を合成し
て得た空燃比フィードバック補正係数を使用したり、第
1の空燃比センサによる空燃比フィードバック制御を行
いつつ、リッチ,リーン判定の基準値SLや出力遅延時間
を第2の空燃比センサの検出で補正したりするようなも
のにも適用できる。
In this embodiment, the air-fuel ratio feedback control based on the detection value of the first air-fuel ratio sensor 19 is used as the basis, and the proportional portion of the air-fuel ratio feedback correction coefficient is corrected based on the detection value of the second air-fuel ratio sensor. However, the air-fuel ratio feedback correction coefficient is set by each air-fuel ratio sensor, and the air-fuel ratio feedback correction coefficient obtained by synthesizing both values is used. The present invention can also be applied to the one in which the reference value SL for rich / lean determination and the output delay time are corrected by the detection of the second air-fuel ratio sensor while performing the air-fuel ratio feedback control by the first air-fuel ratio sensor.

また、第2の空燃比補正量PHOSについても機関回転
数Nと基本燃料噴射量TP等によって区分された運転領
域毎に記憶しておき(反転周期が長いため空燃比フィー
ドバック補正係数αの記憶領域よりは大まかに区分され
る)領域が変わると、記憶された値を初期値として更新
するような学習機能を持たせてもよい。更に、第2の空
燃比補正量PHOSをそのままではなく、第2の空燃比セ
ンサの反転毎に該反転時の補正量PHOSと前回反転時の
補正量PHOSとの平均値を演算し、且つ該平均値と過去
の平均値の加重平均値とを新たに加重平均して学習補正
値を設定するような構成としてもよい。かかる第2の空
燃比補正量の学習を行うものでは、空燃比フィードバッ
ク補正係数αの学習が進行しないうちは、第2の空燃比
補正量の学習も当然に停止する。
The second air-fuel ratio correction amount PHOS is also stored for each operating region divided by the engine speed N, the basic fuel injection amount T P, etc. (since the reversal cycle is long, the air-fuel ratio feedback correction coefficient α is stored. A learning function may be provided to update the stored value as an initial value when the area changes (roughly divided from the area). Furthermore, the second air-fuel ratio correction amount PHOS is not kept as it is, but an average value of the correction amount PHOS at the time of the inversion and the correction amount PHOS at the time of the previous inversion is calculated for each inversion of the second air-fuel ratio sensor, and The learning correction value may be set by newly weighted averaging the average value and the weighted average value of the past average values. In the case where the learning of the second air-fuel ratio correction amount is performed, the learning of the second air-fuel ratio correction amount naturally stops while the learning of the air-fuel ratio feedback correction coefficient α does not proceed.

尚、ステップ17,19,28,30におけるPHOSの演算が第2
の空燃比補正量演算手段に相当し、ステップ18,20,29,3
1における比例分の補正を除きステップ21,23,32,33で空
燃比フィードバック補正係数αを演算する機能が第1の
空燃比補正量演算手段に相当し、ステップ15,26におけ
る比較の機能が学習手段判定手段に相当する。
The calculation of PHOS in steps 17, 19, 28 and 30 is the second
It corresponds to the air-fuel ratio correction amount calculation means of step 18, 20, 29, 3
The function of calculating the air-fuel ratio feedback correction coefficient α in steps 21, 23, 32 and 33 except for the proportional correction in step 1 corresponds to the first air-fuel ratio correction amount calculation means, and the function of comparison in steps 15 and 26 is It corresponds to a learning means determining means.

また、学習進行度の判定は本実施例の方式に限られ
ず、例えば学習回数や学習が実行された領域数等によっ
て判定する方式としてもよい。
The determination of the degree of progress of learning is not limited to the method of this embodiment, and may be a method of determining based on, for example, the number of times of learning or the number of areas in which learning is performed.

〈発明の効果〉 以上説明したように本発明によれば、排気浄化触媒の
上流側及び下流側に空燃比センサを備え、これら両空燃
比センサの検出値に基づいて空燃比フィードバック制御
を行うものにおいて、空燃比補正量の学習が十分に進行
しない間は第2の空燃比補正量の演算を禁止する構成と
したため、誤補正による空燃比のずれ防止でき、十分学
習が進行した後に第2の空燃比補正量による補正を行う
ことで可及的に精度の高い空燃比制御を実行できるもの
である。
<Effects of the Invention> As described above, according to the present invention, the air-fuel ratio sensors are provided on the upstream side and the downstream side of the exhaust purification catalyst, and the air-fuel ratio feedback control is performed based on the detection values of these air-fuel ratio sensors. In the above, since the calculation of the second air-fuel ratio correction amount is prohibited while the learning of the air-fuel ratio correction amount does not proceed sufficiently, the deviation of the air-fuel ratio due to erroneous correction can be prevented, and after the learning is sufficiently advanced, the second By performing the correction based on the air-fuel ratio correction amount, it is possible to execute the air-fuel ratio control with the highest possible accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同じく空燃比フィードバック補正係数設定ルーチンを示
すフローチャートである。 11……内燃機関、12……吸気通路、15……燃料噴射弁、
16……コントロールユニット、18……排気通路、19……
第1の空燃比センサ、20……三元触媒、21……第2の空
燃比センサ
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing a fuel injection amount setting routine of the same embodiment, and FIG. It is a flowchart which similarly shows an air-fuel ratio feedback correction coefficient setting routine. 11 …… internal combustion engine, 12 …… intake passage, 15 …… fuel injection valve,
16 …… control unit, 18 …… exhaust passage, 19 ……
First air-fuel ratio sensor, 20 ... Three-way catalyst, 21 ... Second air-fuel ratio sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機関の排気通路に備えられた排気浄化触媒
の上流側及び下流側に夫々設けられ、空燃比によって変
化する排気中特定気体成分の濃度比に感応して出力値が
変化する第1及び第2の空燃比センサと、 前記第1の空燃比センサの出力値に応じて第1の空燃比
補正量を演算する第1の空燃比補正量演算手段と、 前記第2の空燃比センサの出力値に応じて第2の空燃比
補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量及び第2の空燃比補正量に基づ
いて最終的な空燃比補正量を演算する空燃比補正量演算
手段と、 空燃比補正量の学習補正値を運転領域毎に記憶する学習
補正値記憶手段と、 前記学習補正値記憶手段から検索した学習補正値と前記
最終的な空燃比補正量とに基づいて該空燃比補正量の平
均値を所定値に収束させるように新たな学習補正値を設
定すると共に、該学習補正値で前記学習補正値記憶手段
の対応する運転領域の学習補正値を更新する学習補正値
更新手段と、 を備えた内燃機関の空燃比制御装置において、 前記学習補正値更新手段により空燃比補正量を所定値に
近づける学習の進行度を判定する学習進行度判定手段
と、 前記学習進行度が所定以上となるまでの間、第2の空燃
比補正量演算手段による第2の空燃比補正量の演算を禁
止させる第2の空燃比補正量演算禁止手段と、を備えて
構成したことを特徴とする内燃機関の空燃比制御装置。
1. An output value which is provided upstream and downstream of an exhaust purification catalyst provided in an exhaust passage of an engine and whose output value changes in response to a concentration ratio of a specific gas component in exhaust gas that changes according to an air-fuel ratio. First and second air-fuel ratio sensors, first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to the output value of the first air-fuel ratio sensor, and the second air-fuel ratio Second air-fuel ratio correction amount calculating means for calculating a second air-fuel ratio correction amount according to the output value of the sensor, and a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount. An air-fuel ratio correction amount calculation means for calculating an air-fuel ratio correction amount, a learning correction value storage means for storing a learning correction value of the air-fuel ratio correction amount for each operation region, and a learning correction value retrieved from the learning correction value storage means. The average value of the air-fuel ratio correction amount is calculated based on the final air-fuel ratio correction amount. A learning correction value updating means for setting a new learning correction value so that the learning correction value converges to a constant value, and for updating the learning correction value in the corresponding operating region of the learning correction value storage means with the learning correction value; In an air-fuel ratio control device of an engine, a learning progress determination unit that determines a progress of learning for bringing the air-fuel ratio correction amount closer to a predetermined value by the learning correction value updating unit, and until the learning progress becomes a predetermined value or more. And an air-fuel ratio correction amount calculation prohibiting means for prohibiting the second air-fuel ratio correction amount calculation means from calculating the second air-fuel ratio correction amount. Control device.
JP11589090A 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JPH0833133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11589090A JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11589090A JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0417749A JPH0417749A (en) 1992-01-22
JPH0833133B2 true JPH0833133B2 (en) 1996-03-29

Family

ID=14673730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11589090A Expired - Fee Related JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833133B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261045A (en) * 1995-03-27 1996-10-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP4807359B2 (en) * 2008-01-30 2011-11-02 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0417749A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US4434768A (en) Air-fuel ratio control for internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
US5638800A (en) Method and apparatus for controlling air-fuel ratio learning of an internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH07127505A (en) Air-fuel ratio controller for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JPH06200809A (en) Air-fuel ratio control device of internal combustion engine
JPH0693908A (en) Air-fuel control device for multi-fuel engine
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH01106945A (en) Control device for learning of internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JPH109023A (en) Air-fuel ratio control device for internal combustion engine
JPH07208252A (en) Control device of internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees