JPH041439A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH041439A
JPH041439A JP2097777A JP9777790A JPH041439A JP H041439 A JPH041439 A JP H041439A JP 2097777 A JP2097777 A JP 2097777A JP 9777790 A JP9777790 A JP 9777790A JP H041439 A JPH041439 A JP H041439A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction value
egr
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097777A
Other languages
Japanese (ja)
Inventor
Junichi Furuya
純一 古屋
Seiichi Otani
大谷 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP2097777A priority Critical patent/JPH041439A/en
Publication of JPH041439A publication Critical patent/JPH041439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always maintain good air-fuel ratio feedback control without any bad influence on air-fuel ratio compensation due to existence or absence of EGR by performing the air-fuel ratio feedback control using a learn compensation value independently learned according to existence or absence of the EGR. CONSTITUTION:Existence or absence of actuation in an exhaust recirculation device is judged by a means A. A learn compensation value learned during the operation time of the exhaust recirculation device is memorized by a means B per an operation range. The learn compensation value learned during the non-operation time is memorized by a means C per an operation range. During the operation time of the exhaust recirculation device, a new learn compensation value is set based on the learn compensation value retrieved by the means B and an output of a second air-fuel ratio sensor D, and also the learn compensation value of the means B is renewed by a means E by using this learn compensation value. During the non-operation time of the exhaust recirculation device, the new learn compensation value is set based on the learn value retriexed based on an operation condition from the means C, and a newly set second air-fuel ratio compensation quantity, and the learn compensation value of the means C is renewed the learn compensation value of this means F.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、特
に排気還流装置を備える一方、空燃比センサを排気浄化
触媒の上流側及び下流側に備え、これら2つの空燃比セ
ンサの検出値に基づいて空燃比を高精度にフィードバッ
ク制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine. In preparation for this, the present invention relates to a device that performs feedback control of the air-fuel ratio with high precision based on the detected values of these two air-fuel ratio sensors.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。
<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空装置に対
応する基本燃料供給量T、  (=K・Q/N ; K
は定数)を演算し、この基本燃料供給量Tアを機関温度
等により補正したものを排気中酸素濃度の検出によって
混合気の空燃比を検出する空燃比センサ(酸素センサ)
からの信号によって設定される空燃比フィードバック補
正係数(空燃比補正量)を用いてフィードパンク補正を
施し、バッテリ電圧による補正等をも行って最終的に燃
料供給量T、を設定する。
To give an overview of this, the basic fuel supply amount T corresponding to the empty device sucked into the cylinder by detecting the intake air flow rate Q and rotation speed N of the engine, (=K・Q/N; K
is a constant), and the air-fuel ratio sensor (oxygen sensor) detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas based on the basic fuel supply amount Ta corrected by engine temperature, etc.
Feed puncture correction is performed using an air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount) set by a signal from the controller, and correction based on battery voltage is also performed to finally set the fuel supply amount T.

そして、このようにして設定された燃料供給量T、に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。
Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine. .

上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCO,I(C(炭化水素)を酸化すると共にNO
xを還元して浄化する排気浄化触媒(三元触媒)の転化
効率(浄化効率)が理論空燃比燃焼時の排気状態で有効
に機能するように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes CO, I (C (hydrocarbons)) in the exhaust gas, as well as NO
This is because the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies x is set to function effectively in the exhaust state during combustion at the stoichiometric air-fuel ratio.

前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で急変する特性を有しており、この出力電圧■
。と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比が理論空燃比に対してリッ
チかリーンかを判定する。そして、例えば空燃比がリー
ン(リッチ)の場合には、前記基本燃料供給量Tアに乗
じるフィード八ツク補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数■ずつ徐々に増大(減少)していき燃料供
給量T、を増量(減量)補正することで空燃比を理論空
燃比近傍に制御する。
As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has the characteristic of rapidly changing near the stoichiometric air-fuel ratio, and this output voltage
. and the reference voltage (slice level) SL corresponding to the stoichiometric air-fuel ratio.
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. For example, when the air-fuel ratio is lean (rich), a large proportionality constant P is increased (decreased) the first time the feed eight correction coefficient α, which is multiplied by the basic fuel supply amount TA, is changed to lean (rich). Thereafter, the air-fuel ratio is controlled to be near the stoichiometric air-fuel ratio by gradually increasing (decreasing) the fuel supply amount T by a predetermined integral constant (■).

ところで、上記のような通常の空燃比フィードバック制
御装置では1個の空燃比センサを応答性を高めるため、
できるだけ燃焼室に近い排気マニホールドの集合部分に
設けているが、この部分は排気温度が高いため空燃比セ
ンサが熱的影響や劣化により特性が変化し易く、また、
気筒毎の排気の混合が不十分であるため全気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難があり、
引いては空燃比制御精度を悪くしていた。
By the way, in the above-mentioned normal air-fuel ratio feedback control device, one air-fuel ratio sensor is used to improve responsiveness.
It is installed in the gathering part of the exhaust manifold as close as possible to the combustion chamber, but since the exhaust temperature in this part is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is not sufficiently mixed, it is difficult to detect the average air-fuel ratio of all cylinders, and the air-fuel ratio detection accuracy is difficult.
This in turn worsened the accuracy of air-fuel ratio control.

この点に鑑み、排気浄化触媒の下流側にも空燃比センサ
を設け、2つの空燃比センサの検出値を用いて空燃比を
フィードバック制御するものが提案されている(特開昭
58−48756号公報参照)6即ち、下流側の空燃比
センサは燃焼室から離れているため応答性には難がある
が、排気浄化触媒の下流であるため、排気成分バランス
の影響(CO,HC9NOX、CO2等)を受は難く、
排気中の毒性成分による被毒量が少ないため被毒による
特性変化も受けに(く、しかも排気の混合状態がよいた
め全気筒の平均的な空燃比を検出できる等上流側の空燃
比センサに比較して、高精度で安定した検出性能が得ら
れる。
In view of this, it has been proposed that an air-fuel ratio sensor is also provided on the downstream side of the exhaust purification catalyst, and the air-fuel ratio is feedback-controlled using the detected values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-48756). 6) In other words, the air-fuel ratio sensor on the downstream side has difficulty in responsiveness because it is far from the combustion chamber, but since it is downstream of the exhaust purification catalyst, it is sensitive to the effects of the exhaust component balance (CO, HC9NOX, CO2, etc.). ) is difficult to receive;
Since the amount of poisoning caused by toxic components in the exhaust is small, it is less susceptible to changes in characteristics due to poisoning (in addition, since the exhaust is in a good mixing state, it can detect the average air-fuel ratio of all cylinders, etc., making it suitable for upstream air-fuel ratio sensors. In comparison, highly accurate and stable detection performance can be obtained.

そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バック補正係数を組み合わせたり、或いは上流側の空燃
比センサにより設定される空燃比フィードバンク補正係
数の制御定数(比例分や積分分)、上流側の空燃比セン
サの出力電圧の比較電圧や遅延時間を補正すること等に
よって上流側空燃比センサの出力特性のばらつきを下流
側の空燃比センサによって補償して高精度な空燃比フィ
ードバック制御を行うようにしている。
Therefore, it is possible to combine two air-fuel ratio feedback correction coefficients that are respectively set by calculations similar to those described above based on the detected values of the two air-fuel ratio sensors, or to use an air-fuel ratio feedbank correction coefficient that is set by an upstream air-fuel ratio sensor. Variations in the output characteristics of the upstream air-fuel ratio sensor can be corrected by the downstream air-fuel ratio sensor by correcting the control constants (proportional and integral), the comparison voltage and delay time of the output voltage of the upstream air-fuel ratio sensor, etc. This compensation is performed to perform highly accurate air-fuel ratio feedback control.

しかし、上記のように2個の空燃比センサによる空燃比
制御装置においては、フィードバック制御時の空燃比補
正に係わる要求レベルが、非フイードバツク制御時と大
きく離れることがあり、特に非フイードバツク制御時か
らフィードバック制御時に移行する際のフィードバンク
制御開始時点では次のような問題が発生する。
However, in the air-fuel ratio control device using two air-fuel ratio sensors as described above, the required level for air-fuel ratio correction during feedback control may be significantly different from that during non-feedback control, and especially during non-feedback control. The following problem occurs at the start of feed bank control when transitioning to feedback control.

即ち、上記の場合、通常下流側の空燃比センサによるフ
ィードバック制御速度は上流側の空燃比センサによるフ
ィードバック制御速度に比較して小さく設定されている
ので、下流側空燃比センサによるフィードバック制御で
制御される空燃比補正量(例えば上流側空燃比センサに
よる空燃比フィードバック補正係数の比例分の補正量)
が要求値に達するのに時間を要し、延いては目標空燃比
に達するのに時間を要して、燃費、運転性、排気エミッ
ションの悪化等を招く。
That is, in the above case, the feedback control speed by the downstream air-fuel ratio sensor is usually set smaller than the feedback control speed by the upstream air-fuel ratio sensor, so the feedback control speed by the downstream air-fuel ratio sensor is not used. air-fuel ratio correction amount (for example, the correction amount of the proportional portion of the air-fuel ratio feedback correction coefficient by the upstream air-fuel ratio sensor)
It takes time for the air-fuel ratio to reach the required value, and in turn, it takes time to reach the target air-fuel ratio, resulting in deterioration of fuel efficiency, drivability, exhaust emissions, etc.

また、空燃比フィードバック制御中でも機関の運転状態
が異なる領域に遷移したときには、やはり空燃比が目標
空燃比から大きくずれることがあり、この場合にも、燃
費、運転性、排気エミンションの悪化等を招く。
Furthermore, even during air-fuel ratio feedback control, when the operating state of the engine changes to a different region, the air-fuel ratio may deviate significantly from the target air-fuel ratio, which also causes deterioration in fuel efficiency, drivability, and exhaust emissions. .

そこで、第2の空燃比補正量の平均的な値を逐次学習補
正値として演算し運転領域毎に記憶しておき、該学習補
正値を用いて燃料供給量を補正して設定することにより
、常に安定した空燃比制御を行えるようにしたものが捉
案されている(特開昭63−97851号公報等参照)
Therefore, by sequentially calculating the average value of the second air-fuel ratio correction amount as a learning correction value and storing it for each driving region, and correcting and setting the fuel supply amount using the learning correction value, A system that allows stable air-fuel ratio control at all times has been proposed (see Japanese Patent Laid-Open No. 63-97851, etc.).
.

〈発明が解決しようとする課題〉 ところで、機関のNOx発生量が増大する所定の運転領
域では前記排気触媒のみではNOxを十分に低減しきれ
ないため、排気の一部を吸気中に還流して燃焼温度を下
げることによりNOxの低減を図る所謂排気還流装置(
EGR装W)が一般に備えられている。
<Problem to be solved by the invention> By the way, in a predetermined operating range where the amount of NOx generated by the engine increases, the exhaust catalyst alone cannot sufficiently reduce NOx, so a part of the exhaust gas is recirculated into the intake air. The so-called exhaust recirculation device (
An EGR system (W) is generally provided.

かかる排気還流(EGR)の作動中は、排気中の成分の
バランスがEGR非作動時と比較して大幅に変化してお
り、従って、要求される空燃比補正量もEGR時と非E
GR時とでは大幅に異なってくる。このため、EGRの
有無に無関係に学習補正値を設定すると、学習補正値の
精度が悪化し燃費、運転性、排気エミッション等を大き
く悪化させてしまうことがあった。例えば、第5図に示
すようにEGR作動時に学習された学習補正値を用いて
空燃比制御を行うと空燃比はリーン側に移動しNOx発
生量が増加してしまう。
When exhaust gas recirculation (EGR) is in operation, the balance of components in the exhaust gas changes significantly compared to when EGR is not in operation, and therefore the required air-fuel ratio correction amount also differs from that during EGR.
It will be significantly different from the GR time. For this reason, if the learning correction value is set regardless of the presence or absence of EGR, the accuracy of the learning correction value may deteriorate, resulting in significant deterioration of fuel efficiency, drivability, exhaust emissions, etc. For example, as shown in FIG. 5, if the air-fuel ratio is controlled using the learning correction value learned during EGR operation, the air-fuel ratio will shift to the lean side and the amount of NOx generated will increase.

本発明は、このような従来の問題点に鑑みなされたもの
で、EGRの有無に応じて独立に空燃比補正量の学習を
行うことにより学習精度を高め、上記問題点を解決した
内燃機関の空燃比制御装置を提供することを目的とする
The present invention has been made in view of these conventional problems, and is an internal combustion engine that solves the above problems by improving learning accuracy by learning the air-fuel ratio correction amount independently depending on the presence or absence of EGR. The purpose of the present invention is to provide an air-fuel ratio control device.

〈課題を解決するための手段〉 このため本発明は第1図に示すように、所定の運転条件
で排気の一部を吸気中に還流する排気還流装置を備える
と共に、 機関運転状態に基づいて目標空燃比に対応する機関への
基本燃料供給量を設定する基本燃料供給量設定手段と、 機関の排気通路に備えられた排気浄化触媒の上流側及び
下流側に夫々設けられ、空燃比によって変化する排気中
特定気体成分の濃度比に悪心して出力値が変化する第1
及び第2の空燃比センサと、前記第1の空燃比センサの
出力値に応じて第1の空燃比補正量を演算する第1の空
燃比補正量演算手段と、 前記第2の空燃比センサの出力と運転領域毎に学習して
記憶された学習補正値とに基ついて第2の空燃比補正量
を演算する第2の空燃比補正量演算手段と、 演算された基本燃料供給量と、第1及び第2の空燃比補
正量と、に基づいて燃料供給量を設定する燃料供給量設
定手段と、 設定された燃料供給量に相当する量の燃料を機関に供給
する燃料供給手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記排気還流装置の作動の有無を判定するEGR判定手
段と、 前記排気還流装置の作動時に学習された学習補正値を運
転領域毎に記憶するEGR用学習補正値記憶手段と、 前記排気還流装置の非作動時に学習された学習補正値を
運転領域毎に記憶する非EGR用学習補正値記憶手段と
、 前記排気還流装置の作動時に前記EGR用学習値記憶手
段から検索した学習補正値と第2の空燃比センサの出力
とに基づいて新たな学習補正値を設定すると共に、該学
習補正値で前記EGR用学習値記憶手段の対応する運転
領域の学習補正値を更新するEGR用学習補正値更新手
段と、前記排気還流装置の非作動時に前記非EGR用学
習値記憶手段から運転条件に基づいて検索した学習値と
新たに設定された第2の空燃比補正量とに基づいて新た
な学習補正値を設定すると共に、該学習補正値で前記非
EGR用学習値記憶手段の対応する運転領域の学習補正
値を更新する非EGR用学習補正値更新手段と、 を備えて構成した。
<Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention includes an exhaust gas recirculation device that recirculates part of the exhaust gas into the intake air under predetermined operating conditions, and A basic fuel supply amount setting means for setting a basic fuel supply amount to the engine corresponding to a target air-fuel ratio; First, the output value changes due to the concentration ratio of specific gas components in the exhaust gas.
and a second air-fuel ratio sensor, a first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to an output value of the first air-fuel ratio sensor, and the second air-fuel ratio sensor. a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the controller and the learning correction value learned and stored for each operating region; the calculated basic fuel supply amount; a fuel supply amount setting means for setting a fuel supply amount based on the first and second air-fuel ratio correction amounts; a fuel supply means for supplying an amount of fuel to the engine corresponding to the set fuel supply amount; An air-fuel ratio control device for an internal combustion engine, which includes: an EGR determination means for determining whether or not the exhaust gas recirculation device is in operation; and a learning correction value learned during operation of the exhaust gas recirculation device for each operating region. EGR learned correction value storage means for storing the learned correction value learned when the exhaust gas recirculation device is not in operation; A new learning correction value is set based on the learning correction value retrieved from the learning value storage means for EGR and the output of the second air-fuel ratio sensor, and the learning correction value is used to perform the corresponding operation of the learning value storage means for EGR. EGR learning correction value updating means for updating the learning correction value of the region, and a learning value retrieved based on the operating conditions from the non-EGR learning value storage means when the exhaust gas recirculation device is not in operation, and a newly set learning value. Non-EGR learning correction that sets a new learning correction value based on the air-fuel ratio correction amount of No. 2 and updates the learning correction value of the corresponding operating region in the non-EGR learning value storage means with the learning correction value. It is configured to include a value update means, and.

く作用〉 第1の空燃比補正量設定手段は、第1の空燃比センサか
らの検出値に基づいて、第1の空燃比補正量を設定する
Function> The first air-fuel ratio correction amount setting means sets the first air-fuel ratio correction amount based on the detected value from the first air-fuel ratio sensor.

また、EGR判定手段により判定される排気還流装置の
作動時は第2の空燃比補正蓋の学習補正量の設定が、E
GR用学習補正値更新手段によって設定され、EGR用
学習補正値記憶手段の対応する運転領域の学習補正値が
更新される。
Further, when the exhaust gas recirculation device is activated as determined by the EGR determination means, the setting of the learning correction amount of the second air-fuel ratio correction lid is
This is set by the GR learning correction value updating means, and the learning correction value of the corresponding operating region in the EGR learning correction value storage means is updated.

一方、排気還流装置の非作動時は第2の空燃比補正量の
学習補正量の設定が、非EGR用学習補正値更新手段に
よって設定され、非EGR用学習補正値記憶手段の対応
する運転領域の学習補正値が更新される。
On the other hand, when the exhaust gas recirculation device is not operating, the setting of the learning correction amount of the second air-fuel ratio correction amount is set by the non-EGR learning correction value updating means, and the learning correction value for non-EGR is set in the corresponding operating region of the non-EGR learning correction value storage means. The learning correction value of is updated.

そして、第2の空燃比補正量設定手段は第2の空燃比セ
ンサからの検出値と、排気還流装置の作動、非作動に応
じてEGR学習補正値更新手段又は非EGR学習補正値
更新手段により更新された学習補正値とに基づいて第2
の空燃比補正量を設定する。
The second air-fuel ratio correction amount setting means uses the EGR learning correction value updating means or the non-EGR learning correction value updating means in accordance with the detection value from the second air-fuel ratio sensor and whether the exhaust gas recirculation device is activated or not. The second learning correction value is based on the updated learning correction value.
Set the air-fuel ratio correction amount.

燃料供給量設定手段は、基本燃料供給量設定手段により
設定された基本燃料供給量と、第1及び第2の空燃比補
正量とに基づいて燃料供給量を設定し、該設定量の燃料
を燃料供給手段が機関に供給する。
The fuel supply amount setting means sets the fuel supply amount based on the basic fuel supply amount set by the basic fuel supply amount setting means and the first and second air-fuel ratio correction amounts, and controls the set amount of fuel. A fuel supply means supplies the engine.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に燃料供給手段としてのN61式の燃料噴
射弁15が設けられる。
In FIG. 2 showing the configuration of one embodiment, an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. In the downstream manifold portion, an N61 type fuel injection valve 15 as a fuel supply means is provided for each cylinder.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ッシャレギュレータにより所定圧力に制御された燃料を
噴射供給する。更に、機関11の冷却ジャケット内の冷
却水温度Twを検出する水温センサ17が設けられる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 11.

一方、排気通路18にはマニホールド集合部に排気中酸
素濃度を検出することによって吸入混合気の空燃比を検
出する第1の空燃比センサ19が設けられ、その下流側
の排気管に排気中のCo、HCの酸化とNOXの還元を
行って浄化する排気浄化触媒としての三元触媒20が設
けられ、更に該三元触媒20の下流側に第1空燃比セン
サと同一の機能を持つ第2の空燃比センサ21が設けら
れる。
On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold gathering part, and the exhaust gas A three-way catalyst 20 is provided as an exhaust purification catalyst that performs oxidation of Co and HC and reduction of NOx for purification, and furthermore, a second air-fuel ratio sensor having the same function as the first air-fuel ratio sensor is provided downstream of the three-way catalyst 20. An air-fuel ratio sensor 21 is provided.

また、排気通路18と吸気通路12とを結ふEGR通路
22が配設され、該EGR通路22中にはEGR制御弁
23が介設される。そして、N Ox排出量が増大する
所定の運転時にはコントロールユニット16からの制御
信号に基づいて、EGR制御弁23の開度が制御され、
EGR制御が行われる。
Further, an EGR passage 22 is provided that connects the exhaust passage 18 and the intake passage 12, and an EGR control valve 23 is interposed in the EGR passage 22. During a predetermined operation in which the amount of NOx emissions increases, the opening degree of the EGR control valve 23 is controlled based on a control signal from the control unit 16.
EGR control is performed.

更に、第2図で図示しないディストリビュータには、ク
ランク角センサ24が内蔵されており、該クランク角セ
ンサ24から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。
Furthermore, the distributor (not shown in FIG. 2) has a built-in crank angle sensor 24, and the crank angle signal outputted from the crank angle sensor 24 in synchronization with engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10fflS)毎に行われる
Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed every predetermined period (for example, 10 fflS).

ステップ(図ではSと記す)1では、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ24からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。このステップ
1の機能が基本燃料供給量設定手段に相当する。
In step 1 (denoted as S in the figure), the amount of intake air per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 24. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation. The function of step 1 corresponds to basic fuel supply amount setting means.

TP =KXQ/N   (Kは定数)ステップ2では
、水温センサ17によって検出された冷却水温度Tw等
に基づいて各種補正係数C0EFを設定する。
TP = KXQ/N (K is a constant) In step 2, various correction coefficients C0EF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.

ステップ3では、後述するフィードバック補正係数設定
ルーチンにより設定されたフィードバンク補正係数αを
読み込む。
In step 3, a feed bank correction coefficient α set by a feedback correction coefficient setting routine to be described later is read.

ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.

ステップ5では、最終的な燃料噴射量(燃料供給量)T
+を次式に従って演算する。このステップ5の機能が燃
料供給量設定手段に相当する。
In step 5, the final fuel injection amount (fuel supply amount) T
+ is calculated according to the following formula. The function of step 5 corresponds to fuel supply amount setting means.

T+ =TP XC0EFXα十T。T+ = TP XC0EFXα10T.

ステップ6では、演算された燃料噴射弁T1を出力用レ
ジスタにセットする。
In step 6, the calculated fuel injection valve T1 is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T1のパルス巾
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射が行われる。
As a result, at a predetermined fuel injection timing synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount T1 is applied to the fuel injection valve 15 to perform fuel injection.

次に、空燃比フィードバック補正係数設定ルーチンを第
4図に従って説明する。このルーチンは機関回転に同期
して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be explained with reference to FIG. This routine is executed in synchronization with engine rotation.

ステップ11では、空燃比のフィードバック制御を行う
運転条件であるか否かを判定する。運転条件を満たして
いないときには、このルーチンを終了する。この場合、
フィードバック補正係数αは前回のフィードバック制御
終了時の値若しくは一定の基準値にクランプされ、フィ
ードバック制御は停止される。
In step 11, it is determined whether the operating conditions are such that feedback control of the air-fuel ratio is performed. If the operating conditions are not met, this routine ends. in this case,
The feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップ12では、第1の空燃比センサ19からの信号
電圧■。2及び第2の空燃比センサ21からの信号電圧
■”。2を入力する。
In step 12, the signal voltage ■ from the first air-fuel ratio sensor 19 is detected. 2 and the signal voltage "■" from the second air-fuel ratio sensor 21.2 is input.

ステップ13では、ステップ11で入力した信号電圧V
02と目標空燃比(理論空燃比)相当の基準値SLとを
比較し、空燃比がリーンからリッチ又はリッチからリー
ンへの反転時か否かを判定する。
In step 13, the signal voltage V input in step 11 is
02 and a reference value SL corresponding to the target air-fuel ratio (stoichiometric air-fuel ratio) to determine whether the air-fuel ratio is changing from lean to rich or from rich to lean.

反転時と判定されたときは、ステップ14へ進みEGR
作動時であるか否かを判定する。即ち、このステップ1
4の機能がEGR判定手段に相当する。
When it is determined that the inversion is occurring, proceed to step 14 and start EGR.
Determine whether or not it is activated. That is, this step 1
The function No. 4 corresponds to the EGR determination means.

そして、EGR作動時にはステップ15へ進み、機関回
転速度Nと基本燃料噴射量T2とに基づいて複数の運転
領域毎に後述する比例骨の学習補正値PH05pi (
学習補正値)を記憶させたEGR用のマツプ(コントロ
ールユニット16内藏のマイクロコンピュータのRAM
に記憶)から対応する運転領域に記憶された学習補正値
PH05riを検索する。
Then, when the EGR is activated, the process proceeds to step 15, where a proportional bone learning correction value PH05pi (described later) is set for each of a plurality of operating regions based on the engine rotational speed N and the basic fuel injection amount T2.
EGR map (RAM of the microcomputer in the control unit 16) that stores the learning correction value)
The learning correction value PH05ri stored in the corresponding operating region is searched from

ステップ16では第2の空燃比センサ21からの信号電
圧■“。2と目標空燃比(理論空燃比)相当の基準値S
Lとを比較する。
In step 16, the signal voltage ".2" from the second air-fuel ratio sensor 21 and the reference value S corresponding to the target air-fuel ratio (theoretical air-fuel ratio)
Compare with L.

そして、空燃比がリッチ(V’ 0.>SL)と判定さ
れたときにはステップ17へ進み、ステップ15で検索
された学習補正(1jj P HO5PEから所定値Δ
DPHO5を差し引いた値を第2の空燃比補正量P H
O3(=学習補正値)として設定する。
Then, when the air-fuel ratio is determined to be rich (V'0.>SL), the process proceeds to step 17, and the learning correction (1jj P HO5PE found in step 15) is
The value obtained by subtracting DPHO5 is the second air-fuel ratio correction amount P H
Set as O3 (=learning correction value).

また、空燃比がリーン(Vo。、<SL)と判定された
ときにはステップ18へ進み、同様にステンブ15で検
索された学習補正値PH05P□に所定値ΔDP)IO
5を加算した値を第2の空燃比補正量(−学習補正値)
  P)105として設定する。
Further, when the air-fuel ratio is determined to be lean (Vo., <SL), the process proceeds to step 18, and the learning correction value PH05P□ similarly searched in the stem 15 is set to a predetermined value ΔDP)IO.
The value obtained by adding 5 is the second air-fuel ratio correction amount (-learning correction value)
P) Set as 105.

次いでステップ19では、前記第2の空燃比補正量P 
HOSによって前記EGR用マツプの検索を行った運転
領域の学習補正値P HO5□を更新する。
Next, in step 19, the second air-fuel ratio correction amount P
The learning correction value PHO5□ of the operating region in which the EGR map was searched by the HOS is updated.

又、ステップ14でEGR非作動時と判定されたときに
はステップ20へ進み、学習補正値PH0S NE(学
習補正値)を記憶させた非EGR用のマツプから対応す
る運転領域に記憶された学習補正値PH05NEを検索
した後ステップ21へ進み、ステップ16同様第2空燃
比センサ21により検出される空燃比のリッチ、リーン
判定を行う。そして、す・7千判定時はステップ22へ
進んで学習補正値PH0SNEから所定値ΔDPHO5
を差し引いた値を第2の空燃比補正量P )IO3とし
て設定した後ステップ24へ進んで該第2の空燃比補正
量PH05で非EGR用のマツプの値を更新し、リーン
判定時はステップ23へ進んで学習補正値PH05Nf
fに所定値Δ叶HO5を加算した値を第2の空燃比補正
量P )105として設定した後ステップ24へ進んで
該第2の空燃比補正量P HOSで非EGR用のマツプ
の値を更新する。
Further, when it is determined in step 14 that EGR is not operating, the process proceeds to step 20, and the learned correction value PH0SNE (learning correction value) stored in the corresponding operating region is retrieved from the non-EGR map in which the learning correction value PH0SNE (learning correction value) is stored. After searching for PH05NE, the process proceeds to step 21, and similarly to step 16, the air-fuel ratio detected by the second air-fuel ratio sensor 21 is determined to be rich or lean. Then, when it is determined that S.7,000 is determined, the process proceeds to step 22 and a predetermined value ΔDPHO5 is determined from the learning correction value PH0SNE.
After setting the value obtained by subtracting the value as the second air-fuel ratio correction amount P)IO3, the process proceeds to step 24, where the value of the non-EGR map is updated with the second air-fuel ratio correction amount PH05. Proceed to step 23 and set the learning correction value PH05Nf
After setting the value obtained by adding the predetermined value ΔH05 to f as the second air-fuel ratio correction amount P105, the process proceeds to step 24, where the value of the non-EGR map is determined using the second air-fuel ratio correction amount PHOS. Update.

ここで、EGR作動時用及びEGR非作動時用の学習補
正値P I(O5□、PH05NEを記憶したRAMが
EGR用学習補正値記憶手段に相当し、ステップ15〜
ステツプ18及びステップ20〜ステツプ24までの機
能が第2の空燃比補正量設定手段に相当する。また、本
実施例では学習補正値をそのまま第2の空燃比補正量と
して使用するため、ステップ15〜ステツプ19までの
機能がEGR用学習補正値更新手段、ステップ20〜ス
テツプ24までの機能が非EGR用学習補正値更新手段
に相当する。
Here, the RAM that stores the learning correction value PI (O5□, PH05NE) for when EGR is activated and for when EGR is not activated corresponds to the learning correction value storage means for EGR.
The functions of step 18 and steps 20 to 24 correspond to the second air-fuel ratio correction amount setting means. Further, in this embodiment, since the learning correction value is used as it is as the second air-fuel ratio correction amount, the functions from step 15 to step 19 are the EGR learning correction value updating means, and the functions from step 20 to step 24 are disabled. This corresponds to EGR learning correction value updating means.

られる。It will be done.

次にステップ25へ進み、第1の空燃比センサ19によ
るリッチ、リーン判定を行い、リーン−リッチの反転時
にはステップ26へ進んで、空燃比フィードバック補正
係数α設定用のリーン反転時に与える減少方向の比例骨
PRを基準値PIIOから前記第2の空燃比補正量P 
HOSを減少した値で更新する。次いで、ステップ27
で空燃比フィードバック補正係数αを現在値から前記比
例骨P、を滅じた値で更新する。
Next, the process proceeds to step 25, where the first air-fuel ratio sensor 19 makes a rich/lean judgment, and when the lean-rich state is reversed, the process proceeds to step 26, where the decreasing direction given at the time of lean reversal is used to set the air-fuel ratio feedback correction coefficient α. The proportional bone PR is changed from the reference value PIIO to the second air-fuel ratio correction amount P.
Update HOS with reduced value. Then step 27
The air-fuel ratio feedback correction coefficient α is updated to a value obtained by subtracting the proportional bone P from the current value.

又、リッチ−リーンの反転時にはステップ28へ進み、
空燃比フィードバック補正係数α設定用のリーン反転時
に与える増加方向の比例骨P、を基準値PL0に第2の
空燃比補正量P HOSを加算した値で更新する。次い
で、ステップ29で空燃比フィードバック補正係数αを
現在値に前記比例骨Ptを加算した値で更新する。
Also, when the rich-lean state is reversed, the process proceeds to step 28,
The proportional bone P in the increasing direction given at the time of lean inversion for setting the air-fuel ratio feedback correction coefficient α is updated with the value obtained by adding the second air-fuel ratio correction amount P HOS to the reference value PL0. Next, in step 29, the air-fuel ratio feedback correction coefficient α is updated with a value obtained by adding the proportional bone Pt to the current value.

また、ステップ13で第1の空燃比センサ19の出力が
反転時でないと判定された時には、ステップ30へ進ん
でリッチ、リーン判定を行い、リッチ時はステップ3]
へ進んで空燃比フィードバック補正係数αを現在値から
積分分Illを減少した値で更新し、リーン時はステッ
プ32へ進んで積分分Itを加算した値で更新する。
Furthermore, when it is determined in step 13 that the output of the first air-fuel ratio sensor 19 is not in the inversion state, the process proceeds to step 30 to perform a rich/lean determination, and if the output is rich, step 3]
The process advances to step 32, where the air-fuel ratio feedback correction coefficient α is updated with a value obtained by subtracting the integral Ill from the current value, and when lean, the process proceeds to step 32, where it is updated with a value obtained by adding the integral It.

ここで、ステップ25〜ステツプ32の部分でステップ
26.ステップ28による補正を除いて空燃比フィード
バック補正係数αを設定する機能が第1の空燃比センサ
19による第1の空燃比補正量設定手段に相当し、第2
の空燃比補正量P HOSによる補正を行って設定され
た空燃比フィードバック補正係数αを用いて最終的に燃
料噴射量Trを設定する前記第3図に示すルーチンが燃
料供給量設定手段に相当する。
Here, steps 25 to 32 are replaced by step 26. The function of setting the air-fuel ratio feedback correction coefficient α except for the correction in step 28 corresponds to the first air-fuel ratio correction amount setting means by the first air-fuel ratio sensor 19, and the second
The routine shown in FIG. 3 that finally sets the fuel injection amount Tr using the air-fuel ratio feedback correction coefficient α set by performing correction by the air-fuel ratio correction amount P HOS corresponds to the fuel supply amount setting means. .

かかる構成とすれば、EGR作動時と非作動時とで異な
るマツプ(記憶手段)を用いて独立に学習を行って学習
補正値を設定する構成としたため、EGRの有無による
排気成分の相違で異なる学習補正値を用いて夫々の条件
に見合った最適な空燃比補正が行われ、常に良好な空燃
比フィードバック制御を維持できる。
With this configuration, learning is performed independently using different maps (memory means) when EGR is activated and when it is not activated, and learning correction values are set. The optimum air-fuel ratio correction is performed using the learning correction value according to each condition, and good air-fuel ratio feedback control can be maintained at all times.

尚、本実施例では第1の空燃比センサ19の検出値に基
づく空燃比フィードバック制御を基調としつつ、その空
燃比フィードバック補正係数の比例骨を第2の空燃比セ
ンサの検出値に基づいて補正するものに適用した例を示
したが、これに限らず夫々の空燃比センサによって空燃
比フィードバック補正係数を設定し、双方の値を合成し
て得た空燃比フィードバック補正係数を使用したり、第
1の空燃比センサによる空燃比フィードバック制御を行
いつつ、リッチ、リーン判定の基準値SLや出力遅延時
間を第2の空燃比センサの検出で補正したりするような
ものにも通用できる。
In this embodiment, while air-fuel ratio feedback control is based on the detected value of the first air-fuel ratio sensor 19, the proportionality of the air-fuel ratio feedback correction coefficient is corrected based on the detected value of the second air-fuel ratio sensor. Although we have shown an example in which the air-fuel ratio feedback correction coefficient is set by each air-fuel ratio sensor and the air-fuel ratio feedback correction coefficient obtained by combining both values is used, the application is not limited to this. The present invention can also be used to perform air-fuel ratio feedback control using the first air-fuel ratio sensor while correcting the reference value SL for rich/lean determination or the output delay time using the detection by the second air-fuel ratio sensor.

また、学習補正値も本実施例では第2の空燃比補正量を
そのまま学習補正値として記憶する簡易な制御方式を示
したが、例えば、本実施例同様第1の空燃比センサのリ
ッチ、リーンに基づいて第2の空燃比補正量P )10
5を増減補正しつつ、第2の空燃比センサの反転毎に該
反転時の補正量PRO8と前回反転時の補正量P HO
Sとの平均値を演算し、且つ該平均値と過去の平均値の
加重平均値とを新たに加重平均して学習補正値を設定す
るような構成としてもよい。
In addition, as for the learning correction value, in this embodiment, a simple control method is shown in which the second air-fuel ratio correction amount is stored as a learning correction value. Based on the second air-fuel ratio correction amount P)10
While increasing or decreasing 5, each time the second air-fuel ratio sensor is reversed, the correction amount PRO8 at the time of the reversal and the correction amount PHO8 at the previous reversal.
It may be configured such that the learning correction value is set by calculating an average value with S, and then calculating a new weighted average of the average value and a weighted average value of past average values.

〈発明の効果〉 以上説明したように本発明によれば、排気浄化触媒の上
流側及び下流側に空燃比センサを備え、これら雨空燃比
センサの検出値に基づいて空燃比フィードバック制御を
行うものにおいて、EGRの有無に応じて独立にく学習
した学習補正値を用いて空燃比フィードバック制御を行
う構成としたため、EGRの有無によって空燃比補正に
悪影響を及ぼすことがなく、常に良好な空燃比フィード
バック制御を維持することができるものである。
<Effects of the Invention> As explained above, according to the present invention, air-fuel ratio sensors are provided on the upstream and downstream sides of the exhaust purification catalyst, and air-fuel ratio feedback control is performed based on the detected values of these rain air-fuel ratio sensors. Since the air-fuel ratio feedback control is performed using the learning correction value that is learned independently depending on the presence or absence of EGR, the air-fuel ratio correction is not adversely affected by the presence or absence of EGR, and the air-fuel ratio feedback control is always good. can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同じく空燃比フィードバンク補正係数設定ルーチンを示
すフローチャート、第5図は従来のEGR作動時と非作
動時とのCO及びNOxの転換効率を比較して示した線
図である。 11・・・内燃機関  12・・・吸気通路  15・
・・燃料噴射弁16・・・コントロールユニット  1
8・・・排気通路  19・・・第1の空燃比センサ 
 21・・・三元触媒  22・・・第2の空燃比セン
サ 特許出願人   日本電子機器株式会社代理人 弁理士
 笹 島  冨二雄 第2図 第5図 第3図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the fuel injection amount setting routine of the same embodiment, and FIG. Similarly, FIG. 5 is a flowchart showing the air-fuel ratio feedbank correction coefficient setting routine, and is a diagram comparing the conversion efficiency of CO and NOx between the conventional EGR operation and non-operation. 11... Internal combustion engine 12... Intake passage 15.
...Fuel injection valve 16...Control unit 1
8...Exhaust passage 19...First air-fuel ratio sensor
21...Three-way catalyst 22...Second air-fuel ratio sensor Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio SasashimaFigure 2Figure 5Figure 3

Claims (1)

【特許請求の範囲】 所定の運転条件で排気の一部を吸気中に還流する排気還
流装置を備えると共に、 機関運転状態に基づいて目標空燃比に対応する機関への
基本燃料供給量を設定する基本燃料供給量設定手段と、 機関の排気通路に備えられた排気浄化触媒の上流側及び
下流側に夫々設けられ、空燃比によって変化する排気中
特定気体成分の濃度比に感応して出力値が変化する第1
及び第2の空燃比センサと、前記第1の空燃比センサの
出力値に応じて第1の空燃比補正量を演算する第1の空
燃比補正量演算手段と、 前記第2の空燃比センサの出力と運転領域毎に学習して
記憶された学習補正値とに基づいて第2の空燃比補正量
を演算する第2の空燃比補正量演算手段と、 演算された基本燃料供給量と、第1及び第2の空燃比補
正量と、に基づいて燃料供給量を設定する燃料供給量設
定手段と、 設定された燃料供給量に相当する量の燃料を機関に供給
する燃料供給手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記排気還流装置の作動の有無を判定するEGR判定手
段と、 前記排気還流装置の作動時に学習された学習補正値を運
転領域毎に記憶するEGR用学習補正値記憶手段と、 前記排気還流装置の非作動時に学習された学習補正値を
運転領域毎に記憶する非EGR用学習補正値記憶手段と
、 前記排気還流装置の作動時に前記EGR用学習値記憶手
段から検索した学習補正値と第2の空燃比センサの出力
とに基づいて新たな学習補正値を設定すると共に、該学
習補正値で前記EGR用学習値記憶手段の対応する運転
領域の学習補正値を更新するEGR用学習補正値更新手
段と、 前記排気還流装置の非作動時に前記非ECR用学習値記
憶手段から運転条件に基づいて検索した学習値と新たに
設定された第2の空燃比補正量とに基づいて新たな学習
補正値を設定すると共に、該学習補正値で前記非EGR
用学習値記憶手段の対応する運転領域の学習補正値を更
新する非EGR用学習補正値更新手段と、 を備えて構成したことを特徴とする内燃機関の空燃比制
御装置。
[Claims] An exhaust gas recirculation device is provided that recirculates part of the exhaust gas into intake air under predetermined operating conditions, and a basic fuel supply amount to the engine corresponding to a target air-fuel ratio is set based on the engine operating state. A basic fuel supply amount setting means is provided on the upstream and downstream sides of an exhaust purification catalyst provided in the exhaust passage of the engine, and the output value is set in response to the concentration ratio of a specific gas component in the exhaust gas that changes depending on the air-fuel ratio. The first thing that changes
and a second air-fuel ratio sensor, a first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to an output value of the first air-fuel ratio sensor, and the second air-fuel ratio sensor. a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the controller and the learning correction value learned and stored for each operating region; the calculated basic fuel supply amount; a fuel supply amount setting means for setting a fuel supply amount based on the first and second air-fuel ratio correction amounts; a fuel supply means for supplying an amount of fuel to the engine corresponding to the set fuel supply amount; An air-fuel ratio control device for an internal combustion engine, which includes: an EGR determination means for determining whether or not the exhaust gas recirculation device is in operation; and a learning correction value learned during operation of the exhaust gas recirculation device for each operating region. EGR learned correction value storage means for storing the learned correction value learned when the exhaust gas recirculation device is not in operation; A new learning correction value is set based on the learning correction value retrieved from the learning value storage means for EGR and the output of the second air-fuel ratio sensor, and the learning correction value is used to perform the corresponding operation of the learning value storage means for EGR. EGR learning correction value updating means for updating the learning correction value of the region; and EGR learning correction value updating means for updating the learning correction value of the region; A new learning correction value is set based on the air-fuel ratio correction amount of No. 2, and the non-EGR
1. An air-fuel ratio control device for an internal combustion engine, comprising: non-EGR learning correction value updating means for updating a learning correction value of a corresponding operating region of a learning value storage means.
JP2097777A 1990-04-16 1990-04-16 Air-fuel ratio controller of internal combustion engine Pending JPH041439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097777A JPH041439A (en) 1990-04-16 1990-04-16 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097777A JPH041439A (en) 1990-04-16 1990-04-16 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH041439A true JPH041439A (en) 1992-01-06

Family

ID=14201264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097777A Pending JPH041439A (en) 1990-04-16 1990-04-16 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH041439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791304A (en) * 1993-09-22 1995-04-04 Nissan Motor Co Ltd Fuel supply controller of internal combustion engine
JPH0868362A (en) * 1994-08-30 1996-03-12 Nissan Motor Co Ltd Trouble diagnostic device for exhaust gas reflux device for internal combustion engine
JPH09250376A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Controller for internal combustion engine
US9255532B2 (en) 2011-11-24 2016-02-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control system of internal combustion engine
JP2019078169A (en) * 2017-10-19 2019-05-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791304A (en) * 1993-09-22 1995-04-04 Nissan Motor Co Ltd Fuel supply controller of internal combustion engine
JPH0868362A (en) * 1994-08-30 1996-03-12 Nissan Motor Co Ltd Trouble diagnostic device for exhaust gas reflux device for internal combustion engine
JPH09250376A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Controller for internal combustion engine
US9255532B2 (en) 2011-11-24 2016-02-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control system of internal combustion engine
JP2019078169A (en) * 2017-10-19 2019-05-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
US5638800A (en) Method and apparatus for controlling air-fuel ratio learning of an internal combustion engine
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JPH0821283A (en) Air-fuel ratio control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JP2916804B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62191641A (en) Learning control device for air-fuel ratio for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JPH0417749A (en) Air-fuel ratio control system of internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP2916805B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06346775A (en) Air-fuel ratio control device for internal combustion engine
JPH0417748A (en) Air-fuel ratio control system of internal combustion engine