JP3593388B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3593388B2
JP3593388B2 JP19875495A JP19875495A JP3593388B2 JP 3593388 B2 JP3593388 B2 JP 3593388B2 JP 19875495 A JP19875495 A JP 19875495A JP 19875495 A JP19875495 A JP 19875495A JP 3593388 B2 JP3593388 B2 JP 3593388B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
delay time
engine
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19875495A
Other languages
Japanese (ja)
Other versions
JPH0942023A (en
Inventor
尚己 冨澤
健一 阿部
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP19875495A priority Critical patent/JP3593388B2/en
Publication of JPH0942023A publication Critical patent/JPH0942023A/en
Application granted granted Critical
Publication of JP3593388B2 publication Critical patent/JP3593388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の空燃比制御装置に関し、特に、空燃比を検出して目標空燃比にフィードバック制御するものの制御精度向上を図った技術に関する。
【0002】
【従来の技術】
従来の内燃機関の空燃比制御装置としては例えば特開昭60−240840号公報に示されるようなものがある。
このものの概要を説明すると、機関の吸入空気流量Qa及び回転速度Nを検出してシリンダに吸入される空気量に対応する基本燃料供給量T(=K・Qa/N;Kは分)を演算し、この基本燃料供給量Tを機関温度等により補正したものを排気中酸素濃度の検出によって混合気の空燃比を検出する空燃比センサ(酸素センサ)からの信号によってフィードバック補正を施し、バッテリ電圧による補正等をも行って最終的に燃料供給量Tを設定する。
【0003】
そして、このようにして設定された燃料供給量Tに相当するパルス巾の駆動パルス信号を所定タイミングで出力することにより、機関に所定量の燃料を噴射供給するようにしている。
ところで、上記空燃比センサからの信号に基づく空燃比フィードバック補正は空燃比を目標空燃比(理論空燃比)付近に制御するように行われる。これは、排気系に介装され、排気中のCO,HC(炭化水素)を酸化すると共にNOを還元して浄化する三元触媒の転化効率(浄化効率)が理論空燃比燃焼時の排気状態で有効に機能するように設定されているからである。
【0004】
そして、例えば空燃比センサで検出される空燃比と目標空燃比との偏差に応じて比例分と積分分とを夫々設定し、これらを加算した値をフィードバック補正係数αとして前記基本燃料供給量Tに乗じることで空燃比を理論空燃比近傍に制御する。
【0005】
【発明が解決しようとする課題】
ところで、前記したように三元触媒の転化効率は理論空燃比近傍に制御することで高められるが、転化効率を最大限に発揮させるためには、λ (空気過剰率) =1±0.02程度以下の狭い範囲に空燃比変化の振れ幅を抑える必要がある。
しかしながら、前記のような従来の空燃比フィードバック制御装置では、空燃比フィードバック補正係数αを設定するための比例分や積分分等の制御定数を、固定値とするか、機関運転領域毎に割り付けた値を用いるようにしているが、機関の運転状態が変化する過渡状態では、目標空燃比への追従に遅れを生じて、前記λ=1±0.02の適正範囲から大きくずれる場合があった。
【0006】
本発明は、このような従来の問題点に鑑みなされたもので、空燃比フィードバック制御系の応答遅れに対してフィードバック補正係数設定用の制御定数を適切な値に設定することにより応答性が改善されることに着目し、機関運転状態が変化する過渡時にも適正な制御定数が設定されることにより、目標空燃比近傍に維持することができるようにした内燃機関の空燃比制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため請求項1に係る発明は、図1に示すように、
機関に供給される混合気の空燃比を検出する空燃比検出手段を備え、該空燃比検出手段による空燃比の検出値と目標空燃比相当の基準値とを比較しつつ制御定数を用いて設定されるフィードバック補正係数により空燃比を目標空燃比に近づけるように制御する空燃比フィードバック制御手段を含んでなる内燃機関の空燃比制御装置において、
前記空燃比検出手段の検出値の前記目標空燃比相当の基準値に対する大小関係が反転する周期を検出する反転周期検出手段と、
前記反転周期検出手段で検出される前記空燃比センサの反転周期に対応する制御定数を、前記反転周期が大きいときほど該反転周期を小さくする方向に補正して設定し、記憶した記憶手段と、
前記記憶手段から前記検出された反転周期に対応する制御定数を検索することによって制御定数を設定する制御定数設定手段と、
を含んで構成したことを特徴とする。
【0008】
かかる請求項1に係る発明の作用・効果を説明する。
空燃比検出手段の検出値の反転周期は、機関のサイクル遅れや燃焼遅れによる滞留遅れと排気が空燃比検出手段に達するまでの輸送遅れとを合わせた伝達遅れに依存しており、該反転周期が大きいほど空燃比の変動が大きくなりやすいが、フィードバック補正係数設定用の制御定数 (積分分ゲイン,比例分等) を小さくすることで前記変動を小さくすることができる。
【0009】
しかし、制御定数を小さくすると過渡時に空燃比が変化したときに目標空燃比に落ちつく(定常状態となる) までの応答遅れ時間が増大する。
そこで、前記検出された空燃比検出値の反転周期に対応する制御定数を、前記記憶手段から検索して設定することによって、前記反転周期が大きいときほど、制御定数が該反転周期を小さくする方向に補正されるので、定常時の空燃比の変動を適正範囲内に収めつつ、過渡時の応答遅れ時間を短くすることができる。
【0010】
これにより、定常,過渡を問わず空燃比を目標空燃比近傍に維持して排気浄化性能を可及的に向上することができる。
【0011】
また、記憶手段から検索して制御定数を設定することにより、制御定数を速やかに設定することができるので、過渡状態の応答性を可及的に改善することができる。
また、請求項2に係る発明は、図2に実線で示すように、
機関に供給される混合気の空燃比を検出する空燃比検出手段を備え、該空燃比検出手段による空燃比の検出値と目標空燃比相当の基準値とを比較しつつ制御定数を用いて設定されるフィードバック補正係数により空燃比を目標空燃比に近づけるように制御する空燃比フィードバック制御手段を含んでなる内燃機関の空燃比制御装置において、
機関運転状態に基づいて空燃比が制御されてから該制御された空燃比状態が空燃比検出手段に伝達されるまでの伝達遅れ時間を、算出する伝達遅れ時間算出手段と、
前記伝達遅れ算出手段で算出された伝達遅れ時間と、空燃比検出手段で検出された空燃比制御された空燃比状態が前記空燃比検出手段に伝達されてから該空燃比検出手段によって検出されるまでの検出遅れ時間と、を加算した総遅れ時間に基づいて前記空燃比フィードバック制御に用いられる制御定数を設定する制御定数設定手段と、
を含んで構成したことを特徴とする。
【0012】
かかる請求項2に係る発明の作用・効果を説明する。
定常時における空燃比の変動は、機関運転状態に基づいて算出される伝達遅れ時間と空燃比検出手段の検出遅れ時間とを加算した総遅れ時間に依存し、該総遅れ時間が大きいときほど空燃比が変動しやすい。
したがって、前記同様の理由により、前記総遅れ時間に基づいて、適切な制御定数を設定することにより、定常時の空燃比の変動を適正範囲内に収めつつ、過渡時の応答遅れ時間を短くすることができ、以て、定常,過渡を問わず空燃比を目標空燃比近傍に維持して排気浄化性能を可及的に向上することができる。
また、請求項3に係る発明は、図2に一点鎖線で示すように、
機関の回転速度を検出する機関回転速度検出手段と、
機関に吸入される空気流量を検出する吸入空気流量検出手段と、を含み、
前記伝達遅れ時間算出手段は、前記機関回転速度検出手段によって検出された機関回転速度に基づいて推定される機関のサイクルによる遅れ及び燃焼による遅れを合わせた滞留遅れ時間と、前記吸入空気流量検出手段によって検出される吸入空気流量に基づいて推定される排気が空燃比検出手段に達するまでの輸送遅れ時間とを合計して伝達遅れ時間を算出することを特徴とする。
【0013】
即ち、機関のサイクルによる遅れ及び燃焼による遅れからなる滞留遅れ時間は機関回転速度に依存するので、機関回転速度に基づいて算出し、輸送遅れ時間は排気の流速したがって流量に依存し、排気流量は吸入空気流量と略等しいので検出された吸入空気流量に基づいて算出することができ、これら滞留遅れ時間と輸送遅れ時間を加算して伝達遅れ時間を求めることができる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図に基づいて説明する。
一実施形態におけるシステム構成を示す図3において、機関11の吸気通路12には吸入空気流量Qaを検出するエアフローメータ13及びアクセルペダルと連動して吸入空気流量Qaを制御する絞り弁14が設けられ、下流のマニホールド部分には気筒毎に燃料供給手段としての電磁式の燃料噴射弁15が設けられる。
【0015】
燃料噴射弁15は、マイクロコンピュータを内蔵したコントロールユニット16からの噴射パルス信号によって開弁駆動し、図示しない燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に制御された燃料を噴射供給する。更に、機関11の冷却ジャケット内の冷却水温度Twを検出する水温センサ17が設けられると共に、排気通路18の排気中酸素濃度を検出することによって吸入混合気の空燃比を検出する空燃比センサ19が設けられ、更に下流側の排気中のCO,HCの酸化とNOの還元を行って浄化する三元触媒20が設けられる。
【0016】
また、図示しないディストリビュータには、クランク角センサ21が内蔵されており、該クランク角センサ21から機関回転と同期して出力されるクランク単位角信号を一定時間カウントして、又は、クランク基準角信号の周期を計測して機関回転速度Neを検出する。
ここで、機関11の空燃比フィードバック制御系における各種要因別の応答遅れについて説明する。
【0017】
図4は、空燃比フィードバック制御系のモデルを示す。該空燃比フィードバック制御による遅れ (空燃比の変化が空燃比センサに伝わってから、空燃比センサの検出によって空燃比変化に応じて制御された空燃比状態が空燃比センサに伝達されるまでの遅れ) は大別してコントロールユニット16による制御系による遅れと、該制御系で制御された機関11の空燃比状態が空燃比センサ19に伝達されるまでの伝達遅れ系と、空燃比状態が変化してから該変化を空燃比センサ19が検出するまでの検出遅れ系と、を含んで構成される。
【0018】
コントロールユニット16の制御系は、空燃比センサ19により検出される空燃比状態 (リーン又はリッチ) に応じて積分分ゲインkを積分した積分分と、空燃比状態の反転 (リーンからリッチ又はリッチからリーン) が検出された直後に与えられる比例分Kとを加算して得られたフィードバック補正係数αにより機関回転に同期して供給される燃料噴射量を増減することにより、空燃比を目標空燃比 (理論空燃比) にフィードバック制御する。
【0019】
機関11の伝達遅れ系は、制御がなされる周期、つまり機関のサイクルに依存する遅れと、制御された空燃比の混合気が燃焼して該燃焼ガスがシリンダから排出されるまでの遅れとを合わせた滞留遅れと、シリンダから排出された燃焼ガスが排気通路を通って空燃比センサ19に達するまでの輸送遅れと、からなる。
前記滞留遅れは、図5に示すように機関回転速度Neが低いほどサイクル周期,燃焼期間ともに長くなるため大きくなり、機関回転速度Neの増大に対して比例的に減少する特性となる。
【0020】
前記輸送遅れは、図6に示すように吸入空気流量Qaつまり排気流量が小さいほど排気の流速が減少するため大きくなり、吸入空気流量Qaの増大に対して比例的に減少する特性となる。
一方、制御系による遅れを図7〜図9に示した空燃比フィードバック制御のデータに基づいて説明する。
【0021】
図7,図8は、前記機関11の伝達遅れ系の遅れ時間 (むだ時間) L=1.2(sec)とL=0.1(sec)の場合について、各々積分分ゲインk及び比例分kを共に小さい値 0.01 としたときと、共に大きい値 0.1としたときについて空燃比 (空気過剰率λ) の変動状態を測定したものである。図9,図10は、同じく遅れ時間L=1.2(sec)とL=0.1(sec)の場合について、積分分ゲインk及び比例分kに対する空燃比の変動幅 (Peak to Peak) を示したものである。
【0022】
図で明らかなように、伝達遅れ系の遅れ時間が大きいと空燃比センサの反転周期が増大し、それに応じて空燃比の変動 (振幅) が大きくなるが、制御定数である積分分k, 比例分kを小さくすることで空燃比の変動を小さくすることができることが明らかである。しかし、制御定数である積分分ゲインk及び比例分kを小さくするほど、空燃比フィードバック制御系の応答遅れ (制御量を変化させてから定常状態に落ちつくまでの時間) は大きくなる。図11, 図12は、積分分,比例分について夫々の値と空燃比フィードバック制御系の応答遅れとの関係を示す。
【0023】
そこで、定常状態における空燃比の変動を前記したように三元触媒が有効に機能する範囲内に収めつつ、できるだけ制御系の応答遅れを小さくすれば、過渡時の空燃比のずれも最小限に抑えることができ、定常,過渡を問わず良好な空燃比に維持でき、排気浄化性能を可及的に向上できることが明らかである。
図13の表は、定常状態における空燃比 (空気過剰率λ) の変動 (Peak to Peak) を0.02以下の適正範囲内に抑えられる積分分, 比例分の組み合わせの中で、空燃比フィードバック制御の応答遅れ時間の最も短いものを選択して示したものであり、図14のグラフは各積分分, 比例分の組み合わせ▲1▼〜▲5▼に対して空燃比センサの反転周期に対する空燃比フィードバック制御の応答遅れ時間を示し、前記選択された点をプロットしてある。
【0024】
即ち、前記したように、空燃比センサの反転周期は伝達遅れ系の遅れ時間に依存しており、反転周期が長いときつまり伝達遅れ系の遅れ時間が大きいときは、空燃比が変動しやすいため、該変動を適正範囲内に抑えるためには積分分, 比例分を十分小さくする必要があるが、反転周期が短いときつまり伝達遅れ系の遅れ時間が小さいときは、空燃比が変動しにくいため、該変動を適正範囲内に抑えるための積分分, 比例分はある程度まで大きくすることができ、それだけ空燃比フィードバック制御系の応答遅れを短縮できる。
【0025】
したがって、本発明は、空燃比センサの反転周期を検出することによって推定される伝達遅れ系の遅れ時間に対応して、空燃比の変動を適正範囲内に抑えられる中で最も空燃比フィードバック制御系の応答遅れを短くできるような積分分ゲイン,比例分等の制御定数を設定するようにしたものであり、それによって定常時の空燃比の変動を抑制しつつ、過渡時の空燃比のずれも最小限に抑制して排気浄化性能を可及的に向上させるものである。
【0026】
次に、コントロールユニット16による請求項1及び請求項2に係る発明の実施形態における空燃比フィードバック補正係数αの設定ルーチンを図15のフローチャートに従って説明する。このルーチンは単位時間毎又は機関回転に同期した周期で実行される。
ステップ (図ではSと記す。以下同様) 1では、空燃比センサ19からの検出値 (出力電圧Vs) をA/D変換して入力する。
【0027】
ステップ2では、前記空燃比の検出値Vsを目標空燃比 (理論空燃比) 相当の基準値Vsoと比較する。
そして、検出値Vsと基準値Vsoとの大小関係が反転したとき、つまり空燃比の検出値がリッチからリーン又はリーンからリッチに反転したときには、ステップ3へ進んで前記検出値の反転周期 (前回反転してから今回反転するまでの時間) Tを算出する。
【0028】
ステップ4では、前記反転周期Tに対する積分分ゲインk及び比例分kを前記図13, 図14の関係から求められた特性のマップから検索して設定する。このマップは前記したように、反転周期に対して定常時の空燃比の変動を適正範囲 (例えばλ=1±0.02) の範囲内にあって空燃比フィードバック制御系の応答遅れ時間を最小限とする積分分ゲインk及び比例分kの特性を有しており、反転周期Tが長くなるほど、積分分ゲインk及び比例分kを小さく設定されている。
【0029】
ステップ5では、反転方向つまり空燃比の検出値がリッチからリーン又はリーンからリッチのいずれの方向に反転したかを判定する。
そして、空燃比の検出値がリーンからリッチに反転した場合には、ステップ6へ進んで空燃比フィードバック補正係数αを、現在値から前記ステップ4で設定した比例分kを減少した値で更新設定する。
【0030】
また、空燃比の検出値がリッチからリーンに反転した場合には、ステップ7へ進んで空燃比フィードバック補正係数αを、現在値に前記ステップ4で設定した比例分kを加算した値で更新設定する。
一方、ステップ2で検出値Vsと基準値Vsoとの大小関係が反転していないと判定されたときは、ステップ8へ進んで検出値Vsが基準値Vsoより大の空燃比リッチ状態が検出されているか否かを判定する。
【0031】
そして、検出値Vsが基準値Vsoより大である場合はステップ9へ進んで空燃比フィードバック補正係数αを現在値から積分分ゲインkを減算した値で更新する。
また、検出値Vsが基準値Vsoより小である場合はステップ10へ進んで空燃比フィードバック補正係数αを現在値に積分分ゲインkを加算した値で更新する。
【0032】
次に、前記のようにして設定された空燃比フィードバック補正係数αを用いた空燃比フィードバック制御ルーチンを図16のフローチャートにしたがって説明する。
ステップ21では、エアフローメータ13によって検出された吸入空気流量Qaとクランク角センサ21からの信号に基づいて算出した機関回転数Nとに基づき、単位回転当たりの吸入空気量に相当する基本燃料噴射量Tを次式によって演算する。
【0033】
=K×Qa/N (Kは定数)
ステップ22では、水温センサ17によって検出された冷却水温度Tw等に基づいて各種補正係数COEFを設定する。
ステップ23では、前記図15で設定された空燃比フィードバック補正係数αを読み込む。
【0034】
ステップ24では、バッテリ電圧値に基づいて電圧補正分Tを設定する。これは、バッテリ電圧変動による燃料噴射弁15の噴射流量変化を補正するためのものである。
ステップ25では、最終的な燃料噴射量Tを次式に従って演算する。
=T×COEF×α+T
ステップ26では、演算された燃料噴射弁Tを出力用レジスタにセットする。
【0035】
これにより、予め定められた機関回転同期の燃料噴射タイミングになると、演算した燃料噴射量Tのパルス巾をもつ駆動パルス信号が燃料噴射弁15に与えられて燃料噴射が行われる。
このように本実施形態では、空燃比センサの反転周期に基づいて定常時の空燃比の変動を適正範囲に抑えつつ過渡時の制御系の応答遅れを最小限とするような制御定数を設定し、該制御定数を用いて空燃比フィードバック制御を行うようにしたため、定常,過渡を問わず目標空燃比 (理論空燃比) 近傍に空燃比を維持することができ、排気浄化性能を可及的に向上することができる。
【0036】
また、前記実施形態では空燃比センサの反転周期に基づいて直接制御定数 (積分分ゲインk,比例分k) を求めるものを示したが、前記伝達遅れ時間を算出し、更に空燃比センサの検出遅れ時間を合計した総遅れ時間を算出し、該総遅れ時間に基づいて制御定数を設定するようにしてもよい。
図17は、前記伝達遅れ時間を算出して制御定数を設定する請求項3及び請求項4に係る発明の実施形態のフローチャートの一部を示す。即ち、本実施形態は、前記第1の実施形態を示す図15のフローチャートのステップ3,4の部分がステップ31〜35に変更されるので、該変更部分のみを示してある。
【0037】
ステップ31では、クランク角センサ21によって検出される機関回転速度Neに基づいて機関のサイクルによる遅れ及び燃焼による遅れを合わせた滞留遅れ時間Dを算出 (又はマップから検索) する。
ステップ32では、前記エアフローメータ13によって検出される吸入空気流量Qaに基づいて推定される排気が空燃比センサ19に達するまでの輸送遅れ時間Dを算出( 又はマップから検索) する。
【0038】
ステップ33では、前記滞留遅れ時間Dと前記輸送遅れ時間Dとを合計して伝達遅れ時間Dtを算出する。
ステップ34では、前記伝達遅れ時間Dtに予めわかっている空燃比センサ19の検出遅れ時間Dsを加算して総遅れ時間Dを算出する。
ステップ35では、前記算出された総遅れ時間Dに対する積分分ゲインk及び比例分kを予め特性を記憶設定したマップから検索して設定する。
【0039】
このように、定常時の空燃比の変動は総遅れ時間に依存しているので、該総遅れ時間を算出することによっても空燃比変動を適正範囲内に抑えるような制御定数を設定することができ、第1の実施形態と同様に定常・過渡を問わず空燃比の目標空燃比近傍に維持して排気浄化性能を可及的に向上させることができる。
【図面の簡単な説明】
【図1】請求項1及び請求項2に係る発明の構成・機能を示すブロック図。
【図2】請求項3及び請求項4に係る発明の構成・機能を示すブロック図。
【図3】本発明に係る実施形態のシステム構成を示す図。
【図4】機関の空燃比フィードバック制御系のモデルを示す図。
【図5】機関回転速度Neと滞留遅れ時間との関係を示すグラフ。
【図6】吸入空気流量Qaと輸送遅れ時間との関係を示すグラフ。
【図7】伝達遅れ時間が大きいときの制御定数が小さい値と大きい値とについて空燃比の変動状態を示す図。
【図8】伝達遅れ時間が小さいときの制御定数が小さい値と大きい値とについて空燃比の変動状態を示す図。
【図9】伝達遅れ時間が大きいときの積分分及び比例分に対する空燃比の変動幅の関係を示す図。
【図10】伝達遅れ時間が小さいときの積分分及び比例分に対する空燃比の変動幅の関係を示す図。
【図11】空燃比フィードバック制御系の応答遅れ時間と積分分との関係を示す図。
【図12】空燃比フィードバック制御系の応答遅れ時間と比例分との関係を示す図。
【図13】定常状態における空燃比 (空気過剰率λ) の変動幅を適正範囲内に抑えられる積分分, 比例分の組み合わせの中で、空燃比フィードバック制御の応答遅れ時間の最も短いものを示した表。
【図14】各積分分, 比例分の組み合わせに対して空燃比センサの反転周期に対する空燃比フィードバック制御の応答遅れ時間を示すグラフ。
【図15】請求項1及び請求項2に係る発明の実施形態に係る空燃比フィードバック補正係数の設定ルーチンを示すフローチャート。
【図16】同じく空燃比フィードバック制御ルーチンを示すフローチャート。
【図17】請求項3及び請求項4に係る発明の実施形態に係る空燃比フィードバック補正係数の設定ルーチンの一部を示すフローチャート。
【符号の説明】
11 内燃機関
13 エアフローメータ
15 燃料噴射弁
16 コントロールユニット
19 空燃比センサ
21 クランク角センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to a technique for improving the control accuracy of an air-fuel ratio detection device that performs feedback control to a target air-fuel ratio.
[0002]
[Prior art]
2. Description of the Related Art A conventional air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Laid-Open No. 60-240840.
In brief, the basic fuel supply amount T P (= K · Qa / N; K is minute) corresponding to the amount of air taken into the cylinder by detecting the intake air flow rate Qa and the rotation speed N of the engine is described. The calculated basic fuel supply amount TP is corrected by the engine temperature or the like, and feedback correction is performed by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. also been corrected due battery voltage finally setting the fuel supply quantity T I and.
[0003]
Then, by outputting a driving pulse signal having a pulse width corresponding to the thus set fuel supply quantity T I at a predetermined timing, so that injects supply a predetermined amount of fuel to the engine.
By the way, the air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed so as to control the air-fuel ratio near the target air-fuel ratio (the stoichiometric air-fuel ratio). It is interposed in the exhaust system, the exhaust CO in the exhaust, HC conversion efficiency (conversion efficiency) of the three-way catalyst for purifying by reducing NO X with oxidizes (hydrocarbon) is at the stoichiometric air-fuel ratio combustion This is because it is set to function effectively in the state.
[0004]
For example, a proportional component and an integral component are respectively set according to the deviation between the air-fuel ratio detected by the air-fuel ratio sensor and the target air-fuel ratio, and a value obtained by adding these components is used as a feedback correction coefficient α as the basic fuel supply amount T. By multiplying P , the air-fuel ratio is controlled near the stoichiometric air-fuel ratio.
[0005]
[Problems to be solved by the invention]
By the way, as described above, the conversion efficiency of the three-way catalyst can be increased by controlling it near the stoichiometric air-fuel ratio. However, in order to maximize the conversion efficiency, λ (excess air ratio) = 1 ± 0.02 It is necessary to suppress the fluctuation width of the change in the air-fuel ratio within a narrow range of less than about.
However, in the conventional air-fuel ratio feedback control device as described above, the control constants such as the proportional component and the integral component for setting the air-fuel ratio feedback correction coefficient α are fixed values or assigned to each engine operation region. Although a value is used, in a transient state in which the operating state of the engine changes, there is a case where a delay occurs in following the target air-fuel ratio and the λ = 1 ± 0.02 is largely deviated from the appropriate range. .
[0006]
The present invention has been made in view of such a conventional problem, and the responsiveness is improved by setting a control constant for setting a feedback correction coefficient to an appropriate value with respect to a response delay of an air-fuel ratio feedback control system. The present invention provides an air-fuel ratio control apparatus for an internal combustion engine, which can maintain an air-fuel ratio in the vicinity of a target air-fuel ratio by setting an appropriate control constant even during a transition when the engine operating state changes. The purpose is to:
[0007]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 is, as shown in FIG.
Air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; setting using a control constant while comparing the detected value of the air-fuel ratio by the air-fuel ratio detection means with a reference value corresponding to the target air-fuel ratio An air-fuel ratio control device for an internal combustion engine including air-fuel ratio feedback control means for controlling the air-fuel ratio to approach the target air-fuel ratio by the feedback correction coefficient
Reversal cycle detection means for detecting a cycle in which a magnitude relationship of a detection value of the air-fuel ratio detection means with respect to a reference value corresponding to the target air-fuel ratio is reversed,
A storage means for correcting and setting a control constant corresponding to a reversal cycle of the air-fuel ratio sensor detected by the reversal cycle detection means in a direction in which the reversal cycle decreases as the reversal cycle increases ,
Control constant setting means for setting a control constant by retrieving a control constant corresponding to the detected inversion cycle from the storage means,
Is characterized by comprising.
[0008]
The operation and effect of the invention according to claim 1 will be described.
The reversal cycle of the detection value of the air-fuel ratio detection means depends on a transmission delay that is a sum of a stagnation delay due to an engine cycle delay or a combustion delay and a transport delay until exhaust reaches the air-fuel ratio detection means. Is larger, the fluctuation of the air-fuel ratio tends to be larger. However, the fluctuation can be reduced by reducing the control constant (integral gain, proportional component, etc.) for setting the feedback correction coefficient.
[0009]
However, when the control constant is reduced, the response delay time until the air-fuel ratio changes to the target air-fuel ratio (becomes a steady state) when the air-fuel ratio changes during a transition increases.
Therefore, by setting a control constant corresponding to the reversal cycle of the detected air-fuel ratio detection value from the storage means and setting the control constant, the control constant decreases as the reversal cycle increases. Therefore, it is possible to shorten the transient response delay time while keeping the fluctuation of the air-fuel ratio in the steady state within an appropriate range.
[0010]
This makes it possible to maintain the air-fuel ratio in the vicinity of the target air-fuel ratio irrespective of whether it is steady or transient, thereby improving the exhaust gas purification performance as much as possible .
[0011]
Further, by setting the control constant by retrieving it from the storage means, the control constant can be quickly set, so that the responsiveness of the transient state can be improved as much as possible.
Further, according to the invention of claim 2 , as shown by a solid line in FIG.
Air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; setting using a control constant while comparing the detected value of the air-fuel ratio by the air-fuel ratio detection means with a reference value corresponding to the target air-fuel ratio An air-fuel ratio control device for an internal combustion engine including air-fuel ratio feedback control means for controlling the air-fuel ratio to approach the target air-fuel ratio by the feedback correction coefficient
A transmission delay time calculating means for calculating a transmission delay time from when the air-fuel ratio is controlled based on the engine operating state to when the controlled air-fuel ratio state is transmitted to the air-fuel ratio detecting means,
The transmission delay time calculated by the transmission delay calculating means and the air-fuel ratio controlled air-fuel ratio state detected by the air-fuel ratio detecting means are detected by the air-fuel ratio detecting means after being transmitted to the air-fuel ratio detecting means. Control delay setting means for setting a control constant used for the air-fuel ratio feedback control based on the total delay time obtained by adding
Is characterized by comprising.
[0012]
The operation and effect of the invention according to claim 2 will be described.
Fluctuations in the air-fuel ratio in a steady state depend on the total delay time obtained by adding the transmission delay time calculated based on the engine operating state and the detection delay time of the air-fuel ratio detection means. Fuel ratio tends to fluctuate.
Therefore, for the same reason as described above, by setting an appropriate control constant based on the total delay time, the transient response delay time can be reduced while keeping the steady-state air-fuel ratio fluctuation within an appropriate range. Accordingly, the air-fuel ratio can be maintained near the target air-fuel ratio regardless of whether it is steady or transient, and the exhaust gas purification performance can be improved as much as possible.
The invention according to claim 3 is, as shown by a dashed line in FIG.
Engine speed detection means for detecting the engine speed,
Intake air flow rate detection means for detecting an air flow rate sucked into the engine,
The transmission delay time calculating means includes: a stagnation delay time including a delay due to an engine cycle and a delay due to combustion estimated based on the engine rotation speed detected by the engine rotation speed detection means; The transmission delay time is calculated by adding the transport delay time until the exhaust gas estimated based on the intake air flow rate detected by the exhaust gas reaches the air-fuel ratio detecting means.
[0013]
That is, since the stagnation delay time consisting of the delay due to the engine cycle and the delay due to combustion depends on the engine rotation speed, it is calculated based on the engine rotation speed, and the transportation delay time depends on the flow rate of the exhaust gas and therefore the flow rate. Since it is substantially equal to the intake air flow rate, it can be calculated based on the detected intake air flow rate, and the transmission delay time can be obtained by adding the residence delay time and the transport delay time.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
In FIG. 3 showing a system configuration according to one embodiment, an intake passage 12 of an engine 11 is provided with an air flow meter 13 for detecting an intake air flow rate Qa and a throttle valve 14 for controlling the intake air flow rate Qa in conjunction with an accelerator pedal. On the downstream manifold portion, an electromagnetic fuel injection valve 15 is provided for each cylinder as fuel supply means.
[0015]
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 containing a microcomputer, and injects fuel supplied from a fuel pump (not shown) under pressure and controlled to a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 for detecting a cooling water temperature Tw in a cooling jacket of the engine 11 is provided, and an air-fuel ratio sensor 19 for detecting an air-fuel ratio of an intake air-fuel mixture by detecting an oxygen concentration in exhaust gas in an exhaust passage 18. And a three-way catalyst 20 for oxidizing CO and HC in the exhaust gas on the downstream side and reducing NO X to purify the exhaust gas.
[0016]
A distributor (not shown) has a built-in crank angle sensor 21 which counts a crank unit angle signal output from the crank angle sensor 21 in synchronization with the engine rotation for a certain period of time, or a crank reference angle signal. Is measured to detect the engine rotation speed Ne.
Here, the response delay for each factor in the air-fuel ratio feedback control system of the engine 11 will be described.
[0017]
FIG. 4 shows a model of the air-fuel ratio feedback control system. Delay due to the air-fuel ratio feedback control (the delay from when the change in the air-fuel ratio is transmitted to the air-fuel ratio sensor to when the air-fuel ratio state controlled according to the change in the air-fuel ratio detected by the air-fuel ratio sensor is transmitted to the air-fuel ratio sensor) ) Is roughly divided into a delay caused by the control system by the control unit 16, a transmission delay system until the air-fuel ratio state of the engine 11 controlled by the control system is transmitted to the air-fuel ratio sensor 19, and a change in the air-fuel ratio state. And a detection delay system until the air-fuel ratio sensor 19 detects the change.
[0018]
Control system of the control unit 16 includes an integration component obtained by integrating the integral component gain k 1 in accordance with the air-fuel ratio state (lean or rich) detected by the air-fuel ratio sensor 19, inversion of the air-fuel ratio state (rich or from lean to rich by increasing or decreasing the fuel injection amount supplied in synchronization with the engine rotation by the feedback correction coefficient and the proportional amount K 2 given it was obtained by adding immediately after the lean) is detected α from the target air-fuel ratio Feedback control to the air-fuel ratio (stoichiometric air-fuel ratio).
[0019]
The transmission delay system of the engine 11 has a cycle in which the control is performed, that is, a delay depending on the cycle of the engine, and a delay until the air-fuel mixture of the controlled air-fuel ratio burns and the combustion gas is discharged from the cylinder. The delay time is composed of a combined retention delay and a transportation delay until the combustion gas discharged from the cylinder reaches the air-fuel ratio sensor 19 through the exhaust passage.
As shown in FIG. 5, the lower the engine rotation speed Ne, the longer the cycle period and the combustion period, and thus the longer the residence delay, and the longer the residence delay, the smaller the engine rotation speed Ne.
[0020]
As shown in FIG. 6, the transport delay increases as the intake air flow rate Qa, that is, the exhaust flow rate decreases, because the exhaust flow velocity decreases, and the transport delay increases in proportion to an increase in the intake air flow rate Qa.
On the other hand, the delay caused by the control system will be described based on the data of the air-fuel ratio feedback control shown in FIGS.
[0021]
FIGS. 7 and 8 show the integral gain k 1 and the proportional gain k 1 and the delay time (dead time) of the transmission delay system of the engine 11 for L = 1.2 (sec) and L = 0.1 (sec), respectively. The fluctuation state of the air-fuel ratio (excess air ratio λ) is measured when the value of both the minute k 2 is set to a small value of 0.01 and when both are set to a large value of 0.1. 9, 10, like the delay time L = 1.2 (sec) and L = 0.1 for the case of (sec), the air-fuel ratio fluctuation range for the integral component gain k 1 and proportional portion k 2 (Peak to Peak).
[0022]
As is clear from the figure, if the delay time of the transmission delay system is large, the reversal cycle of the air-fuel ratio sensor increases, and the variation (amplitude) of the air-fuel ratio increases accordingly, but the integral k 1 , it is clear that it is possible to reduce the variation of the air-fuel ratio by reducing the proportional amount k 2. However, the smaller the integral component gain k 1 and proportional portion k 2 is a control constant (time from changing the control amount to settle to a steady state) response delay of the air-fuel ratio feedback control system is increased. FIGS. 11 and 12 show the relationship between the respective values of the integral and the proportional component and the response delay of the air-fuel ratio feedback control system.
[0023]
Therefore, if the response delay of the control system is reduced as much as possible while keeping the fluctuation of the air-fuel ratio in the steady state within the range in which the three-way catalyst effectively functions as described above, the deviation of the air-fuel ratio during the transition can be minimized. It is clear that the air-fuel ratio can be suppressed, a good air-fuel ratio can be maintained irrespective of steady or transient, and the exhaust gas purification performance can be improved as much as possible.
The table in FIG. 13 shows the air-fuel ratio feedback in the combination of the integral and the proportional component that can keep the fluctuation (Peak to Peak) of the air-fuel ratio (excess air ratio λ) in the steady state within an appropriate range of 0.02 or less. FIG. 14 is a graph showing the relationship between the inversion cycle of the air-fuel ratio sensor and the inversion cycle of the air-fuel ratio sensor for each integral (1) to (5). The response delay time of the fuel ratio feedback control is shown, and the selected point is plotted.
[0024]
That is, as described above, the reversal cycle of the air-fuel ratio sensor depends on the delay time of the transmission delay system. When the reversal cycle is long, that is, when the delay time of the transmission delay system is large, the air-fuel ratio tends to fluctuate. In order to suppress the fluctuation within an appropriate range, it is necessary to sufficiently reduce the integral component and the proportional component. However, when the reversal cycle is short, that is, when the delay time of the transmission delay system is small, the air-fuel ratio is difficult to fluctuate. The integral component and the proportional component for suppressing the fluctuation within an appropriate range can be increased to some extent, and the response delay of the air-fuel ratio feedback control system can be reduced accordingly.
[0025]
Accordingly, the present invention is the most air-fuel ratio feedback control system in which the fluctuation of the air-fuel ratio can be suppressed within an appropriate range in response to the delay time of the transmission delay system estimated by detecting the reversal cycle of the air-fuel ratio sensor. The control constants such as the integral gain and the proportional component are set so that the response delay of the air-fuel ratio can be shortened. This is to minimize the exhaust gas purification performance as much as possible.
[0026]
Next, a routine of the control unit 16 for setting the air-fuel ratio feedback correction coefficient α in the embodiment of the first and second aspects of the invention will be described with reference to the flowchart of FIG. This routine is executed every unit time or in a cycle synchronized with the engine rotation.
In step (denoted as S in the figure, the same applies hereinafter) In step 1, the detection value (output voltage Vs) from the air-fuel ratio sensor 19 is A / D converted and input.
[0027]
In step 2, the detected value Vs of the air-fuel ratio is compared with a reference value Vso corresponding to a target air-fuel ratio (stoichiometric air-fuel ratio).
Then, when the magnitude relationship between the detected value Vs and the reference value Vso is reversed, that is, when the detected value of the air-fuel ratio is reversed from rich to lean or from lean to rich, the routine proceeds to step 3, where the inversion cycle of the detected value (previous (Time from inversion to inversion this time) T is calculated.
[0028]
In step 4, the integral component gain k 1 and proportional portion k 2 for the inversion period T 13, set by search from the map of characteristic obtained from the relationship of FIG. 14. As described above, this map shows that the fluctuation of the air-fuel ratio in the steady state with respect to the reversal cycle is within an appropriate range (for example, λ = 1 ± 0.02) and minimizes the response delay time of the air-fuel ratio feedback control system. have the characteristics of integral component gain k 1 and proportional portion k 2 to limit, as the inversion period T becomes longer, it is smaller the integral component gain k 1 and proportional portion k 2.
[0029]
In step 5, it is determined whether the reversal direction, that is, the direction in which the detected value of the air-fuel ratio has reversed from rich to lean or from lean to rich.
Then, when the detection value of the air-fuel ratio is inverted from lean to rich, updates the air-fuel ratio feedback correction coefficient α proceeds to step 6, a value obtained by decreasing the proportional part k 2 set in step 4 from the current value Set.
[0030]
Further, when the detected value of the air-fuel ratio is inverted from rich to lean, updates the air-fuel ratio feedback correction coefficient α proceeds to step 7, the value obtained by adding the proportional part k 2 set in step 4 to the current value Set.
On the other hand, if it is determined in step 2 that the magnitude relationship between the detected value Vs and the reference value Vso is not reversed, the process proceeds to step 8, where an air-fuel ratio rich state in which the detected value Vs is larger than the reference value Vso is detected. Is determined.
[0031]
When the detection value Vs is larger than the reference value Vso is updated with the value obtained by subtracting the integral component gain k 1 the air-fuel ratio feedback correction coefficient α from the current value the program proceeds to step 9.
Further, if the detection value Vs is smaller than the reference value Vso is updated with the value obtained by adding the integral component gain k 1 the air-fuel ratio feedback correction coefficient α to the current value the program proceeds to step 10.
[0032]
Next, an air-fuel ratio feedback control routine using the air-fuel ratio feedback correction coefficient α set as described above will be described with reference to the flowchart of FIG.
In step 21, based on the intake air flow rate Qa detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 21, the basic fuel injection amount corresponding to the intake air amount per unit rotation the T P is calculated by the following equation.
[0033]
T P = K × Qa / N (K is a constant)
In step 22, various correction coefficients COEF are set based on the cooling water temperature Tw detected by the water temperature sensor 17, and the like.
In step 23, the air-fuel ratio feedback correction coefficient α set in FIG. 15 is read.
[0034]
In step 24, it sets the voltage correction amount T S based on the battery voltage. This is for correcting a change in the injection flow rate of the fuel injection valve 15 due to a change in the battery voltage.
In step 25, a final fuel injection amount T I is calculated according to the following equation.
T I = T P × COEF × α + T S
In step 26, set in the output register the computed fuel injection valve T I.
[0035]
Consequently, when a fuel injection timing of a predetermined engine rotation synchronization, fuel injection is performed a drive pulse signal having a pulse width of the calculated fuel injection amount T I is given to the fuel injection valve 15.
As described above, in the present embodiment, a control constant is set based on the reversal cycle of the air-fuel ratio sensor so as to minimize the response delay of the control system during the transition while suppressing the fluctuation of the air-fuel ratio in the steady state to an appropriate range. Since the air-fuel ratio feedback control is performed using the control constants, the air-fuel ratio can be maintained near the target air-fuel ratio (stoichiometric air-fuel ratio) regardless of whether it is steady or transient, and the exhaust purification performance can be improved as much as possible. Can be improved.
[0036]
In the above-described embodiment, the direct control constant (integral gain k 1 , proportional component k 2 ) is calculated directly based on the inversion cycle of the air-fuel ratio sensor. However, the transmission delay time is calculated, and the air-fuel ratio sensor is further calculated. It is also possible to calculate the total delay time by summing the detection delay times of the above and set the control constant based on the total delay time.
FIG. 17 shows a part of a flowchart of an embodiment of the invention according to claims 3 and 4 for calculating the transmission delay time and setting a control constant. That is, in the present embodiment, steps 3 and 4 in the flowchart of FIG. 15 showing the first embodiment are changed to steps 31 to 35, and only the changed portions are shown.
[0037]
In step 31, it calculates the residence time delay D 1 of the combined delay due to the delay and combustion by-cycle engine based on the engine rotational speed Ne detected by the crank angle sensor 21 (or retrieved from the map) to.
In step 32, the exhaust gas that is estimated to calculate the transport delay time D 2 to reach the air-fuel ratio sensor 19 (or retrieved from the map) are based on the intake air flow rate Qa detected by the air flow meter 13.
[0038]
In step 33, it calculates the propagation delay Dt by summing the residence time delay D 1 and said transport delay time D 2.
In step 34, the total delay time D is calculated by adding the detection delay time Ds of the air-fuel ratio sensor 19 known in advance to the transmission delay time Dt.
In step 35, set by searching the integral component gain k 1 and proportional portion k 2 in advance a characteristic from the stored map set to the total delay time D the calculated.
[0039]
As described above, since the fluctuation of the air-fuel ratio in the steady state depends on the total delay time, it is possible to set a control constant that suppresses the fluctuation of the air-fuel ratio within an appropriate range by calculating the total delay time. Thus, similarly to the first embodiment, the exhaust gas purification performance can be improved as much as possible by maintaining the air-fuel ratio near the target air-fuel ratio regardless of whether it is steady or transient.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration and functions of the invention according to claims 1 and 2;
FIG. 2 is a block diagram showing the configuration and functions of the invention according to claims 3 and 4;
FIG. 3 is a diagram showing a system configuration of an embodiment according to the present invention.
FIG. 4 is a diagram showing a model of an air-fuel ratio feedback control system of the engine.
FIG. 5 is a graph showing a relationship between an engine rotation speed Ne and a residence delay time.
FIG. 6 is a graph showing a relationship between an intake air flow rate Qa and a transport delay time.
FIG. 7 is a diagram showing a change state of the air-fuel ratio for a small value and a large control constant when the transmission delay time is long.
FIG. 8 is a diagram showing a change state of the air-fuel ratio for a small value and a large value of the control constant when the transmission delay time is short.
FIG. 9 is a diagram illustrating a relationship between a variation width of an air-fuel ratio with respect to an integral component and a proportional component when a transmission delay time is large.
FIG. 10 is a diagram illustrating a relationship between a variation width of an air-fuel ratio with respect to an integral component and a proportional component when a transmission delay time is short.
FIG. 11 is a diagram showing a relationship between a response delay time of an air-fuel ratio feedback control system and an integral.
FIG. 12 is a diagram showing a relationship between a response delay time of an air-fuel ratio feedback control system and a proportional component.
FIG. 13 shows the shortest response delay time of the air-fuel ratio feedback control among combinations of integral and proportional components that can keep the fluctuation range of the air-fuel ratio (excess air ratio λ) in a steady state within an appropriate range. Table.
FIG. 14 is a graph showing the response delay time of the air-fuel ratio feedback control with respect to the inversion cycle of the air-fuel ratio sensor for each combination of integral and proportional components.
FIG. 15 is a flowchart showing a routine for setting an air-fuel ratio feedback correction coefficient according to the embodiment of the present invention.
FIG. 16 is a flowchart showing an air-fuel ratio feedback control routine.
FIG. 17 is a flowchart showing a part of a routine for setting an air-fuel ratio feedback correction coefficient according to the embodiment of the invention according to claims 3 and 4;
[Explanation of symbols]
Reference Signs List 11 internal combustion engine 13 air flow meter 15 fuel injection valve 16 control unit 19 air-fuel ratio sensor 21 crank angle sensor

Claims (3)

機関に供給される混合気の空燃比を検出する空燃比検出手段を備え、該空燃比検出手段による空燃比の検出値と目標空燃比相当の基準値とを比較しつつ制御定数を用いて設定されるフィードバック補正係数により空燃比を目標空燃比に近づけるように制御する空燃比フィードバック制御手段を含んでなる内燃機関の空燃比制御装置において、
前記空燃比検出手段の検出値の前記目標空燃比相当の基準値に対する大小関係が反転する周期を検出する反転周期検出手段と、
前記反転周期検出手段で検出される前記空燃比センサの反転周期に対応する制御定数を、前記反転周期が大きいときほど該反転周期を小さくする方向に補正して設定し、記憶した記憶手段と、
前記記憶手段から前記検出された反転周期に対応する制御定数を検索することによって制御定数を設定する制御定数設定手段と、
を含んで構成したことを特徴とする内燃機関の空燃比制御装置。
Air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; setting using a control constant while comparing the detected value of the air-fuel ratio by the air-fuel ratio detection means with a reference value corresponding to the target air-fuel ratio An air-fuel ratio control device for an internal combustion engine including air-fuel ratio feedback control means for controlling the air-fuel ratio to approach the target air-fuel ratio by the feedback correction coefficient
Reversal cycle detection means for detecting a cycle in which a magnitude relationship of a detection value of the air-fuel ratio detection means with respect to a reference value corresponding to the target air-fuel ratio is reversed,
A storage means for correcting and setting a control constant corresponding to a reversal cycle of the air-fuel ratio sensor detected by the reversal cycle detection means in a direction in which the reversal cycle decreases as the reversal cycle increases ,
Control constant setting means for setting a control constant by retrieving a control constant corresponding to the detected inversion cycle from the storage means,
An air-fuel ratio control device for an internal combustion engine, comprising:
機関に供給される混合気の空燃比を検出する空燃比検出手段を備え、該空燃比検出手段による空燃比の検出値と目標空燃比相当の基準値とを比較しつつ制御定数を用いて設定されるフィードバック補正係数により空燃比を目標空燃比に近づけるように制御する空燃比フィードバック制御手段を含んでなる内燃機関の空燃比制御装置において、
機関運転状態に基づいて空燃比が制御されてから該制御された空燃比状態が空燃比検出手段に伝達されるまでの伝達遅れ時間を、算出する伝達遅れ時間算出手段と、
前記伝達遅れ算出手段で算出された伝達遅れ時間と、空燃比検出手段で検出された空燃比制御された空燃比状態が前記空燃比検出手段に伝達されてから該空燃比検出手段によって検出されるまでの検出遅れ時間と、を加算した総遅れ時間に基づいて前記空燃比フィードバック制御に用いられる制御定数を設定する制御定数設定手段と、
を含んで構成したことを特徴とする内燃機関の空燃比制御装置。
Air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; setting using a control constant while comparing the detected value of the air-fuel ratio by the air-fuel ratio detection means with a reference value corresponding to the target air-fuel ratio An air-fuel ratio control device for an internal combustion engine including air-fuel ratio feedback control means for controlling the air-fuel ratio to approach the target air-fuel ratio by the feedback correction coefficient
A transmission delay time calculating means for calculating a transmission delay time from when the air-fuel ratio is controlled based on the engine operating state to when the controlled air-fuel ratio state is transmitted to the air-fuel ratio detecting means,
The transmission delay time calculated by the transmission delay calculating means and the air-fuel ratio controlled air-fuel ratio state detected by the air-fuel ratio detecting means are detected by the air-fuel ratio detecting means after being transmitted to the air-fuel ratio detecting means. Control delay setting means for setting a control constant used for the air-fuel ratio feedback control based on the total delay time obtained by adding
An air-fuel ratio control device for an internal combustion engine, comprising:
機関の回転速度を検出する機関回転速度検出手段と、
機関に吸入される空気流量を検出する吸入空気流量検出手段と、を含み、
前記伝達遅れ時間算出手段は、前記機関回転速度検出手段によって検出された機関回転速度に基づいて推定される機関のサイクルによる遅れ及び燃焼による遅れを合わせた滞留遅れ時間と、前記吸入空気流量検出手段によって検出される吸入空気流量に基づいて推定される排気が空燃比検出手段に達するまでの輸送遅れ時間とを合計して伝達遅れ時間を算出することを特徴とする請求項2に記載の内燃機関の空燃比制御装置。
Engine speed detection means for detecting the engine speed,
Intake air flow rate detection means for detecting an air flow rate sucked into the engine,
The transmission delay time calculating means includes: a stagnation delay time including a delay due to an engine cycle and a delay due to combustion estimated based on the engine rotation speed detected by the engine rotation speed detection means; 3. The internal combustion engine according to claim 2 , wherein a transmission delay time is calculated by adding a transport delay time until exhaust gas estimated based on the intake air flow rate detected by the exhaust gas reaches the air-fuel ratio detecting means. Air-fuel ratio control device.
JP19875495A 1995-08-03 1995-08-03 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3593388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19875495A JP3593388B2 (en) 1995-08-03 1995-08-03 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19875495A JP3593388B2 (en) 1995-08-03 1995-08-03 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0942023A JPH0942023A (en) 1997-02-10
JP3593388B2 true JP3593388B2 (en) 2004-11-24

Family

ID=16396410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19875495A Expired - Fee Related JP3593388B2 (en) 1995-08-03 1995-08-03 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3593388B2 (en)

Also Published As

Publication number Publication date
JPH0942023A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
WO1992004538A1 (en) Method of controlling air-fuel ratio in internal combustion engine and system therefor
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JP2676987B2 (en) Air-fuel ratio control device for internal combustion engine
JP3939026B2 (en) Three-way catalyst oxygen storage control device
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP3009228B2 (en) Exhaust gas purification method and apparatus for natural gas engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP2518254B2 (en) Air-fuel ratio control device for internal combustion engine
JP2807554B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0617660B2 (en) Air-fuel ratio controller for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0571381A (en) Fuel feed control device for internal combustion engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine
JP2518260B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000097081A (en) Air-fuel ratio control device of internal-combustion engine
JP2548612B2 (en) Fuel supply control device for internal combustion engine
JP4044978B2 (en) Engine air-fuel ratio control device
JP2692307B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees