JPH06346775A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH06346775A
JPH06346775A JP13727393A JP13727393A JPH06346775A JP H06346775 A JPH06346775 A JP H06346775A JP 13727393 A JP13727393 A JP 13727393A JP 13727393 A JP13727393 A JP 13727393A JP H06346775 A JPH06346775 A JP H06346775A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction amount
ratio correction
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13727393A
Other languages
Japanese (ja)
Inventor
健悟 ▲高▼山
Kengo Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP13727393A priority Critical patent/JPH06346775A/en
Publication of JPH06346775A publication Critical patent/JPH06346775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain an air-fuel ratio to a target value so as to improve exhaust gas purifying property by changing air-fuel ratio correction on the basis of an air-fuel ratio detecting means arranged downstream according to complex deterioration of the air-fuel ratio detecting means arranged upstream from an exhaust emission control catalyst in an internal combustion engine. CONSTITUTION:In the intake passage 12 of an internal combustion engine 11, a fuel injection valve 15 is arranged downstream from a throttle valve 14. In an exhaust passage 18, first and second air-fuel ratio sensors 19, 21 are arranged above and below a catalytic converter rhodium 20. The fuel injection valve 15 is controlled by a control unit 16 on the basis of respective detection signals of at least respective air-fuel ratio sensors 19, 21. As the result, the air-fuel ratio of the internal combustion engine 11 is controlled. In this case, in the control unit 16, deterioration of the rich side output and responsiveness of the first air-fuel ratio sensor 19 are diagnosed on the basis of a first air-fuel ratio correction amount. As the result, when the deteriorations is diagnosed the second air-fuel ratio correction amount of the second air-fuel ratio sensor 21 is corrected in the direction to suppress rich control of the air-fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比を制
御する装置に関し、特に排気浄化触媒の上流側と下流側
とで空燃比検出を行って、空燃比をフィードバック制御
する装置の上流側での空燃比検出手段の異常に対処した
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and more particularly to a device for feedback-controlling the air-fuel ratio by performing air-fuel ratio detection on the upstream side and the downstream side of an exhaust purification catalyst. The present invention relates to a technique for coping with an abnormality in the air-fuel ratio detecting means on the side of the vehicle.

【0002】[0002]

【従来の技術】従来の一般的な内燃機関の空燃比制御装
置としては例えば特開昭60−240840号公報に示
されるようなものがある。このものの概要を説明する
と、機関の吸入空気流量Q及び回転数Nを検出してシリ
ンダに吸入される空気量に対応する基本燃料供給量TP
(=K・Q/N;Kは定数)を演算し、この基本燃料供
給量TP を機関温度等により補正したものを排気中酸素
濃度の検出によって混合気の空燃比を検出する空燃比セ
ンサ(酸素センサ)からの信号によって設定される空燃
比フィードバック補正係数(空燃比補正量)を用いてフ
ィードバック補正を施し、バッテリ電圧による補正等を
も行って最終的に燃料供給量TI を設定する。
2. Description of the Related Art As a conventional general air-fuel ratio control system for an internal combustion engine, there is one disclosed in Japanese Patent Application Laid-Open No. 60-240840. Explaining the outline of this, the basic fuel supply amount T P corresponding to the amount of air taken into the cylinder by detecting the intake air flow rate Q and the engine speed N of the engine
(= K · Q / N; K is a constant), and the basic fuel supply amount T P corrected by the engine temperature or the like is detected to detect the oxygen concentration in the exhaust gas to detect the air-fuel ratio of the air-fuel mixture. Feedback correction is performed by using the air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount) set by the signal from the (oxygen sensor), and the fuel supply amount T I is finally set by performing correction by the battery voltage. .

【0003】そして、このようにして設定された燃料供
給量TI に相当するパルス巾の駆動パルス信号を所定タ
イミングで燃料噴射弁に出力することにより、機関に所
定量の燃料を噴射供給するようにしている。上記空燃比
センサからの信号に基づく空燃比フィードバック補正は
空燃比を目標空燃比(理論空燃比)付近に制御するよう
に行われる。これは、排気系に介装され、排気中のC
O,HC(炭化水素)を酸化すると共にNOX を還元し
て浄化する排気浄化触媒(三元触媒)の転化効率(浄化
効率)が理論空燃比燃焼時の排気状態で有効に機能する
ように設定されているからである。
A drive pulse signal having a pulse width corresponding to the fuel supply amount T I set in this way is output to the fuel injection valve at a predetermined timing so that a predetermined amount of fuel is injected and supplied to the engine. I have to. The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed so as to control the air-fuel ratio near the target air-fuel ratio (theoretical air-fuel ratio). This is interposed in the exhaust system, and C in the exhaust is
The conversion efficiency (purification efficiency) of an exhaust purification catalyst (three-way catalyst) that oxidizes O, HC (hydrocarbons) and reduces NO X for purification so that the conversion efficiency (purification efficiency) effectively functions in the exhaust state during stoichiometric combustion This is because it is set.

【0004】前記、空燃比センサの発生起電力(出力電
圧)は理論空燃比近傍で急変する特性を有しており、こ
の出力電圧V0 と理論空燃比相当の基準電圧(スライス
レベル)SLとを比較して混合気の空燃比が理論空燃比
に対してリッチかリーンかを判定する。そして、例えば
空燃比がリーン(リッチ)の場合には、前記基本燃料供
給量TP に乗じるフイードバック補正係数αをリーン
(リッチ)に転じた初回に大きな比例定数Pを増大(減
少)した後、所定の積分定数Iずつ徐々に増大(減少)
していき燃料供給量TI を増量(減量)補正することで
空燃比を理論空燃比近傍に制御する。
The electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic of abruptly changing in the vicinity of the theoretical air-fuel ratio, and this output voltage V 0 and a reference voltage (slice level) SL corresponding to the theoretical air-fuel ratio are used. Is compared to determine whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. Then, for example, when the air-fuel ratio is lean (rich), after increasing (decreasing) a large proportional constant P at the first time when the feedback correction coefficient α for multiplying the basic fuel supply amount T P is changed to lean (rich), Gradually increase (decrease) by a predetermined integration constant I
The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by increasing (decreasing) the fuel supply amount T I.

【0005】ところで、上記のような通常の空燃比フィ
ードバック制御装置では1個の空燃比センサを応答性を
高めるため、できるだけ燃焼室に近い排気マニホールド
の集合部分に設けているが、この部分は排気温度が高い
ため空燃比センサが熱的影響や劣化により特性が変化し
易く、また、気筒毎の排気の混合が不十分であるため全
気筒の平均的な空燃比を検出しにくく空燃比の検出精度
に難があり、引いては空燃比制御精度を悪くしていた。
By the way, in the normal air-fuel ratio feedback control device as described above, one air-fuel ratio sensor is provided in the collection portion of the exhaust manifolds as close to the combustion chamber as possible in order to improve the response, but this portion is exhausted. Since the temperature is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal influences and deterioration, and it is difficult to detect the average air-fuel ratio of all cylinders due to insufficient mixing of exhaust gas for each cylinder. The accuracy was poor, and the air-fuel ratio control accuracy was poor.

【0006】この点に鑑み、排気浄化触媒の下流側にも
空燃比センサを設け、2つの空燃比センサの検出値を用
いて空燃比をフィードバック制御するものが提案されて
いる(特開昭58−48756 号公報参照) 。即ち、下流側の
空燃比センサは燃焼室から離れているため応答性には難
があるが、排気浄化触媒の下流であるため、排気成分バ
ランスの影響(CO,HC,NOx,CO2 等)を受け
難く、排気中の毒性成分による被毒量が少ないため被毒
による特性変化も受けにくく、しかも排気の混合状態が
よいため全気筒の平均的な空燃比を検出できる等上流側
の空燃比センサに比較して、高精度で安定した検出性能
が得られる。
In view of this point, it has been proposed to provide an air-fuel ratio sensor on the downstream side of the exhaust purification catalyst and perform feedback control of the air-fuel ratio using the detection values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-58). (See −48756 publication). That is, since the downstream air-fuel ratio sensor is far from the combustion chamber, it has a difficulty in response, but since it is downstream of the exhaust purification catalyst, the influence of the exhaust component balance (CO, HC, NOx, CO 2 etc.) The air-fuel ratio on the upstream side, such as the average air-fuel ratio of all cylinders, can be detected because the exhaust gas is less toxic and the amount of poisonous components in the exhaust is less likely to cause characteristic changes due to poisoning. As compared with the sensor, highly accurate and stable detection performance can be obtained.

【0007】そこで、2つの空燃比センサの検出値に基
づいて前記同様の演算によって夫々設定される2つの空
燃比フィードバック補正係数を組み合わせたり、或いは
上流側の空燃比センサにより設定される空燃比フィード
バック補正係数の制御定数(比例分や積分分) 、上流側
の空燃比センサの出力電圧の比較電圧や遅延時間を補正
すること等によって上流側空燃比センサの出力特性のば
らつきを下流側の空燃比センサによって補償して高精度
な空燃比フィードバック制御を行うようにしている。
Therefore, two air-fuel ratio feedback correction coefficients which are respectively set by the same calculation as described above based on the detection values of the two air-fuel ratio sensors are combined, or the air-fuel ratio feedback set by the upstream air-fuel ratio sensor is combined. The variation in the output characteristics of the upstream air-fuel ratio sensor is corrected by correcting the control constant (proportional or integral) of the correction coefficient, the comparison voltage of the output voltage of the upstream air-fuel ratio sensor, and the delay time. The sensor compensates for high-precision air-fuel ratio feedback control.

【0008】[0008]

【発明が解決しようとする課題】このような2個の空燃
比センサを使用した空燃比制御装置においては、上流側
の空燃比センサの劣化に伴う出力特性の変化に対して、
下流側の空燃比センサの出力に基づく補正である程度ま
では空燃比補償がなされるが、リッチ側の出力値が低下
すると共に応答性が低下して反転周期が増大するという
複合的な劣化が進行してきた場合には通常の補正の方式
では、対処できなくなっていた。
In the air-fuel ratio control device using such two air-fuel ratio sensors, the change in the output characteristics due to the deterioration of the upstream air-fuel ratio sensor is
The air-fuel ratio is compensated to a certain extent by the correction based on the output of the air-fuel ratio sensor on the downstream side, but as the output value on the rich side decreases, the responsiveness decreases and the inversion cycle increases, leading to a composite deterioration. In that case, the normal correction method cannot deal with it.

【0009】即ち、図7,図8に示したように、上流側
の空燃比センサのリッチ側の出力電圧が低下するだけの
劣化に対しては、空燃比がリッチ側にずれることにより
下流側空燃比センサのリッチ検出時間が長引くことによ
り、空燃比をリーン側に補正することで対処でき、一
方、応答性が低下するだけの劣化に対しては、リッチ側
にずれている時間とリーン側にずれている時間とが共に
増大してくるため、リッチ化によるNOx転化率の低下
とリーン化によるHC転化率の低下を同時に発生するた
め、下流側の空燃比センサの出力に基づいてリッチ側の
補正とリーン側の補正とを均等に行うことで対処でき
る。
That is, as shown in FIGS. 7 and 8, the deterioration of the upstream side air-fuel ratio sensor due to only a decrease in the output voltage on the rich side is caused by the shift of the air-fuel ratio to the rich side. By prolonging the rich detection time of the air-fuel ratio sensor, it can be dealt with by correcting the air-fuel ratio to the lean side.On the other hand, for deterioration that only deteriorates the responsiveness, the time shifted to the rich side and the lean side The increase in the time of deviation from the NOx ratio increases simultaneously with the decrease in the NOx conversion ratio due to the enrichment and the decrease in the HC conversion ratio due to the lean conversion. Therefore, the rich side is determined based on the output of the air-fuel ratio sensor on the downstream side. This can be dealt with by performing even correction on the lean side and correction on the lean side.

【0010】しかし、上流側空燃比センサのリッチ起電
力が低下し、かつ、応答性の低下を同時に発生した場
合、通常の方式では空燃比のリッチ方向への補正が過剰
に行われることとなり、また、リーン方向への補正が上
限値の設定により、不足してしまい、空燃比のリッチ状
態が長引いて排気浄化性能を充分効果的に発揮すること
ができないのが実状であった。
However, when the rich electromotive force of the upstream side air-fuel ratio sensor is reduced and the responsiveness is also reduced at the same time, the normal method causes excessive correction of the air-fuel ratio in the rich direction. Further, the correction in the lean direction becomes insufficient due to the setting of the upper limit value, and the rich state of the air-fuel ratio is prolonged, so that the exhaust purification performance cannot be sufficiently and effectively exhibited.

【0011】本発明は、このような従来の問題点に鑑み
なされたもので、上記のような上流側空燃比検出手段の
複合的な劣化に対応して下流側空燃比検出手段に基づく
空燃比補正を変更することにより、空燃比を目標値近傍
に保持することができ排気浄化性能を改善できる内燃機
関の空燃比制御装置を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and responds to the above-described composite deterioration of the upstream side air-fuel ratio detecting means by the downstream side air-fuel ratio detecting means. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can maintain the air-fuel ratio near a target value and improve exhaust gas purification performance by changing the correction.

【0012】[0012]

【課題を解決するための手段】このため本発明にかかる
内燃機関の空燃比制御装置は、図1に示す各手段を備え
て構成される。第1及び第2の空燃比検出手段は、機関
の排気通路に備えられた排気浄化触媒の上流側及び下流
側に夫々設けられ、空燃比によって変化する排気中特定
気体成分の濃度比に感応して出力値が変化する。
Therefore, an air-fuel ratio control system for an internal combustion engine according to the present invention is provided with each means shown in FIG. The first and second air-fuel ratio detecting means are respectively provided on the upstream side and the downstream side of the exhaust purification catalyst provided in the exhaust passage of the engine, and are sensitive to the concentration ratio of the specific gas component in the exhaust gas that changes depending on the air-fuel ratio. Change the output value.

【0013】前記第1の空燃比補正量演算手段は、前記
第1の空燃比検出手段の出力値に応じて比0・積分制御
あるいは積分制御等によって第1の空燃比補正量を演算
する。前記第2の空燃比検出手段は、前記第2の空燃比
検出手段の出力値に応じて前記第1の空燃比補正量例え
ば比例分や積分分を補正する第2の空燃比補正量を演算
する。
The first air-fuel ratio correction amount calculation means calculates the first air-fuel ratio correction amount by ratio 0 / integral control or integration control according to the output value of the first air-fuel ratio detection means. The second air-fuel ratio detection unit calculates a second air-fuel ratio correction amount for correcting the first air-fuel ratio correction amount, for example, the proportional component or the integral component, according to the output value of the second air-fuel ratio detection unit. To do.

【0014】空燃比補正量演算手段は、前記第1の空燃
比補正量と、第2の空燃比補正量と、に基づいて最終的
な空燃比補正量を演算する。空燃比制御量設定手段は、
機関回転速度,負荷等に基づいて設定された基本の空燃
比制御量を前記空燃比補正量演算手段で演算された空燃
比補正量に基づいて補正して設定する。
The air-fuel ratio correction amount calculation means calculates a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount. The air-fuel ratio control amount setting means is
A basic air-fuel ratio control amount set based on the engine speed, load, etc. is corrected and set based on the air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculation means.

【0015】そして、かかる基本的な構成を備えた空燃
比制御装置において、以下の本発明に特徴的な各手段を
備える。劣化診断手段は、前記第1の空燃比補正量の値
に基づいて第1の空燃比検出手段のリッチ側出力値及び
応答性の劣化を診断する。第2の空燃比補正量修正手段
は、前記異常診断手段により、第1の空燃比検出手段が
劣化していると診断されたときに前記第2の空燃比補正
量を空燃比のリッチ化制御を抑制する方向に修正する。
An air-fuel ratio control device having such a basic structure is provided with the following respective means characteristic to the present invention. The deterioration diagnosis means diagnoses the rich side output value and the responsiveness deterioration of the first air-fuel ratio detection means based on the value of the first air-fuel ratio correction amount. The second air-fuel ratio correction amount correcting means controls the second air-fuel ratio correction amount to enrich the air-fuel ratio when the abnormality diagnosing means diagnoses that the first air-fuel ratio detecting means is deteriorated. Modify to suppress.

【0016】[0016]

【作用】第1の空燃比検出手段のリッチ側の出力値が低
下し、かつ、応答性が低下する複合的な劣化を生じ、該
劣化が劣化診断手段によって検出されると、第2の空燃
比補正量修正手段は、例えば第2の空燃比検出手段が空
燃比のリーン状態を検出した時に通常であれば、第1の
空燃比検出手段の出力値に基づく空燃比のリッチ化方向
の補正量をよりリッチ化する方向の第2の補正を行うと
ころを、該第2のリッチ化補正を停止又は抑制するなど
の修正を行う。また、第2の空燃比検出手段により空燃
比のリッチ状態が検出されたときに、第2の空燃比検出
手段が空燃比のリッチ状態を検出したときに第1の空燃
比検出手段の出力値に基づく空燃比のリーン化方向の補
正量をよりリーン化する方向の第2の補正に上限を設け
て規制する構成としたものでは、該規制を解除すること
によって空燃比のリッチ化を抑制する。
If the output value of the first air-fuel ratio detecting means on the rich side decreases and the response deteriorates, a composite deterioration occurs. The fuel ratio correction amount correction means is, for example, normally when the second air-fuel ratio detection means detects a lean state of the air-fuel ratio, and makes correction in the enrichment direction of the air-fuel ratio based on the output value of the first air-fuel ratio detection means. Where the second correction in the direction of further enriching the amount is performed, correction such as stopping or suppressing the second enrichment correction is performed. Further, when the second air-fuel ratio detecting means detects the rich state of the air-fuel ratio, when the second air-fuel ratio detecting means detects the rich state of the air-fuel ratio, the output value of the first air-fuel ratio detecting means In the configuration in which the upper limit of the second correction in the leaning direction of the air-fuel ratio based on the above is set and the upper limit is set, the restriction is released to suppress the enrichment of the air-fuel ratio. .

【0017】その結果、第1の空燃比検出手段の複合的
な劣化に対しても、空燃比のリッチ化傾向が抑制され、
排気浄化性能が改善される。
As a result, the tendency of enrichment of the air-fuel ratio is suppressed even with the combined deterioration of the first air-fuel ratio detecting means,
Exhaust purification performance is improved.

【0018】[0018]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。一実施例の構成を示す図2において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメータ
13及びアクセルペダルと連動して吸入空気流量Qを制御
する絞り弁14が設けられ、下流のマニホールド部分には
気筒毎に電磁式の燃料噴射弁15が設けられる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing the configuration of one embodiment, an air flow meter for detecting an intake air flow rate Q is provided in an intake passage 12 of an engine 11.
A throttle valve 14 for controlling the intake air flow rate Q in cooperation with the accelerator pedal 13 and the accelerator pedal is provided, and an electromagnetic fuel injection valve 15 is provided for each cylinder in the downstream manifold portion.

【0019】燃料噴射弁15は、マイクロコンピュータを
内蔵したコントロールユニット16からの噴射パルス信号
によって開弁駆動し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータにより所定圧力に制御され
た燃料を噴射供給する。更に、機関11の冷却ジャケット
内の冷却水温度Twを検出する水温センサ17が設けられ
る。一方、排気通路18にはマニホールド集合部に排気中
酸素濃度を検出することによって機関に供給される混合
気の空燃比を検出する第1の空燃比センサ (第1の空燃
比検出手段) 19が設けられ、その下流側の排気管に排気
中のCO,HCの酸化とNOX の還元を行って浄化する
排気浄化触媒としての三元触媒20が設けられ、更に該三
元触媒20の下流側に第1空燃比センサ19と同一の機能を
持つ第2の空燃比センサ (第2の空燃比検出手段) 21が
設けられる。
The fuel injection valve 15 is opened and driven by an injection pulse signal from a control unit 16 having a built-in microcomputer, and is fuel-fed by a fuel pump (not shown) to be injected and supplied with pressure controlled by a pressure regulator. . Further, a water temperature sensor 17 for detecting the cooling water temperature Tw in the cooling jacket of the engine 11 is provided. On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor (first air-fuel ratio detecting means) 19 for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine by detecting the oxygen concentration in the exhaust gas at the manifold collecting portion. A three-way catalyst 20 as an exhaust purification catalyst that purifies the exhaust pipe by oxidizing CO and HC and reducing NO X in the exhaust is provided in the exhaust pipe on the downstream side, and further on the downstream side of the three-way catalyst 20. Further, a second air-fuel ratio sensor (second air-fuel ratio detecting means) 21 having the same function as the first air-fuel ratio sensor 19 is provided.

【0020】更に、図示しないディストリビュータに
は、クランク角センサ22が内蔵されており、該クランク
角センサ22から機関回転と同期して出力されるクランク
単位角信号を一定時間カウントして、又は、クランク基
準角信号の周期を計測して機関回転速度Nを検出する。
次に、コントロールユニット16による空燃比制御ルーチ
ンを図3及び図4のフローチャートに従って説明する。
図3は燃料噴射量設定ルーチンを示し、このルーチンは
所定周期(例えば10ms)毎に行われる。
Further, a crank angle sensor 22 is built in a distributor (not shown), and the crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation is counted for a predetermined time, or The engine speed N is detected by measuring the cycle of the reference angle signal.
Next, the air-fuel ratio control routine by the control unit 16 will be described with reference to the flowcharts of FIGS.
FIG. 3 shows a fuel injection amount setting routine, and this routine is performed every predetermined period (for example, 10 ms).

【0021】ステップ(図ではSと記す)1では、エア
フローメータ13によって検出された吸入空気流量Qとク
ランク角センサ22からの信号に基づいて算出した機関回
転速度Nとに基づき、単位回転当たりの吸入空気量に相
当する基本燃料噴射量TP を次式によって演算する。こ
のステップ1の機能が基本燃料供給量設定手段に相当す
る。
In step (denoted by S in the drawing) 1, the unit of rotation per unit rotation is based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 22. The basic fuel injection amount T P corresponding to the intake air amount is calculated by the following equation. The function of step 1 corresponds to the basic fuel supply amount setting means.

【0022】TP =K×Q/N (Kは定数) ステップ2では、水温センサ17によって検出された冷却
水温度Tw等に基づいて各種補正係数COEFを設定す
る。ステップ3では、後述するフィードバック補正係数
設定ルーチンにより設定されたフィードバック補正係数
αを読み込む。
T P = K × Q / N (K is a constant) In step 2, various correction coefficients COEF are set based on the cooling water temperature Tw detected by the water temperature sensor 17. In step 3, the feedback correction coefficient α set by the feedback correction coefficient setting routine described later is read.

【0023】ステップ4では、バッテリ電圧値に基づい
て電圧補正分TS を設定する。これは、バッテリ電圧変
動による燃料噴射弁15の噴射流量変化を補正するための
ものである。ステップ5では、最終的な燃料噴射量TI
を次式に従って演算する。 TI =TP ×COEF×α+TS 尚、燃料噴射量TI は空燃比制御量に相当するからステ
ップ1〜ステップ5までの機能が、空燃比制御量設定手
段に相当する。
In step 4, the voltage correction component T S is set based on the battery voltage value. This is for correcting the change in the injection flow rate of the fuel injection valve 15 due to the battery voltage change. In step 5, the final fuel injection amount T I
Is calculated according to the following equation. T I = T P × COEF × α + T S Since the fuel injection amount T I corresponds to the air-fuel ratio control amount, the functions from step 1 to step 5 correspond to the air-fuel ratio control amount setting means.

【0024】ステップ6では、演算された燃料噴射弁T
I を出力用レジスタにセットする。これにより、予め定
められた機関回転同期の燃料噴射タイミングになると、
演算した燃料噴射量TI のパルス巾をもつ駆動パルス信
号が燃料噴射弁15に与えられて燃料噴射が行われる。次
に、空燃比フィードバック補正係数設定ルーチンを図4
に従って説明する。このルーチンは機関回転に同期して
実行される。
In step 6, the calculated fuel injection valve T
Set I to output register. As a result, when the predetermined fuel injection timing of engine rotation synchronization is reached,
A drive pulse signal having a pulse width of the calculated fuel injection amount T I is given to the fuel injection valve 15 to perform fuel injection. Next, the air-fuel ratio feedback correction coefficient setting routine is shown in FIG.
Follow the instructions below. This routine is executed in synchronization with the engine rotation.

【0025】ステップ11では、空燃比のフィードバック
制御を行う運転条件であるか否かを判定する。運転条件
を満たしていないときには、このルーチンを終了する。
この場合、フィードバック補正係数αは前回のフィード
バック制御終了時の値若しくは一定の基準値にクランプ
され、フィードバック制御は停止される。ステップ12で
は、第1の空燃比センサ19からの信号電圧VO2を入力す
る。
In step 11, it is determined whether or not the operating conditions are such that feedback control of the air-fuel ratio is performed. When the operating conditions are not satisfied, this routine is ended.
In this case, the feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped. In step 12, the signal voltage V O2 from the first air-fuel ratio sensor 19 is input.

【0026】ステップ13では、ステップ11で入力した信
号電圧VO2と目標空燃比(理論空燃比)相当の基準値S
Lとを比較し、空燃比のリッチ・リーンを判別する。そ
して、空燃比がリッチと判定されたときには、ステップ
14へ進みリーンからリッチに反転した直後か否かを判定
する。反転直後と判定されたときはステップ15へ進み、
別のルーチンで設定された第2の空燃比補正量PHOS を
入力する。
In step 13, the reference value S corresponding to the signal voltage V O2 input in step 11 and the target air-fuel ratio (theoretical air-fuel ratio)
It is compared with L to determine rich / lean air-fuel ratio. When it is determined that the air-fuel ratio is rich, the step
Proceed to step 14 and determine whether or not it has just changed from lean to rich. If it is determined that the image has just been inverted, proceed to step 15,
The second air-fuel ratio correction amount PHOS set by another routine is input.

【0027】次いでステップ16へ進み、空燃比フィード
バック補正係数α設定用のリッチ反転時に与える減少方
向の比例分PR を基準値PROから前記第2の空燃比補正
量PHOS を減算した値で更新した後、ステップ17で空燃
比フィードバック補正係数αを現在値から前記比例分P
R を減じた値で更新する。また、ステップ14で第1の空
燃比センサ19の出力がリーンからリッチへの反転直後で
はないと判定された時には、ステップ18へ進んで空燃比
フィードバック補正係数αを現在値から積分分IR を減
少した値で更新する。
Next, the routine proceeds to step 16, where the proportional amount P R in the decreasing direction given at the time of rich inversion for setting the air-fuel ratio feedback correction coefficient α is updated with a value obtained by subtracting the second air-fuel ratio correction amount PHOS from the reference value P RO. After that, in step 17, the air-fuel ratio feedback correction coefficient α is set to the proportional value P from the current value.
Update with the value obtained by subtracting R. Further, when it is determined in step 14 that the output of the first air-fuel ratio sensor 19 is not immediately after reversing from lean to rich, the routine proceeds to step 18, where the air-fuel ratio feedback correction coefficient α is set to the integral value I R from the current value. Update with the reduced value.

【0028】一方、ステップ13で空燃比がリーンと判定
されたときも同様にしてステップ19でリッチからリーン
への反転直後か否かを判別し、反転直後のときはステッ
プ20で第2の空燃比補正量PHOS を入力し、ステップ21
で空燃比フィードバック補正係数αのリーン反転時に与
える増大方向の比例分PL の基準値PL0に前記第2の空
燃比補正量PHOS を加算した値で更新した後、ステップ
22で空燃比フィードバック補正係数αを現在値に前記比
例分PL を加算した値で更新する。また、ステップ19で
反転直後でないと判定された時には、ステップ23で空燃
比フィードバック補正係数αを現在値に積分分IL を加
算した値で更新する。
On the other hand, when it is determined in step 13 that the air-fuel ratio is lean, it is similarly determined in step 19 whether or not it is immediately after reversal from rich to lean. If it is immediately after reversal, the second air-fuel ratio is determined in step 20. Enter the fuel ratio correction amount PHOS, and proceed to Step 21.
After updating with the value obtained by adding the second air-fuel ratio correction amount PHOS to the reference value P L0 of the proportional portion P L in the increasing direction given at the lean reversal of the air-fuel ratio feedback correction coefficient α,
At 22, the air-fuel ratio feedback correction coefficient α is updated with a value obtained by adding the proportional amount P L to the current value. Further, when it is determined in step 19 that it is not immediately after reversal, the air-fuel ratio feedback correction coefficient α is updated in step 23 with a value obtained by adding the integral I L to the current value.

【0029】尚、本ルーチンにおいて、空燃比フィード
バック補正係数αは第1の空燃比センサ19の信号に基づ
いて比例分の基準値PRO, LOと積分分IR,L を用い
て設定される第1の空燃比補正量を第2の空燃比補正量
PHOS で補正して設定されるものと考えられるから、本
ルーチンは第1の空燃比補正量演算手段と、空燃比補正
量演算手段の構成を兼ね備えるものである。
In this routine, the air-fuel ratio feedback correction coefficient α is set based on the signal of the first air-fuel ratio sensor 19 using the proportional reference values P RO, P LO and the integral parts I R, I L. It is considered that the routine is set by correcting the first air-fuel ratio correction amount that is performed by the second air-fuel ratio correction amount PHOS, so this routine is performed by the first air-fuel ratio correction amount calculation means and the air-fuel ratio correction amount calculation. It also has a structure of means.

【0030】続いて、第2の空燃比センサの信号に基づ
いて第2の空燃比補正量PHOS を設定するルーチンを図
5に基づいて説明する。このルーチンは所定の周期毎に
実行される。ステップ31では、第2の空燃比センサの出
力電圧VO2’を入力する。ステップ32では、前記信号電
圧VO2’と目標空燃比(理論空燃比)相当の基準値SL
とを比較し、空燃比のリッチ・リーンを判別する。
Next, a routine for setting the second air-fuel ratio correction amount PHOS based on the signal of the second air-fuel ratio sensor will be described with reference to FIG. This routine is executed every predetermined period. In step 31, the output voltage V O2 'of the second air-fuel ratio sensor is input. In step 32, the reference value SL corresponding to the signal voltage V O2 'and the target air-fuel ratio (theoretical air-fuel ratio).
To compare rich and lean of the air-fuel ratio.

【0031】空燃比がリッチと判定されたときにはステ
ップ33へ進み、リーンからリッチへの反転直後か否かを
判別する。そして、反転直後と判定された時にはステッ
プ34で第2の空燃比補正量PHOSを前回値から所定の比
例分PHRを減算した値で更新し、反転直後でないと判定
された時にはステップ35で前回値から所定の積分分IHR
を減算した値で更新する。
When the air-fuel ratio is judged to be rich, the routine proceeds to step 33, where it is judged if it is just after reversal from lean to rich. Then, when it is determined to be immediately after reversal, the second air-fuel ratio correction amount PHOS is updated with a value obtained by subtracting a predetermined proportional amount P HR from the previous value in step 34, and when it is determined not to be immediately after reversal in step 35. predetermined integral amount I HR from the value
Update with the value obtained by subtracting.

【0032】次に、ステップ36へ進み、後述するルーチ
ンで診断される第1の空燃比センサ19の診断結果を示す
診断フラグFの値を判別する。そして、診断フラグFが
1で第1の空燃比センサ19のリッチ起電力及び応答性が
共に所定レベル以下まで低下している複合劣化を生じて
いると診断されているときには、ステップ37へ進み第2
の空燃比補正量PHOS の下限のリミット値PHL L を通常
の値PHLL0より拡大方向に補正して設定する。診断フラ
グFの値が0で第1の空燃比センサ19が複合劣化を生じ
ていないと判定されたときにはステップ38へ進み下限の
リミット値を通常の値PHLL0に設定する。
Next, the routine proceeds to step 36, where the value of the diagnosis flag F indicating the diagnosis result of the first air-fuel ratio sensor 19 which is diagnosed in the routine described later is determined. Then, when the diagnosis flag F is 1 and it is diagnosed that the rich electromotive force and the responsiveness of the first air-fuel ratio sensor 19 are both decreased to a predetermined level or less, it is judged that the composite deterioration has occurred, the routine proceeds to step 37. Two
The lower limit value P HL L of the air-fuel ratio correction amount P HOS is corrected and set from the normal value P HLL0 in the expanding direction. When the value of the diagnosis flag F is 0 and it is determined that the first air-fuel ratio sensor 19 is not subject to composite deterioration, the routine proceeds to step 38, where the lower limit value is set to the normal value PHLL0 .

【0033】その後、ステップ39へ進み前記ステップ34
又はステップ35で更新設定された第2の空燃比補正量P
HOS を前記リミット値PHLL と比較し、PHOS ≦PHLL
と判定されたときにはステップ40に進みPHOS =PHLL
に設定する。一方、前記ステップ32で空燃比がリーンと
判定されたときにはステップ41へ進んで前記診断フラグ
Fの値を判別し、F=1であるときには、ステップ42へ
進んで第2の空燃比補正量PHOS の値を0として該第2
の空燃比補正量PHOS による空燃比のリッチ化の促進制
御を停止する。
Thereafter, the process proceeds to step 39 and the above step 34
Alternatively, the second air-fuel ratio correction amount P updated and set in step 35
HOS is compared with the limit value P HLL, and P HOS ≤P HLL
When it is determined that the following is true, the process proceeds to step 40, where P HOS = P HLL
Set to. On the other hand, when it is determined in step 32 that the air-fuel ratio is lean, the routine proceeds to step 41, where the value of the diagnosis flag F is discriminated. When F = 1, the routine proceeds to step 42 where the second air-fuel ratio correction amount PHOS The value of 0 as the second
The acceleration control of the enrichment of the air-fuel ratio by the air-fuel ratio correction amount PHOS is stopped.

【0034】また、前記診断フラグFが0で第1の空燃
比センサ19が前記複合劣化を生じていないと診断されて
いるときには、ステップ43へ進みリーンからリッチへの
反転直後か否かを判別し、反転直後と判定された時には
ステップ44で第2の空燃比補正量PHOS を前回値に所定
の比例分PHLを加算した値で更新し、反転直後でないと
判定された時にはステップ45で前回値に所定の積分分I
HRを加算した値で更新する。
Further, when the diagnosis flag F is 0 and it is diagnosed that the first air-fuel ratio sensor 19 does not cause the composite deterioration, the routine proceeds to step 43, where it is judged whether or not it is just after reversing from lean to rich. However, if it is determined immediately after the reversal, the second air-fuel ratio correction amount PHOS is updated with a value obtained by adding a predetermined proportional amount P HL to the previous value in step 44, and if it is determined that it is not immediately after the reversal, the last time in step 45. Predetermined integral I for the value
Update with the added value of HR .

【0035】次いで、ステップ46へ進み前記ステップ44
又はステップ45で更新設定された第2の空燃比補正量P
HOS を上限のリミット値PHLU と比較し、PHOS ≧P
HLL と判定されたときにはステップ47へ進みPHOS =P
HLU に設定する。かかるルーチンにおいて、ステップ37
及びステップ42の機能が第2の空燃比補正量修正手段を
構成する。
Then, the process proceeds to step 46 and the step 44
Alternatively, the second air-fuel ratio correction amount P updated and set in step 45
HOS is compared with the upper limit value P HLU, and P HOS ≧ P
When it is judged as HLL , the routine proceeds to step 47, where PHOS = P
Set to HLU . In such a routine, step 37
The function of step 42 constitutes second air-fuel ratio correction amount correction means.

【0036】次に、第1の空燃比センサ19の前記複合劣
化を診断するルーチンを図6に基づいて説明する。尚、
このルーチンが劣化診断手段を構成する。ステップ51〜
ステップ53では、車速VSP, 機関回転速度N, 基本燃
料噴射量TP が夫々の設定範囲内にあるか否かを判別
し、全て設定範囲内にあると判定されたとき、つまり所
定の定常運転領域にあると判定されたときはステップ54
へ進み、空燃比フィードバック制御中であるか否かを判
定する。
Next, a routine for diagnosing the composite deterioration of the first air-fuel ratio sensor 19 will be described with reference to FIG. still,
This routine constitutes deterioration diagnosis means. Step 51 ~
In step 53, it is determined whether the vehicle speed VSP , the engine speed N , and the basic fuel injection amount T P are within their respective set ranges, and when it is determined that they are all within the set ranges, that is, a predetermined steady operation is performed. If it is determined to be in the area, step 54
Then, it is determined whether the air-fuel ratio feedback control is being performed.

【0037】そして、空燃比フィードバック制御中と判
定されたときに、第1の空燃比センサ19の劣化診断条件
が整ったと判断してステップ55以降へ進む。ステップ55
では、第1の空燃比センサ19のリッチ起電力つまり最大
出力電圧V O2MAX を求める。ステップ56では、前記最大
出力電圧VO2MAX を設定値VM0と比較し、VO2MAX<V
M0と判定されたときには、リッチ起電力が低下している
との診断を下し、次に応答性低下診断を行うべくステッ
プ57以降へ進む。
Then, it is determined that the air-fuel ratio feedback control is in progress.
Is determined, the deterioration diagnosis condition of the first air-fuel ratio sensor 19 is determined.
When it is determined that the condition has been set, the process proceeds to step 55 and thereafter. Step 55
Then, the rich electromotive force of the first air-fuel ratio sensor 19, that is, the maximum
Output voltage V O2MAXAsk for. In step 56, the maximum
Output voltage VO2MAXSet value VM0Compared to VO2MAX<V
M0If it is determined that the rich electromotive force has decreased
, And then the next step to make a diagnosis of decreased responsiveness.
Go to page 57 or later.

【0038】次にステップ57では、第1の空燃比センサ
19の応答時間を演算する。具体的には、空燃比がリーン
に反転してからリッチに反転するまでの時間TLRと空
燃比がリッチに反転してからリーンに反転するまでの時
間TRLとを加算した応答時間Tを演算する。ここで、
2つの時間TLR, TRLを加算するのは、過渡状態を
除くためである。
Next, at step 57, the first air-fuel ratio sensor
Calculate the response time of 19. Specifically, the response time T is calculated by adding the time TLR from the lean air-fuel ratio reversal to the rich air-fuel ratio reversal and the time TRL from the air-fuel ratio reversal rich to the lean air-fuel ratio reversal. . here,
The addition of the two times TLR and TRL is for excluding the transient state.

【0039】ステップ58では、前記加算された応答時間
Tを設定値T0 と比較し、T≧T0と判定されたときに
はステップ59へ進んで、第1の空燃比センサ19の応答性
が低下しており前記リッチ起電力低下と合わせて複合劣
化を生じているとの診断を下し、診断フラグFを1にセ
ットする。かかる構成とすれば、第1の空燃比センサ19
がリッチ起電力が低下し、かつ、応答性が低下している
とき複合劣化を生じている場合には、第2の空燃比セン
サ21により空燃比のリーン状態が検出され、通常は第2
の空燃比補正量PHOS によって空燃比のリッチ化が促進
されるのを、第2の空燃比補正量PHOS の値を0に設定
することによって抑制し、かつ、第2の空燃比補正量P
HOS による空燃比のリーン化を下限リミット値PHLL
拡大することによって可及的に促進し、以て、空燃比の
制御振幅が縮小しつつリーン側にシフトしていくことと
なり、複合劣化による空燃比のリッチ化が抑制され、排
気浄化性能を改善できる。
At step 58, the added response time T is compared with the set value T 0, and when it is judged that T ≧ T 0 , the routine proceeds to step 59, where the responsiveness of the first air-fuel ratio sensor 19 decreases. Therefore, it is diagnosed that the composite deterioration is occurring together with the decrease in the rich electromotive force, and the diagnosis flag F is set to 1. With this configuration, the first air-fuel ratio sensor 19
When the rich electromotive force is low and the composite response is low when the responsiveness is low, the second air-fuel ratio sensor 21 detects the lean state of the air-fuel ratio, and normally the second air-fuel ratio is detected.
The acceleration of the enrichment of the air-fuel ratio by the air-fuel ratio adjustment amount PHOS is suppressed by setting the value of the second air-fuel ratio adjustment amount PHOS to 0, and the second air-fuel ratio adjustment amount POS is reduced.
The lean limit of the air-fuel ratio by HOS is promoted as much as possible by increasing the lower limit value P HLL, and as a result, the control amplitude of the air-fuel ratio is reduced and shifted to the lean side, which results from compound deterioration. The enrichment of the air-fuel ratio is suppressed, and the exhaust purification performance can be improved.

【0040】[0040]

【発明の効果】以上説明してきたように本発明によれ
ば、排気浄化触媒上流側の空燃比センサのリッチ側出力
値が低下すると共に応答性が低下するという複合的な劣
化を生じた場合には排気浄化触媒下流側の空燃比センサ
に基づいて設定される第2の空燃比補正量の値を変更す
ることによって空燃比のリッチ化を抑制でき排気浄化性
能を改善できるものである。
As described above, according to the present invention, in the case of a composite deterioration in which the rich-side output value of the air-fuel ratio sensor upstream of the exhaust purification catalyst decreases and the responsiveness also decreases. Is capable of suppressing the enrichment of the air-fuel ratio and improving the exhaust purification performance by changing the value of the second air-fuel ratio correction amount set based on the air-fuel ratio sensor on the downstream side of the exhaust purification catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】 本発明の一実施例のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.

【図3】 同上実施例の燃料噴射量設定ルーチンを示す
フローチャート。
FIG. 3 is a flowchart showing a fuel injection amount setting routine of the above embodiment.

【図4】 同じく空燃比フィードバック補正係数設定ル
ーチンを示すフローチャート。
FIG. 4 is a flowchart showing an air-fuel ratio feedback correction coefficient setting routine.

【図5】 同じく第2の空燃比補正量設定ルーチンを示
すフローチャート。
FIG. 5 is a flowchart showing a second air-fuel ratio correction amount setting routine.

【図6】 同じく第2の空燃比センサの劣化診断ルーチ
ンを示すフローチャート。
FIG. 6 is a flow chart showing a deterioration diagnosis routine of the second air-fuel ratio sensor.

【図7】 排気浄化触媒の浄化効率と上流側空燃比セン
サの劣化との関係を示す図。
FIG. 7 is a diagram showing a relationship between purification efficiency of an exhaust purification catalyst and deterioration of an upstream air-fuel ratio sensor.

【図8】 同じく排気浄化触媒の浄化効率及び空燃比と
上流側空燃比センサの劣化との関係を示す図。
FIG. 8 is a diagram showing a relationship between the purification efficiency and the air-fuel ratio of the exhaust purification catalyst and the deterioration of the upstream side air-fuel ratio sensor.

【符号の説明】[Explanation of symbols]

11 機関 16 コントロールユニット 18 排気通路 19 第1の空燃比センサ 20 三元触媒 21 第2の空燃比センサ 11 engine 16 control unit 18 exhaust passage 19 first air-fuel ratio sensor 20 three-way catalyst 21 second air-fuel ratio sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機関の排気通路に備えられた排気浄化触
媒の上流側及び下流側に夫々設けられ、空燃比によって
変化する排気中特定気体成分の濃度比に感応して出力値
が変化する第1及び第2の空燃比検出手段と、 前記第1の空燃比検出手段の出力値に応じて第1の空燃
比補正量を演算する第1の空燃比補正量演算手段と、 前記第2の空燃比検出手段の出力値に応じて前記第1の
空燃比補正量を補正する第2の空燃比補正量を演算する
第2の空燃比補正量演算手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 前記空燃比補正量演算手段で演算された空燃比補正量に
基づいて空燃比制御量を補正して設定する空燃比制御量
設定手段と、 を含んで構成される内燃機関の空燃比制御装置におい
て、 前記第1の空燃比補正量の値に基づいて第1の空燃比検
出手段のリッチ側出力値及び応答性の劣化を診断する劣
化診断手段と、 前記異常診断手段により、第1の空燃比検出手段が劣化
していると診断されたときに前記第2の空燃比補正量を
空燃比のリッチ化制御を抑制する方向に修正する第2の
空燃比補正量修正手段と、 を備えて構成したことを特徴とする内燃機関の空燃比制
御装置。
1. An output value changing in response to a concentration ratio of a specific gas component in exhaust gas, which is provided upstream and downstream of an exhaust purification catalyst provided in an exhaust passage of an engine, and which changes in response to a concentration ratio of a specific gas component in exhaust gas that changes according to an air-fuel ratio. First and second air-fuel ratio detection means, first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to an output value of the first air-fuel ratio detection means, and the second Second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount for correcting the first air-fuel ratio correction amount according to the output value of the air-fuel ratio detection device; and the first air-fuel ratio correction amount. And an air-fuel ratio correction amount calculating means for calculating a final air-fuel ratio correction amount based on the second air-fuel ratio correction amount, and an air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculating means. And an air-fuel ratio control amount setting means for correcting and setting the air-fuel ratio control amount. In an air-fuel ratio control device for an engine, deterioration diagnosis means for diagnosing the rich side output value and responsiveness deterioration of the first air-fuel ratio detection means based on the value of the first air-fuel ratio correction amount, and the abnormality diagnosis means. As a result, when it is diagnosed that the first air-fuel ratio detecting means is deteriorated, the second air-fuel ratio correction amount is corrected to correct the second air-fuel ratio correction amount in a direction of suppressing the enrichment control of the air-fuel ratio. An air-fuel ratio control device for an internal combustion engine, comprising:
JP13727393A 1993-06-08 1993-06-08 Air-fuel ratio control device for internal combustion engine Pending JPH06346775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13727393A JPH06346775A (en) 1993-06-08 1993-06-08 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13727393A JPH06346775A (en) 1993-06-08 1993-06-08 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06346775A true JPH06346775A (en) 1994-12-20

Family

ID=15194824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13727393A Pending JPH06346775A (en) 1993-06-08 1993-06-08 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06346775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520274B2 (en) 2004-06-29 2009-04-21 Toyota Jidosha Kabushiki Kaisha Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520274B2 (en) 2004-06-29 2009-04-21 Toyota Jidosha Kabushiki Kaisha Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine

Similar Documents

Publication Publication Date Title
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JPH0821283A (en) Air-fuel ratio control device for internal combustion engine
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP2946379B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2623926B2 (en) Catalytic converter device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JPH06346775A (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JP3601210B2 (en) Engine air-fuel ratio control device
JP2737483B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06200809A (en) Air-fuel ratio control device of internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08303234A (en) Device for diagnosing catalyst deterioration in internal combustion engine
JP3922893B2 (en) Engine air-fuel ratio control device
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine