JPH0417749A - Air-fuel ratio control system of internal combustion engine - Google Patents

Air-fuel ratio control system of internal combustion engine

Info

Publication number
JPH0417749A
JPH0417749A JP11589090A JP11589090A JPH0417749A JP H0417749 A JPH0417749 A JP H0417749A JP 11589090 A JP11589090 A JP 11589090A JP 11589090 A JP11589090 A JP 11589090A JP H0417749 A JPH0417749 A JP H0417749A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
value
learning
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11589090A
Other languages
Japanese (ja)
Other versions
JPH0833133B2 (en
Inventor
Junichi Furuya
純一 古屋
Seiichi Otani
大谷 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP11589090A priority Critical patent/JPH0833133B2/en
Publication of JPH0417749A publication Critical patent/JPH0417749A/en
Publication of JPH0833133B2 publication Critical patent/JPH0833133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the shift of air-fuel ratio due to correction so as to carry out air-fuel ratio control with accuracy by providing first and second air-fuel ratio sensors on the upper and lower sides of the emission purifying catalyst of an exhaust passage, respectively, and inhibiting calculation of the amount of correction of second air-fuel ratio until the degree of the progress of learning process exceeds a predetermined level. CONSTITUTION:From a learning correction value storage means which stores the learning correction value of the amount of correction of air-fuel ratio at each driving area, a renewing means for the learning correction value retrives the learning correction value of the driving area corresponding to the storage means. Next, a new learning correction value is set in order to cause the average value of the amounts of correction of air-fuel ratio to converge to a predetermined value according to the learning correcting value and the final amount of correction of air-fuel ratio, and also the learning correction value of the driving area corresponding to the learning correction value storage means is renewed by the learning correction value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、特
に空燃比センサを排気浄化触媒の上流側及び下流側に備
え、これら2つの空燃比センサの検出値に基づいて空燃
比を高精度にフィードハンり制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, an air-fuel ratio sensor is provided on the upstream side and downstream side of an exhaust purification catalyst. The present invention relates to a device that performs feed-han control of an air-fuel ratio with high accuracy based on a detected value of a fuel ratio sensor.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。
<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空気量に対
応する基本燃料供給量TP  (−K・Q/N 、には
定数)を演算し、この基本燃料供給量T、を機関温度等
により補正したものを排気中酸素濃度の検出によって混
合気の空燃比を検出する空燃比センサ(酸素センサ)か
らの信号によって設定される空燃比フィードバック補正
係数(空燃比補正りを用いてフィードバック補正を施し
、バッテリ電圧による補正等をも行って最終的に燃料供
給量T1を設定する。
To give an overview of this, the intake air flow rate Q and rotational speed N of the engine are detected and the basic fuel supply amount TP (-K・Q/N, is a constant) corresponding to the amount of air taken into the cylinder is calculated. Then, this basic fuel supply amount T, corrected by engine temperature, etc., is used as air-fuel ratio feedback, which is set by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. Feedback correction is performed using a correction coefficient (air-fuel ratio correction), and correction based on battery voltage is also performed to finally set the fuel supply amount T1.

そして、このようにして設定された燃料供給量T1に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。
Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T1 thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine.

上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCo、HC(炭化水素)を酸化すると共にN O
xを還元して浄化する排気浄化触媒(三元触媒)の転化
効率(浄化効率)が理論空燃比燃焼時の排気状態で有効
に機能するように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes Co and HC (hydrocarbons) in the exhaust, as well as NO
This is because the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies x is set to function effectively in the exhaust state during combustion at the stoichiometric air-fuel ratio.

前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で急変する特性を有しており、この出力電圧V
0と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比が理論空燃比に対してリッ
チかリーンかを判定する。そして、例えば空燃比がリー
ン(リッチ)の場合には、前記基本燃料供給量T、に乗
しるフィードバック補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数■ずつ徐々に増大(減少)していき燃料供
給量T1を増量(減量)補正することで空燃比を理論空
燃比近傍に制御する。
As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic that it changes suddenly near the stoichiometric air-fuel ratio, and this output voltage V
0 and the reference voltage (slice level) SL equivalent to the stoichiometric air-fuel ratio
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. For example, when the air-fuel ratio is lean (rich), the feedback correction coefficient α multiplied by the basic fuel supply amount T is increased (decreased) by a large proportionality constant P the first time the air-fuel ratio is changed to lean (rich). Thereafter, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by gradually increasing (decreasing) the fuel supply amount T1 by a predetermined integral constant (■).

また、かかる空燃比制御装置にあっては、空燃比の非フ
イードバツク制御領域での空燃比の目標値からのずれ或
いはフィードバック制御中の運転領域が移動する過渡運
転時における理論空燃比からのずれを抑制するため、空
燃比フィードパ・ンク制御時に所定の定常運転条件で空
燃比フィードバック補正係数αの平均値を基準値に近づ
けるように学習補正値に1を設定して学習制御を行うこ
とが一般化してきている。
In addition, in such an air-fuel ratio control device, deviations from the target value of the air-fuel ratio in a non-feedback control region of the air-fuel ratio or deviations from the stoichiometric air-fuel ratio during transient operation when the operating region moves during feedback control are controlled. In order to suppress this, it is common practice to perform learning control by setting the learning correction value to 1 so that the average value of the air-fuel ratio feedback correction coefficient α approaches the reference value under predetermined steady-state operating conditions during air-fuel ratio feed pump/puncture control. I've been doing it.

ところで、上記のような通常の空燃比フィードバック制
御装置では1個の空燃比センサを応答性を高めるため、
できるだけ燃焼室に近い排気マニホールドの集合部分に
設けているが、この部分は排気温度が高いため空燃比セ
ンサが熱的影響や劣化により特性が変化し易く、また、
気筒毎の排気の混合が不十分であるため金気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難があり、
延いては空燃比制御精度を悪(していた。
By the way, in the above-mentioned normal air-fuel ratio feedback control device, one air-fuel ratio sensor is used to improve responsiveness.
It is installed in the gathering part of the exhaust manifold as close as possible to the combustion chamber, but since the exhaust temperature in this part is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is insufficiently mixed, it is difficult to detect the average air-fuel ratio of the gold cylinder, and the air-fuel ratio detection accuracy is difficult.
As a result, the accuracy of air-fuel ratio control was poor.

この点に鑑み、排気浄化触媒の下流側にも空燃比セ゛/
すを設け、2つの空燃比センサの検出値を用いて空燃比
をフィードバック制御するものが提案されている(特開
昭58−48756号公報参照)。
In view of this, air-fuel ratio control is also performed on the downstream side of the exhaust purification catalyst.
A system has been proposed in which the air-fuel ratio is feedback-controlled using the detected values of two air-fuel ratio sensors (see Japanese Patent Laid-Open No. 58-48756).

即ち、下流側の空燃比センサは燃焼室から離れでいるた
め応答性には難があるが、排気浄化触媒の下流であるた
め、排気成分(Co、HC,N0xCo2)のばらつき
による特性のばらつきを生しにくく、排気中の毒性成分
による被毒量が少ないため被毒による特性変化も受けに
くく、しがち排気の混合状態がよいため金気筒の平均的
な空燃比を検出できる等上流側の空燃比センサに比較し
て、高精度で安定した検出性能が得られる。
In other words, the air-fuel ratio sensor on the downstream side has difficulty in responsiveness because it is located far from the combustion chamber, but since it is downstream of the exhaust purification catalyst, it can eliminate variations in characteristics due to variations in exhaust components (Co, HC, NOxCo2). Because the amount of poisoning caused by toxic components in the exhaust gas is small, the characteristics are less likely to change due to poisoning. Compared to fuel ratio sensors, highly accurate and stable detection performance can be obtained.

そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バック補正係数を組み合わせたり、或いは上流側の空燃
比センサにより設定される空燃比フィードハ・ツク補正
係数の制御定数(比例骨や積分分)、上流側の空燃比セ
ンサの出力電圧の比較電圧や遅延時間を補正すること等
によって上流側空燃比センサの出力特性のばらつきを下
流側の空燃比センサによって補償して高精度な空燃比フ
ィードバック制御を行うようにしている。
Therefore, it is possible to combine two air-fuel ratio feedback correction coefficients that are respectively set by calculations similar to those described above based on the detected values of the two air-fuel ratio sensors, or to use an air-fuel ratio feedback correction coefficient that is set by an upstream air-fuel ratio sensor. Variations in the output characteristics of the upstream air-fuel ratio sensor can be corrected by correcting the coefficient control constant (proportional bone or integral), comparison voltage of the output voltage of the upstream air-fuel ratio sensor, and delay time. The air-fuel ratio feedback control is performed with high accuracy.

また、このものにおいても前述の空燃比フィードバック
補正係数の学習を、2個の空燃比センサを備えた空燃比
制御装置においても、実行したものが例えば特開昭62
−60965号等に開示されている。
Moreover, in this device, the above-mentioned learning of the air-fuel ratio feedback correction coefficient is also performed in an air-fuel ratio control device equipped with two air-fuel ratio sensors, for example, in Japanese Patent Laid-Open No. 62
-60965 etc.

〈発明が解決しようとする課題〉 しかしながら、上記のように空燃比センサを2個備えた
もので空燃比補正量としての空燃比フィードバンク補正
係数を学習するものでは、かかる学習が進行しない間、
つまり空燃比フィードパ・ンク補正係数の平均値が所定
値に収束せず、運転領域間の学習のばらつきが大きく段
差がある間に下流側の空燃比センサによる空燃比補正を
行うと、該補正量は、学習が十分に進行した場合とは大
幅に異なる値となり、この間の補正は信頬性がない。
<Problem to be Solved by the Invention> However, in the device equipped with two air-fuel ratio sensors as described above, which learns the air-fuel ratio feed bank correction coefficient as the air-fuel ratio correction amount, while such learning is not progressing,
In other words, if the average value of the air-fuel ratio feed puncture correction coefficient does not converge to a predetermined value and the air-fuel ratio correction is performed by the downstream air-fuel ratio sensor while there is a large variation in learning between operating regions and there are steps, the correction amount is a value that is significantly different from that when learning has progressed sufficiently, and the correction during this period is not reliable.

特に、下流側の空燃比センサの反転周期は上流側の空燃
比センサの反転周期に対して大幅に遅いため、学習が進
行した後も下流側の空燃比センサによる空燃比補正量は
所定値に収束せず、補正により却って排気エミッション
特性を悪化させていた。
In particular, the reversal period of the downstream air-fuel ratio sensor is much slower than that of the upstream air-fuel ratio sensor, so even after learning has progressed, the air-fuel ratio correction amount by the downstream air-fuel ratio sensor remains at the predetermined value. It did not converge, and the correction actually worsened the exhaust emission characteristics.

本発明は、このような従来の問題点に鑑みなされたもの
で、排気浄化触媒の上流及び下流に空燃比センサを備え
た内燃機関の空燃比制御装置において、学習の進行度に
応した空燃比補正を行うことにより上記問題点を解決し
た内燃機関の空燃比制御装置を提供することを目的とす
る。
The present invention has been made in view of such conventional problems, and is an air-fuel ratio control device for an internal combustion engine that is equipped with air-fuel ratio sensors upstream and downstream of an exhaust purification catalyst. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that solves the above problems by performing correction.

く課題を解決するための手段〉 このため本発明は第1図に示すように、機関の排気通路
に備えられた排気浄化触媒の上流側及び下流側に夫々設
けられ、空燃比によって変化する排気中特定気体成分の
濃度比に感応じて出力値が変化する第1及び第2の空燃
比センサと、前記第1の空燃比センサの出力値に応じて
第1の空燃比補正量を演算する第1の空燃比補正量演算
手段と、 前記第2の空燃比センサの出力値に応じて第2の空燃比
補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量及び第2の空燃比補正量に基づ
いて最終的な空燃比補正量を演算する空燃比補正量演算
手段と、 空燃比補正量の学習補正値を運転領域毎に記憶する学習
補正値記憶手段と、 前記学習補正値記憶手段から検索した学習補正値と前記
最終的な空燃比補正量とに基づいて該空燃比補正量の平
均値を所定値に収束させるように新たな学習補正値を設
定すると共に、該学習補正値で前記学習補正値記憶手段
の対応する運転領域の学習補正値を更新する学習補正値
更新手段と、を備えた内燃機関の空燃比制御装置におい
て、前記学習補正値更新手段により空燃比補正量を所定
値に近づける学習の進行度を判定する学習進行度判定手
段と、 前記学習進行度が所定以上となるまでの間、第2の空燃
比補正量演算手段による第2の空燃比補正量の演算を禁
止させる第2の空燃比補正量演算禁止手段と、を備えて
構成した。
Means for Solving the Problems> For this reason, as shown in FIG. calculating a first air-fuel ratio correction amount according to the output value of first and second air-fuel ratio sensors whose output value changes depending on the concentration ratio of the middle specific gas component; and the first air-fuel ratio sensor. a first air-fuel ratio correction amount calculation means; a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount according to an output value of the second air-fuel ratio sensor; an air-fuel ratio correction amount calculating means that calculates a final air-fuel ratio correction amount based on the fuel ratio correction amount and the second air-fuel ratio correction amount; and a learning correction value that stores a learning correction value of the air-fuel ratio correction amount for each driving region. storage means; a new learning correction value so as to converge the average value of the air-fuel ratio correction amount to a predetermined value based on the learning correction value retrieved from the learning correction value storage means and the final air-fuel ratio correction amount; and learning correction value updating means for updating a learning correction value of a corresponding operating region in the learning correction value storage means with the learning correction value. learning progress determining means for determining the degree of progress of learning to bring the air-fuel ratio correction amount closer to a predetermined value by the value updating means; and a second air-fuel ratio correction amount calculating means until the learning progress reaches the predetermined value. and a second air-fuel ratio correction amount calculation prohibiting means for prohibiting calculation of the second air-fuel ratio correction amount.

〈作用〉 第1の空燃比補正量演算手段は、第1の空燃比センサか
らの検出値に基づいて、第1の空燃比補正量を設定し、
第2の空燃比補正量演算手段は、学習進行度判定手段に
より学習進行度が所定以上となった後に第2の空燃比セ
ンサからの検出値に基づいて、第2の空燃比補正量を設
定する。
<Operation> The first air-fuel ratio correction amount calculation means sets the first air-fuel ratio correction amount based on the detected value from the first air-fuel ratio sensor,
The second air-fuel ratio correction amount calculation means sets a second air-fuel ratio correction amount based on the detected value from the second air-fuel ratio sensor after the learning progress reaches a predetermined level by the learning progress determining means. do.

そして空燃比補正量演算手段は、第1の空燃比補正量及
び第2の空燃比補正量に基づいて最終的な空燃比補正量
を演算する。
The air-fuel ratio correction amount calculation means calculates the final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount.

一方、学習補正値更新手段は、空燃比補正量の学習補正
値を運転領域毎に記憶した学習補正値記憶手段から、対
応した運転領域の学習補正値を検索し、該学習補正値と
前記最終的な空燃比補正量とに基づいて該空燃比補正量
の平均値を所定値に収束させるように新たな学習補正値
を設定すると共に、該学習補正値で前記学習補正値記憶
手段の対応する運転領域の学習補正値を更新する。
On the other hand, the learning correction value updating means searches the learning correction value of the corresponding operating region from the learning correction value storage means storing the learning correction value of the air-fuel ratio correction amount for each operating region, and combines the learning correction value with the final learning correction value. A new learning correction value is set so that the average value of the air-fuel ratio correction amount converges to a predetermined value based on the air-fuel ratio correction amount, and the learning correction value is used to set the corresponding learning correction value storage means. Update the learning correction value of the driving area.

但し、学習判定手段により判定される学習の進行度が所
定以上となるまでの間は、第2の空燃比補正量演算禁止
手段により、第2の空燃比補正量演算手段による第2の
空燃比補正量の演算が禁止される。
However, until the degree of progress of learning determined by the learning determining means reaches a predetermined level or more, the second air-fuel ratio correction amount calculation inhibiting means prohibits the second air-fuel ratio by the second air-fuel ratio correction amount calculating means. Calculation of the correction amount is prohibited.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に電磁式の燃料噴射弁15が設けられる。
In FIG. 2 showing the configuration of one embodiment, an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. , an electromagnetic fuel injection valve 15 is provided for each cylinder in the downstream manifold portion.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ンシャレギュレータにより所定圧力に制御された燃料を
噴射供給する。更に、機関11の冷却ジャケット内の冷
却水温度Twを検出する水温センサ17が設けられる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 11.

一方、排気通路工8にはマニホールド集合部に排気中酸
素濃度を検出することによって吸入混合気の空燃比を検
出する第1の空燃比センサ19が設けられ、その下流側
の排気管に排気中のCo、HCの酸化とNOXの還元を
行って浄化する排気浄化触媒としての三元触媒20が設
けられ、更に該三元触媒20の下流側に第1空燃比セン
サと同一の機能を持つ第2の空燃比センサ21が設けら
れる。
On the other hand, the exhaust passagework 8 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas in the manifold gathering part, and the exhaust gas in the exhaust pipe on the downstream side thereof. A three-way catalyst 20 is provided as an exhaust purification catalyst that performs oxidation of Co and HC and reduction of NOx. Two air-fuel ratio sensors 21 are provided.

また、第2図で図示しないディストリビュータには、ク
ランク角センサ22が内蔵されており、該クランク角セ
ンサ22から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。
Further, the distributor (not shown in FIG. 2) has a built-in crank angle sensor 22, and a crank angle signal outputted from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10us)毎に行われる。
Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed at predetermined intervals (for example, every 10 us).

ステップ(図ではSと記す)1では、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ22からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。このステップ
1の機能が基本燃料供給量設定手段に相当する。
In step (denoted as S in the figure) 1, the intake air amount per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 22. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation. The function of step 1 corresponds to basic fuel supply amount setting means.

T、=KxQ/N   (Kは定数) ステップ2では、水温センサ17によって検出された冷
却水温度Tw等に基づいて各種補正係数C0EFを設定
する。
T,=KxQ/N (K is a constant) In step 2, various correction coefficients C0EF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.

ステップ3では、後述する空燃比フィードバンク補正係
数設定ルーチンにより設定された空燃比フィードバック
補正係数α及び該空燃比フィードバンク補正係数αの後
述する学習補正係数に2を機関回転数Nと基本燃料噴射
量T、とに基づいてRAMの対応する運転領域から検索
して読み込む。
In step 3, the air-fuel ratio feedback correction coefficient α set by the air-fuel ratio feedbank correction coefficient setting routine to be described later and the learning correction coefficient to be described later are set to 2 for the engine speed N and the basic fuel injection. Based on the amount T, the corresponding operating area of the RAM is searched and read.

ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.

ステップ5では、最終的な燃料噴射IC燃料供給量)T
+を次式に従って演算する。このステップ5の機能が燃
料供給量設定手段に相当する。
In step 5, the final fuel injection IC fuel supply amount) T
+ is calculated according to the following formula. The function of step 5 corresponds to fuel supply amount setting means.

T+ =TF XC0EF ×rx×Kl+Tsステッ
プ6では、演算された燃料噴射弁T、を出力用レジスタ
にセットする。
T+=TF

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T1のパルス巾
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射が行われる。
As a result, at a predetermined fuel injection timing synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount T1 is applied to the fuel injection valve 15 to perform fuel injection.

次に、空燃比フィードバック補正係数設定ルーチンを第
4図に従って説明する。このルーチンは機関回転に同期
して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be explained with reference to FIG. This routine is executed in synchronization with engine rotation.

ステップ10では、空燃比のフィードバック制御を行う
運転条件であるか否かを判定する。運転条件を満たして
いないときには、このルーチンを終了する。この場合、
フィードバック補正係数αは前回のフィードバック制御
終了時の値若しくは一定の基準値にクランプされ、フィ
ードバック制御は停止される。
In step 10, it is determined whether the operating conditions are such that feedback control of the air-fuel ratio is performed. If the operating conditions are not met, this routine ends. in this case,
The feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップ1】では、第1の空燃比センサ19がらの信号
電圧■。2及び第2の空燃比センサ21からの信号電圧
V’02を入力する。
In step 1], the signal voltage ■ from the first air-fuel ratio sensor 19 is determined. 2 and the signal voltage V'02 from the second air-fuel ratio sensor 21 are input.

ステップ12では、ステップ10で入力した第1の空燃
比センサ19の信号電圧■。2と目標空燃比(理論空燃
比)相当の基準値SLとを比較する。
In step 12, the signal voltage ■ of the first air-fuel ratio sensor 19 input in step 10 is determined. 2 and a reference value SL equivalent to the target air-fuel ratio (stoichiometric air-fuel ratio).

そして、V oz > S Lであるとき、即ち、リッ
チと判定された時には、更にステップ13へ進み、リー
ン→リッチの反転直後か否かを判定する。
Then, when V oz > S L, that is, when it is determined that the engine is rich, the process further advances to step 13, and it is determined whether or not it has just been inverted from lean to rich.

反転時にはステップ14へ進んで、空燃比フィードバッ
ク補正係数αの現在値α。と前回の第1の空燃比センサ
19の出力反転時の値α−1(比例骨Pt付与前の値)
との平均値αやを演算する。
At the time of reversal, the process proceeds to step 14, where the current value α of the air-fuel ratio feedback correction coefficient α is determined. and the value α-1 at the time of the previous output reversal of the first air-fuel ratio sensor 19 (value before proportional bone Pt is applied)
Calculate the average value α.

ステップ15では、前記平均値α8と所定値α。In step 15, the average value α8 and the predetermined value α.

との偏差Δαの絶対値を正の基準値Δα。と比較する。The absolute value of the deviation Δα from the positive reference value Δα. Compare with.

ここで、前記所定値α。は、後述する空燃比フィードバ
ック補正係数αの学習が十分に進行した場合に空燃比フ
ィードバック補正係数αが収束する値であり、換言すれ
ば空燃比フィードバック補正係数αをこの値α。にクラ
ンプした時に目標空燃比(理論空燃比)が得られる値に
設定されている。
Here, the predetermined value α. is a value at which the air-fuel ratio feedback correction coefficient α converges when learning of the air-fuel ratio feedback correction coefficient α, which will be described later, has progressed sufficiently; in other words, the air-fuel ratio feedback correction coefficient α is set to this value α. The target air-fuel ratio (stoichiometric air-fuel ratio) is set to a value that can be obtained when the air-fuel ratio is clamped.

そして、1Δα]≦Δα。となって学習が十分に進行し
たと判定された時には、ステップ16に進み、第2の空
燃比センサ21からの信号電圧v’o2と目標空燃比(
理論空燃比)相当の基準値SLとを比較する。
and 1Δα]≦Δα. When it is determined that the learning has progressed sufficiently, the process proceeds to step 16, where the signal voltage v'o2 from the second air-fuel ratio sensor 21 and the target air-fuel ratio (
Compare with the standard value SL corresponding to the stoichiometric air-fuel ratio.

そして空燃比がリッチ(V″oz>SL)と判定された
ときにはステップ17へ進んで空燃比フィードバック補
正係数α設定用の反転時に与える比例骨Pを補正するた
めの第2の空燃比補正量P HOSを現在値P)IO5
−、から所定量Δ叶HOS引いた値で更新した後ステッ
プ18へ進み、比例骨PRの基準値PROから前記第2
の空燃比補正量P HOSを減少した値で更新してから
ステップ21へ進む。
When the air-fuel ratio is determined to be rich (V″oz>SL), the process proceeds to step 17, where a second air-fuel ratio correction amount P is determined to correct the proportional bone P given at the time of reversal for setting the air-fuel ratio feedback correction coefficient α. HOS to current value P) IO5
After updating the value by subtracting the predetermined amount ΔKo HOS from -, the process proceeds to step 18, and the second
After updating the air-fuel ratio correction amount PHOS with a decreased value, the process proceeds to step 21.

また、空燃比がリーン(V”。2<SL、)と判定され
たときにはステップ19へ進んで第2の空燃比補正量P
 HOSを現在値PH05−、に所定量Δ叶HO5加え
た値で更新した後ステップ2oへ進み、比例骨P、の基
準値ptoに前記第2の空燃比補正量P HOSを増加
した値で更新してからステップ21へ進む。
Further, when it is determined that the air-fuel ratio is lean (V".2<SL,), the process proceeds to step 19 and the second air-fuel ratio correction amount P is determined.
After updating HOS with a value obtained by adding a predetermined amount ΔKo HO5 to the current value PH05-, proceed to step 2o, and update with a value obtained by increasing the second air-fuel ratio correction amount P HOS to the reference value pto of the proportional bone P. Then proceed to step 21.

一方、ステップ15で、1Δα1〉Δα。と判定された
時には、未だ十分に空燃比フィードバック補正係数αの
学習が進行していないため、第2の空燃比補正量P H
OSによる比例骨P、lの補正を行うことなく、ステッ
プ21へ進む。
On the other hand, in step 15, 1Δα1>Δα. When it is determined that the learning of the air-fuel ratio feedback correction coefficient α has not progressed sufficiently, the second air-fuel ratio correction amount P H
The process proceeds to step 21 without correcting the proportional bones P and l by the OS.

ステップ21では、空燃比フィードバンク補正係数αを
現在値から前記比例骨PRを滅した値で更新する。
In step 21, the air-fuel ratio feedbank correction coefficient α is updated to a value obtained by subtracting the proportional bone PR from the current value.

このようにして、空燃比フィードバック補正係数αを設
定した後、ステップ22へ進み、次のようにして空燃比
フィードバック補正係数αの学習補正係数に2を設定更
新する。まづ、機関回転数Nと基本燃料噴射量T、とか
らRAMのマツプに記憶された対応する運転領域の学習
補正係数(空燃比補正量の学習補正値)Kfを検索し、
次式に従って検索された現在の学習補正係数Kfに前記
偏差Δαを所定割合加算することによって新たな学習補
正係数Klを演算し、同一領域の学習補正係数に!のデ
ータを修正して書き換える。即ち、学習補正係数Kff
iを記憶したRAMが学習補正値記憶手段に相当し、ス
テップ22の機能が学習補正値更新手段に相当する。
After setting the air-fuel ratio feedback correction coefficient α in this way, the process proceeds to step 22, and the learning correction coefficient of the air-fuel ratio feedback correction coefficient α is set and updated to 2 in the following manner. First, the learning correction coefficient (learning correction value of the air-fuel ratio correction amount) Kf of the corresponding operating region stored in the map of the RAM is searched from the engine speed N and the basic fuel injection amount T.
A new learning correction coefficient Kl is calculated by adding a predetermined proportion of the deviation Δα to the current learning correction coefficient Kf retrieved according to the following formula, and becomes the learning correction coefficient for the same area! Correct and rewrite the data. That is, the learning correction coefficient Kff
The RAM that stores i corresponds to learning correction value storage means, and the function of step 22 corresponds to learning correction value updating means.

K!←に!−Δα/M (Mは定数で、M〉1) 又、ステップ13でリッチであるが反転直後でないと判
定された時にはステップ23へ進み、空燃比フィートハ
ック補正係数αを現在値から積分分Iを滅した値で更新
する。
K! ← to! -Δα/M (M is a constant, M>1) Also, when it is determined in step 13 that the condition is rich but not immediately after the inversion, the process proceeds to step 23, and the air-fuel ratio foot hack correction coefficient α is calculated by integrating I from the current value. Update with the deleted value.

一方、ステップ12で■。2<SLと判定されたとき、
即ち、リーンと判定された時には、ステップ24へ進み
、リンチーリーンの反転直後か否かを判定し、反転時に
はステップ25へ進んで、ステップ14と同様にして平
均値αイを演算し、ステップ26でステップ15同様偏
差Δαの絶対値を正の基準値Δα。と比較する。
Meanwhile, ■ in step 12. When it is determined that 2<SL,
That is, when it is determined that the lean state is determined, the process proceeds to step 24, and it is determined whether or not the lynch lean has just been reversed, and when it is reversed, the process proceeds to step 25, where the average value αi is calculated in the same manner as in step 14, and step 26 As in step 15, the absolute value of the deviation Δα is set to a positive reference value Δα. Compare with.

そして、同様にjΔα;≦Δα。となって学習が十分に
進行したと判定された時にはステップ27に進み、第2
の空燃比センサ21の信号電圧電圧V°。2と基準値S
Lとを比較し、リッチ判定時はステップ28へ進んで第
2の空燃比補正量P HOSを所定量ΔDPHO5滅し
た値で更新した後、ステップ29へ進んで比例骨P8を
基準値PROから第2の空燃比補正量P )105を減
少した値で更新し、リーン判定時はステップ30へ進ん
で第2の空燃比補正量P HOSを所定量へ〇PH05
加算した値で更新した後ステップ31へ進み、比例骨P
Lを基準値Ptoに第2の空燃比補正量P HOSを増
加した値で更新してからステップ32へ進む。
Similarly, jΔα; ≦Δα. When it is determined that the learning has progressed sufficiently, the process proceeds to step 27, and the second
The signal voltage voltage V° of the air-fuel ratio sensor 21. 2 and standard value S
When it is determined to be rich, the process proceeds to step 28 and updates the second air-fuel ratio correction amount PHOS with a value obtained by decrementing the predetermined amount ΔDPHO5, and then proceeds to step 29 to change the proportional bone P8 from the reference value PRO. Update the second air-fuel ratio correction amount P)105 with a decreased value, and when determining lean, proceed to step 30 and set the second air-fuel ratio correction amount PHOS to a predetermined amount 〇PH05
After updating with the added value, proceed to step 31 and calculate the proportional bone P.
After updating L to the reference value Pto by increasing the second air-fuel ratio correction amount PHOS, the process proceeds to step 32.

ステップ32で空燃比フィードバック補正係数αを現在
値に前記比例骨P、を増加した値で更新した後、ステッ
プ22へ進んで前記学習補正係数に!を更新設定する。
In step 32, the air-fuel ratio feedback correction coefficient α is updated to the current value, and the proportional bone P is updated with the increased value, and then the process proceeds to step 22 to update the learning correction coefficient! Update settings.

又、ステップ24で反転直後でないと判定された時には
ステップ33へ進み、空燃比フィードバンク補正係数α
を現在値に積分分Iを増加した値で更新する。
Further, when it is determined in step 24 that it is not immediately after reversal, the process proceeds to step 33, and the air-fuel ratio feed bank correction coefficient α
is updated to the current value by increasing the integral I.

かかる構成とすれば、空燃比フィードバック補正係数α
の学習が十分に進行していない間は、第2の空燃比補正
量P HOSによる比例骨PR,PLの補正演算が禁止
されるため誤補正による空燃比のずれを防止でき、良好
な空燃比フィードハック制御を維持できる。
With such a configuration, the air-fuel ratio feedback correction coefficient α
While learning has not progressed sufficiently, the correction calculation of the proportional bones PR and PL using the second air-fuel ratio correction amount PHOS is prohibited, which prevents air-fuel ratio deviations due to incorrect correction and maintains a good air-fuel ratio. Feedhack control can be maintained.

尚、本実施例では第1の空燃比センサ19の検出値に基
づく空燃比フィードバック制御を基調としつつ、その空
燃比フィードバック補正係数の比例骨を第2の空燃比セ
ンサの検出値に基づいて補正するものに通用した例を示
したが、これに限らず夫々の空燃比センサによって空燃
比フィードバンク補正係数を設定し、双方の値を合成し
て得た空燃比フィードバック補正係数を使用したり、第
1の空燃比センサによる空燃比フィードバック制御を行
いつつ、リッチ、リーン判定の基準値SLや出力遅延時
間を第2の空燃比センサの検出で補正したりするような
ものにも適用できる。
In this embodiment, while air-fuel ratio feedback control is based on the detected value of the first air-fuel ratio sensor 19, the proportionality of the air-fuel ratio feedback correction coefficient is corrected based on the detected value of the second air-fuel ratio sensor. Although we have shown an example that is applicable to those that use the air-fuel ratio sensor, the present invention is not limited to this. The present invention can also be applied to a system in which the reference value SL for rich/lean determination and the output delay time are corrected by detection by the second air-fuel ratio sensor while performing air-fuel ratio feedback control by the first air-fuel ratio sensor.

また、第2の空燃比補正量P HOSについても機関回
転数Nと基本燃料噴射量T1等によって区分された運転
領域毎に記憶しておき(反転周期が長いため空燃比フィ
ードバック補正係数αの記憶領域よりは大まかに区分さ
れる)領域が変わると、記憶された値を初期値として更
新するような学習機能を持たせてもよい。更ムこ、第2
の空燃比補正量P HOSをそのままではなく、第2の
空燃比センサの反転毎に該反転時の補正量P HOSと
前回反転時の補正量P HOSとの平均値を演算し、且
つ該平均値と過去の平均値の加重平均値とを新たに加重
平均して学習補正値を設定するような構成としてもよい
。かかる第2の空燃比補正量の学習を行うものでは、空
燃比フィードバック補正係数αの学習が進行しないうち
は、第2の空燃比補正量の学習も当然に停止する。
In addition, the second air-fuel ratio correction amount P HOS is also stored for each operating region divided by engine speed N, basic fuel injection amount T1, etc. (Since the reversal period is long, the air-fuel ratio feedback correction coefficient α is stored. A learning function may be provided to update the stored value as an initial value when the area (which is more roughly divided than the area) changes. Saramuko, 2nd
Instead of using the air-fuel ratio correction amount P HOS as it is, each time the second air-fuel ratio sensor is reversed, the average value of the correction amount P HOS at the time of the reversal and the correction amount P HOS at the previous time of reversal is calculated, and the average value is calculated. The learning correction value may be set by newly calculating a weighted average of the value and a weighted average value of past average values. In such a device that performs learning of the second air-fuel ratio correction amount, learning of the second air-fuel ratio correction amount naturally also stops until learning of the air-fuel ratio feedback correction coefficient α is not progressed.

尚、ステップ17.19.28.30におけるP HO
Sの演算が第2の空燃比補正量演算手段に相当し、ステ
ップ18,20,29.31における比例骨の補正を除
きステップ21.23.32.33で空燃比フィードバ
ック補正係数αを演算する機能が第1の空燃比補正量演
算手段に相当し、ステップ15.26における比較の機
能が学習手段判定手段に相当する。
In addition, P HO at step 17.19.28.30
The calculation of S corresponds to the second air-fuel ratio correction amount calculating means, which calculates the air-fuel ratio feedback correction coefficient α in steps 21, 23, 32, and 33 except for the proportional bone correction in steps 18, 20, and 29.31. The function corresponds to the first air-fuel ratio correction amount calculating means, and the comparison function in step 15.26 corresponds to the learning means determining means.

また、学習進行度の判定は本実施例の方式に限られず、
例えば学習回数や学習が実行された領域数等によって判
定する方式としてもよい。
Furthermore, the method of determining the learning progress level is not limited to the method of this embodiment.
For example, a method may be adopted in which the determination is made based on the number of times of learning, the number of regions in which learning has been performed, or the like.

〈発明の効果〉 以上説明したように本発明によれば、排気浄化触媒の上
流側及び下流側に空燃比センサを備え、これら雨空燃比
センサの検出値に基づいて空燃比フィードバック制御を
行うものにおいて、空燃比補正量の学習が十分に進行し
ない間は第2の空燃比補正量の演算を禁止する構成とし
たため、誤補正による空燃比のずれ防止でき、十分学習
が進行した後に第2の空燃比補正量による補正を行うこ
とで可及的に精度の高い空燃比制御を実行できるもので
ある。
<Effects of the Invention> As explained above, according to the present invention, air-fuel ratio sensors are provided on the upstream and downstream sides of the exhaust purification catalyst, and air-fuel ratio feedback control is performed based on the detected values of these rain air-fuel ratio sensors. Since the calculation of the second air-fuel ratio correction amount is prohibited while the learning of the air-fuel ratio correction amount has not progressed sufficiently, it is possible to prevent deviations in the air-fuel ratio due to incorrect correction. By performing the correction using the fuel ratio correction amount, it is possible to execute air-fuel ratio control with as high precision as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同しく空燃比フィードバンク補正係数設定ルーチンを示
すフローチャートである。 11・・・内燃機関  12・・・吸気通路  15由
燃料噴射弁16・・・コントロールユニット  18・
・・排気通路 媒 19・・・第1の空燃比センサ 20・・・三元触 21・・・第2の空燃比センサ
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the fuel injection amount setting routine of the same embodiment, and FIG. It is a flowchart similarly showing an air-fuel ratio feedbank correction coefficient setting routine. 11... Internal combustion engine 12... Intake passage 15 Fuel injection valve 16... Control unit 18.
...Exhaust passage medium 19...First air-fuel ratio sensor 20...Three-way contact 21...Second air-fuel ratio sensor

Claims (1)

【特許請求の範囲】  機関の排気通路に備えられた排気浄化触媒の上流側及
び下流側に夫々設けられ、空燃比によって変化する排気
中特定気体成分の濃度比に感応して出力値が変化する第
1及び第2の空燃比センサと、前記第1の空燃比センサ
の出力値に応じて第1の空燃比補正量を演算する第1の
空燃比補正量演算手段と、 前記第2の空燃比センサの出力値に応じて第2の空燃比
補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量及び第2の空燃比補正量に基づ
いて最終的な空燃比補正量を演算する空燃比補正量演算
手段と、 空燃比補正量の学習補正値を運転領域毎に記憶する学習
補正値記憶手段と、 前記学習補正値記憶手段から検索した学習補正値と前記
最終的な空燃比補正量とに基づいて該空燃比補正量の平
均値を所定値に収束させるように新たな学習補正値を設
定すると共に、該学習補正値で前記学習補正値記憶手段
の対応する運転領域の学習補正値を更新する学習補正値
更新手段と、を備えた内燃機関の空燃比制御装置におい
て、前記学習補正値更新手段により空燃比補正量を所定
値に近づける学習の進行度を判定する学習進行度判定手
段と、 前記学習進行度が所定以上となるまでの間、第2の空燃
比補正量演算手段による第2の空燃比補正量の演算を禁
止させる第2の空燃比補正量演算禁止手段と、を備えて
構成したことを特徴とする内燃機関の空燃比制御装置。
[Claims] The catalyst is provided on the upstream and downstream sides of an exhaust purification catalyst provided in the exhaust passage of an engine, and its output value changes in response to the concentration ratio of a specific gas component in the exhaust gas, which changes depending on the air-fuel ratio. first and second air-fuel ratio sensors; first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to the output value of the first air-fuel ratio sensor; a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount according to the output value of the fuel ratio sensor; an air-fuel ratio correction amount calculation means for calculating an air-fuel ratio correction amount; a learning correction value storage means for storing a learning correction value of the air-fuel ratio correction amount for each driving region; and a learning correction value retrieved from the learning correction value storage means. and the final air-fuel ratio correction amount, a new learning correction value is set so that the average value of the air-fuel ratio correction amount converges to a predetermined value, and the learning correction value storage means uses the learning correction value. learning correction value updating means for updating a learning correction value of a corresponding operating region; and a second air-fuel ratio correction amount calculation means for prohibiting the second air-fuel ratio correction amount calculation means from calculating the second air-fuel ratio correction amount until the learning progress rate reaches a predetermined level or more. An air-fuel ratio control device for an internal combustion engine, comprising: means for inhibiting fuel ratio correction amount calculation.
JP11589090A 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JPH0833133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11589090A JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11589090A JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0417749A true JPH0417749A (en) 1992-01-22
JPH0833133B2 JPH0833133B2 (en) 1996-03-29

Family

ID=14673730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11589090A Expired - Fee Related JPH0833133B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706654A (en) * 1995-03-27 1998-01-13 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for an internal combustion engine
JP2009180145A (en) * 2008-01-30 2009-08-13 Toyota Motor Corp Air-fuel ratio control system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706654A (en) * 1995-03-27 1998-01-13 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for an internal combustion engine
JP2009180145A (en) * 2008-01-30 2009-08-13 Toyota Motor Corp Air-fuel ratio control system for internal combustion engine

Also Published As

Publication number Publication date
JPH0833133B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
JPH0326844A (en) Air-fuel ratio feedback correction device in fuel feed controller for internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04109047A (en) Air-fuel ratio control device for internal combustion engine
JPH0417749A (en) Air-fuel ratio control system of internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JPS62191641A (en) Learning control device for air-fuel ratio for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0417750A (en) Air-fuel ratio control system of internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0423099B2 (en)
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0461181B2 (en)
JPH0422725A (en) Air fuel ratio control device of internal combustion engine
JPH04124438A (en) Air fuel ratio control device for internal combustion engine
JPS61190141A (en) Learning control device of internal-combustion engine
JPH02176137A (en) Air-fuel ratio control device for internal combustion engine
JPH04101038A (en) Air/fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees