JPH04124438A - Air fuel ratio control device for internal combustion engine - Google Patents

Air fuel ratio control device for internal combustion engine

Info

Publication number
JPH04124438A
JPH04124438A JP24375890A JP24375890A JPH04124438A JP H04124438 A JPH04124438 A JP H04124438A JP 24375890 A JP24375890 A JP 24375890A JP 24375890 A JP24375890 A JP 24375890A JP H04124438 A JPH04124438 A JP H04124438A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
correction amount
amount
ratio correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24375890A
Other languages
Japanese (ja)
Inventor
Junichi Furuya
純一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP24375890A priority Critical patent/JPH04124438A/en
Publication of JPH04124438A publication Critical patent/JPH04124438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To avoid any change in control performance caused by deterioration of an exhaust purifying catalyst by setting variably the updated one of a second air fuel ratio correction amount according to the control cycle of the second air fuel ratio correction amount. CONSTITUTION:For example, in the case when a first air fuel ratio correction amount is an air fuel ratio feed back correction coefficient which is set by proportional-integral control, a second air fuel ratio correction amount is an amount for correcting a proportional portion or an integral portion of the air fuel ratio feed back correction coefficient, and/or a delay time for delaying start of control in rich and lean direction of the air fuel ratio feed back correction coefficient, the updated amount in the delay time is set largely, provided that the output reversal cycle of a secondary air fuel ratio sensor 21 is long, and the updated amount is set small provided that the reversal cycle thereof is short. It is thus possible to avoid any change in control performance caused by secular change of an exhaust purifying catalyst, so as to prevent over-correction in progress of deterioration.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、特
に空燃比センサを排気浄化触媒の上流側及び下流側に備
え、これら2つの空燃比センサの検出値に基づいて空燃
比を高精度にフィードバック制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, an air-fuel ratio sensor is provided on the upstream side and downstream side of an exhaust purification catalyst. The present invention relates to a device that performs feedback control of an air-fuel ratio with high accuracy based on a detected value of a fuel ratio sensor.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。
<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空気量に対
応する基本燃料供給量TP (=K・Q/N; Kは定
数)を演算し、この基本燃料供給量T、を機関温度等に
より補正したものを排気中酸素濃度の検出によって混合
気の空燃比を検出する空燃比センサ(酸素センサ)から
の信号によって設定される空燃比フィー]・バック補正
係数(空燃比補正量)を用いてフィードバック補正を施
し、バッテリ電圧による補正等をも行って最終的に燃料
供給量T1を設定する。
To give an overview of this, it detects the intake air flow rate Q and rotational speed N of the engine and calculates the basic fuel supply amount TP (=K・Q/N; K is a constant) corresponding to the amount of air taken into the cylinder. Then, this basic fuel supply amount T, corrected based on engine temperature, etc., is used as an air-fuel ratio feed set by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. ] - Feedback correction is performed using the back correction coefficient (air-fuel ratio correction amount), correction based on battery voltage, etc. are also performed, and finally the fuel supply amount T1 is set.

そして、このようにして設定された燃料供給量T1に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。
Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T1 thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine.

上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCo、 HC(炭化水素)を酸化すると共にNO
xを還元して浄化する排気浄化触媒(三元触媒)の転化
効率(浄化効率)か理論空燃比燃焼時の排気状態て存効
に機能するように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes Co and HC (hydrocarbons) in the exhaust, as well as NO
This is because it is set to function effectively depending on the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies x or the exhaust state during combustion at the stoichiometric air-fuel ratio.

前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で急変する特性を有しており、この出力電圧V
。と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比が理論空燃比に対してリッ
チかリーンかを判定する。そして、例えは空燃比かリー
ン(リッチ)の場合には、前記基本燃料供給量T、に乗
じるフィードバック補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数■ずつ徐々に増大(減少)していき燃料供
給量T1を増量(減量)補正することで空燃比を理論空
燃比近傍に制御する。
As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic that it changes suddenly near the stoichiometric air-fuel ratio, and this output voltage V
. and the reference voltage (slice level) SL corresponding to the stoichiometric air-fuel ratio.
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. For example, in the case of a lean (rich) air-fuel ratio, the feedback correction coefficient α multiplied by the basic fuel supply amount T is increased (decreased) by a large proportionality constant P at the first time when the basic fuel supply amount T is changed to lean (rich). , the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by increasing (decreasing) the fuel supply amount T1 by gradually increasing (decreasing) by a predetermined integral constant ■.

ところで、上記のような通常の空燃比フィードバック制
御装置では1個の空燃比センサを応答性を高めるため、
できるだけ燃焼室に近い排気マニホールドの集合部分に
設けているが、この部分は排気温度が高いため空燃比セ
ンサが熱的影響や劣化により特性が変化し易く、また、
気筒毎の排気の混合が不十分であるため全気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難があり、
引いては空燃比制御精度を悪くしていた。
By the way, in the above-mentioned normal air-fuel ratio feedback control device, one air-fuel ratio sensor is used to improve responsiveness.
It is installed in the gathering part of the exhaust manifold as close as possible to the combustion chamber, but since the exhaust temperature in this part is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is not sufficiently mixed, it is difficult to detect the average air-fuel ratio of all cylinders, and the air-fuel ratio detection accuracy is difficult.
This in turn worsened the accuracy of air-fuel ratio control.

この点に鑑み、排気浄化触媒の下流側にも空燃比センサ
を設け、2つの空燃比センサの検出値を用いて空燃比を
フィードバック制御するものか提案されている(特開昭
58−48756号公報参照)。
In view of this, it has been proposed that an air-fuel ratio sensor is also provided on the downstream side of the exhaust purification catalyst, and the air-fuel ratio is feedback-controlled using the detected values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-48756). (see official bulletin).

即ち、下流側の空燃比センサは燃焼室から離れているた
め応答性には難かあるか、排気浄化触媒の下流であるた
め、排気成分バランスの影響(CO,HC,NOx、C
o□等)を受は難く、排気中の毒性成分による被毒量か
少ないため被毒による特性変化も受けにくく、しかも排
気の混合状態がよいため金気筒の平均的な空燃比を検出
できる等上流側の空燃比センサに比較して、高精度で安
定した検出性能が得られる。
In other words, the air-fuel ratio sensor on the downstream side is far from the combustion chamber, so its response may be difficult, or because it is downstream of the exhaust purification catalyst, it is affected by the exhaust component balance (CO, HC, NOx, C).
○□, etc.), and since the amount of poisoning by toxic components in the exhaust is small, it is also less susceptible to changes in characteristics due to poisoning.Moreover, the mixture state of the exhaust is good, so it is possible to detect the average air-fuel ratio of the gold cylinder, etc. Highly accurate and stable detection performance can be obtained compared to the upstream air-fuel ratio sensor.

そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バック補正係数を組み合わせたり、或いは上流側の空燃
比センサにより設定される空燃比フィードバック補正係
数の制御定数(比例分や積分分)、上流側の空燃比セン
サの出力電圧の比較電圧や遅延時間(出力電圧反転から
リッチ。
Therefore, it is possible to combine two air-fuel ratio feedback correction coefficients that are respectively set by calculations similar to those described above based on the detected values of the two air-fuel ratio sensors, or to combine the air-fuel ratio feedback correction coefficients that are set by the upstream air-fuel ratio sensor. Control constants (proportional and integral), comparison voltage and delay time of the output voltage of the upstream air-fuel ratio sensor (rich from output voltage reversal).

又はリーンへの制御の反転を遅らせる時間)を補正する
こと等によって上流側空燃比センサの出力特性のばらつ
きを下流側の空燃比センサによって補償して高精度な空
燃比フィードバック制御を行うようにしている。
In this way, highly accurate air-fuel ratio feedback control is performed by compensating for variations in the output characteristics of the upstream air-fuel ratio sensor using the downstream air-fuel ratio sensor. There is.

〈発明か解決しようとする課題〉 ところで、上記のように排気浄化触媒下流側の空燃比セ
ンサの出力によっても空燃比を補正する空燃比制御装置
においては、上流側の空燃比センサの信号反転周期に同
期して振れる空燃比フィードバック補正係数αの平均値
を下流側の空燃比センサの信号反転周期に同期した大き
な周期で振らすこととなる。ここで、下流側の空燃比セ
ンサの反転周期か大きいのは、排気浄化触媒に吸着して
蓄え得る0分の量(以下、排気浄化触媒の02ストレー
ジ能力という)が大きいためであり、例えばリッチ燃焼
の排気中のCo、HCが、リーン燃焼時に排気浄化触媒
に蓄えられた0分で還元され尽くされるまでの間、下流
側の空燃比センサはリーン状態を検出し続ける。
<Problem to be solved by the invention> By the way, in the air-fuel ratio control device that corrects the air-fuel ratio also based on the output of the air-fuel ratio sensor downstream of the exhaust purification catalyst, the signal inversion period of the upstream air-fuel ratio sensor The average value of the air-fuel ratio feedback correction coefficient α, which fluctuates in synchronization with the air-fuel ratio sensor, is fluctuated in a large period synchronized with the signal reversal period of the air-fuel ratio sensor on the downstream side. Here, the reason why the reversal period of the air-fuel ratio sensor on the downstream side is large is because the amount of 0 that can be adsorbed and stored in the exhaust purification catalyst (hereinafter referred to as 02 storage capacity of the exhaust purification catalyst) is large. The air-fuel ratio sensor on the downstream side continues to detect the lean state until the Co and HC in the combustion exhaust gas stored in the exhaust purification catalyst during lean combustion are completely reduced in 0 minutes.

したがって、下流側の空燃比センサの出力によって演算
される第2の空燃比補正量の一回当たりの更新量を、従
来一般的なように一定値に設定すると、該下流側の空燃
比センサの出力の反転周期は、前記排気浄化触媒の02
ストレージ能力を支配的要因として決定される。
Therefore, if the update amount of the second air-fuel ratio correction amount calculated based on the output of the downstream air-fuel ratio sensor is set to a constant value as is common in the past, then The output reversal period is 02 of the exhaust purification catalyst.
Determined with storage capacity as the dominant factor.

しかしなから、前記排気浄化触媒の02ストレージ能力
は、触媒の劣化により低下してくるため、下流側の空燃
比センサの出力の反転周期、つまり第2の空燃比補正量
の制御周期(増減反転周期)は、触媒の劣化につれて短
くなってくる。その場合、前記第2の空燃比補正量の一
回当たりの更新量を小さく設定すると触媒新品時の第2
の空燃比補正量の制御周期か長くなりすぎて応答性が悪
化し、逆に更新量を大きく設定すると触媒劣化時に空燃
比か過補正され運転性、排気浄化性能を悪化させてしま
うこととなる。
However, since the 02 storage capacity of the exhaust purification catalyst decreases due to deterioration of the catalyst, the reversal period of the output of the downstream air-fuel ratio sensor, that is, the control period of the second air-fuel ratio correction amount period) becomes shorter as the catalyst deteriorates. In that case, if the update amount of the second air-fuel ratio correction amount per time is set small, the second air-fuel ratio correction amount when the catalyst is new
If the control cycle of the air-fuel ratio correction amount becomes too long, the response will deteriorate, and conversely, if the update amount is set too large, the air-fuel ratio will be over-corrected when the catalyst deteriorates, worsening driveability and exhaust purification performance. .

したかって、新品或いは劣化品のいずれに合わせて更新
量を設定しても、触媒の新品と劣化品とで第2の空燃比
補正量、具体的には空燃比フィードバック補正係数の制
御定数(例えば比例分)やリッチ、リーン制御遅延時間
による効果か変化することは避けられなかった。
Therefore, even if the update amount is set depending on whether the catalyst is new or deteriorated, the second air-fuel ratio correction amount, specifically the control constant of the air-fuel ratio feedback correction coefficient (for example, It was inevitable that the effect would change depending on the proportion (proportional portion) and rich/lean control delay time.

本発明は、このような従来の問題点に鑑みなされたもの
で、第2の空燃比補正量の制御周期に応じて第2の空燃
比補正量の更新量を可変に設定する構成とすることによ
り、排気浄化触媒の劣化による制御性能の変化を回避で
きるようにした内燃機関の空燃比制御装置を提供するこ
とを目的とする。
The present invention has been made in view of such conventional problems, and has a configuration in which the update amount of the second air-fuel ratio correction amount is variably set according to the control cycle of the second air-fuel ratio correction amount. Accordingly, it is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that can avoid changes in control performance due to deterioration of an exhaust purification catalyst.

〈課題を解決するための手段〉 このため本発明は、機関の排気通路に備えられた排気浄
化触媒の上流側及び下流側に夫々設けられ、空燃比によ
って変化する排気中特定気体成分の濃度比に感応して出
力値が変化する第1及び第2の空燃比センサと、 前記第1の空燃比センサの出力値に応じて第1の空燃比
補正量を演算する第1の空燃比補正量演算手段と、 前記第2の空燃比センサの出力に基づいて第2の空燃比
補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記第2の空燃比センサの出力値が反転する周期を計測
する第2空燃比センサ出力反転周期計測手段と、 前記第2の空燃比補正量演算手段によって更新演算され
る第2の空燃比補正量の1回当たりの更新量を、前記演
算された第2の空燃比センサの出力値の反転周期に応じ
て設定する第2の空燃比補正量更新量設定手段と、 を含んで構成した。
<Means for Solving the Problems> For this reason, the present invention provides a concentration ratio of a specific gas component in exhaust gas that is provided upstream and downstream of an exhaust purification catalyst provided in an exhaust passage of an engine, and that changes depending on the air-fuel ratio. first and second air-fuel ratio sensors whose output values change in response to; and a first air-fuel ratio correction amount that calculates a first air-fuel ratio correction amount according to the output value of the first air-fuel ratio sensor. calculation means; second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the second air-fuel ratio sensor; an air-fuel ratio correction amount calculation means for calculating a final air-fuel ratio correction amount based on the air-fuel ratio correction amount; a second air-fuel ratio sensor output reversal period measuring means for measuring the period at which the output value is reversed; and an update amount per time of the second air-fuel ratio correction amount updated by the second air-fuel ratio correction amount calculating means. and a second air-fuel ratio correction amount update amount setting means that sets the update amount according to the reversal period of the calculated output value of the second air-fuel ratio sensor.

また、例えば、前記第1の空燃比補正量は、比例積分制
画により設定される空燃比フィードバック補正係数であ
り、第2の空燃比補正量は、該空燃比フィードバック補
正係数の比例分又は積分分を補正すする量であってもよ
い。
Further, for example, the first air-fuel ratio correction amount is an air-fuel ratio feedback correction coefficient set by proportional-integral planning, and the second air-fuel ratio correction amount is a proportional or integral amount of the air-fuel ratio feedback correction coefficient. It may also be an amount that corrects the amount.

また、例えば、前記第1の空燃比補正量は、比例積分制
御により設定される空燃比フィードバック補正係数であ
り、第2の空燃比補正量は、該空燃比フィードバック補
正係数のリッチ、リーン方向の制御の開始を遅延させる
遅延時間であってもよい。
Further, for example, the first air-fuel ratio correction amount is an air-fuel ratio feedback correction coefficient set by proportional-integral control, and the second air-fuel ratio correction amount is a rich or lean direction of the air-fuel ratio feedback correction coefficient. It may also be a delay time that delays the start of control.

〈作用〉 第1の空燃比補正量演算手段は、第1の空燃比センサか
らの検出値に基づいて、第1の空燃比補正量を演算し、
第2の空燃比補正量演算手段は、第2の空燃比センサか
らの検出値に基づいて、第2の空燃比補正量を演算する
<Operation> The first air-fuel ratio correction amount calculation means calculates the first air-fuel ratio correction amount based on the detected value from the first air-fuel ratio sensor,
The second air-fuel ratio correction amount calculation means calculates a second air-fuel ratio correction amount based on the detected value from the second air-fuel ratio sensor.

一方、第2の空燃比センサ出力反転周期計測手段は、第
2の空燃比センサの出力が反転する周期を計測する。
On the other hand, the second air-fuel ratio sensor output reversal period measuring means measures the period at which the output of the second air-fuel ratio sensor is reversed.

そして、第2の空燃比補正量更新量演算手段により、前
記計測された周期に基づいて第2の空燃比補正量の更新
量か設定される。
Then, the second air-fuel ratio correction amount update amount calculation means sets the update amount of the second air-fuel ratio correction amount based on the measured period.

例えば、前記第1の空燃比補正量が、比例積分制御によ
り設定される空燃比フィードバック補正係数であり、第
2の空燃比補正量が、該空燃比フィードバック補正係数
の比例分又は積分分を補正する量である場合は、第2の
空燃比センサの出力反転周期が長いときには更新量を大
きく設定し、反転周期が短いときには更新量を小さく設
定する。
For example, the first air-fuel ratio correction amount is an air-fuel ratio feedback correction coefficient set by proportional-integral control, and the second air-fuel ratio correction amount corrects the proportional or integral part of the air-fuel ratio feedback correction coefficient. If the output reversal period of the second air-fuel ratio sensor is long, the update amount is set to be large, and when the reversal period is short, the update amount is set to be small.

また、同じく第1の空燃比補正量か、比例積分制御によ
り設定される空燃比フィードバック補正係数であり、第
2の空燃比補正量が該空燃比フィードバック補正係数の
リッチ、リーン方向の制御の開始を遅延させる遅延時間
である場合は、第2の空燃比センサの出力反転周期か長
いときには遅延時間の更新量を大きく設定し、反転周期
か短いときには更新量を小さく設定する。
Similarly, the first air-fuel ratio correction amount is the air-fuel ratio feedback correction coefficient set by proportional-integral control, and the second air-fuel ratio correction amount is the start of control in the rich or lean direction of the air-fuel ratio feedback correction coefficient. If the delay time is such that the output reversal period of the second air-fuel ratio sensor is long, the update amount of the delay time is set to be large, and when the reversal period is short, the update amount is set to be small.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に燃料供給手段としての電磁式の燃料噴射
弁15か設けられる。
In FIG. 2 showing the configuration of one embodiment, an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. An electromagnetic fuel injection valve 15 serving as a fuel supply means is provided for each cylinder in the downstream manifold portion.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ッシャレギュレータにより所定圧力に制御された燃料を
噴射供給する。更に、機関11の冷却ジャケット内の冷
却水温度Twを検出する水温センサ17が設けられる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 11.

一方、排気通路18にはマニホールド集合部に排気中酸
素濃度を検出することによって吸入混合気の空燃比を検
出する第1の空燃比センサ19が設けられ、その下流側
の排気管に排気中のCO,HCの酸化とNOxの還元を
行って浄化する排気浄化触媒としての三元触媒20が設
けられ、更に該三元触媒20の下流側に第1の空燃比セ
ンサ19と同一の機能を持つ第2の空燃比センサ2Iが
設けられる。
On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold gathering part, and the exhaust gas A three-way catalyst 20 is provided as an exhaust purification catalyst that performs purification by oxidizing CO and HC and reducing NOx, and further has the same function as the first air-fuel ratio sensor 19 on the downstream side of the three-way catalyst 20. A second air-fuel ratio sensor 2I is provided.

また、第2図で図示しないディストリビュータには、ク
ランク角センサ22が内蔵されており、該クランク角セ
ンサ22から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。
Further, the distributor (not shown in FIG. 2) has a built-in crank angle sensor 22, and a crank angle signal outputted from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10m5)毎に行われる。
Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed at predetermined intervals (for example, every 10 m5).

ステップ(図ではSと記す)lでは、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ24からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。
In step (denoted as S in the figure) l, the intake air amount per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 24. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation.

T、=KxQ/N   (Kは定数) ステップ2では、水温センサ17によって検出された冷
却水温度Tw等に基づいて各種補正係数C0FFを設定
する。
T,=KxQ/N (K is a constant) In step 2, various correction coefficients C0FF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.

ステップ3では、後述するフィードバック補正係数設定
ルーチンにより設定された空燃比フィードバック補正係
数ALPPを読み込む。
In step 3, an air-fuel ratio feedback correction coefficient ALPP set by a feedback correction coefficient setting routine to be described later is read.

ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.

ステップ5では、最終的な燃料噴射量(燃料供給量)T
1を次式に従って演算する。
In step 5, the final fuel injection amount (fuel supply amount) T
1 is calculated according to the following formula.

T、=Tp xCOEFxALPP+TIlステップ6
では、演算された燃料噴射弁T1を出力用レジスタにセ
ットする。
T,=Tp xCOEFxALPP+TIlStep 6
Now, the calculated fuel injection valve T1 is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量TIのパルス巾
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射か行われる。
As a result, at a predetermined fuel injection timing synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount TI is applied to the fuel injection valve 15 to perform fuel injection.

次に、空燃比フィードバック補正係数設定ルーチンを第
4図に従って説明する。このルーチンは機関回転に同期
して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be explained with reference to FIG. This routine is executed in synchronization with engine rotation.

ステップIIでは、空燃比のフィードバック制御を行う
運転条件であるか否かを判定する。前記運転条件を満た
していないときには、このルーチンを終了する。この場
合、空燃比フィードバック補正係数ALPPは前回のフ
ィードバック制御終了時の値若しくは一定の基準値にク
ランプされ、フィードバック制御は停止される。
In step II, it is determined whether the operating conditions are such that feedback control of the air-fuel ratio is performed. If the operating conditions are not satisfied, this routine is terminated. In this case, the air-fuel ratio feedback correction coefficient ALPP is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップI2ては、第1の空燃比センサ19からの信号
電圧V。2及び第2の空燃比センサ21からの信号電圧
v’ 。2を入力する。
In step I2, the signal voltage V from the first air-fuel ratio sensor 19 is determined. 2 and the signal voltage v' from the second air-fuel ratio sensor 21. Enter 2.

ステップ13では、第2の空燃比センサ21からの信号
電圧V’02と目標空燃比(理論空燃比)相当の基準値
SLとを比較する。
In step 13, the signal voltage V'02 from the second air-fuel ratio sensor 21 is compared with a reference value SL corresponding to the target air-fuel ratio (theoretical air-fuel ratio).

そして、空燃比がリッチ(V’ 。2>SL)と判定さ
れたときにはステップ14へ進み、前回の比例分補正量
PH03−+ (又は機関回転速度N、基本燃料噴射量
T1等で区分された運転領域毎に比例分補正量をそのま
ま若しくは加重平均等の学習を行って記憶しておき、対
応する運転領域から検索して得た値)から設定値DPH
O3を差し引いた値を新たな比例分補正量PH03とし
て更新設定した後、ステップ16へ進む。
Then, when the air-fuel ratio is determined to be rich (V'.2>SL), the process proceeds to step 14, where the previous proportional correction amount PH03-+ (or divided by the engine speed N, basic fuel injection amount T1, etc.) is determined. The proportional correction amount is stored as it is or by learning weighted average etc. for each driving region, and the set value DPH is calculated from the value obtained by searching from the corresponding driving region.
After the value obtained by subtracting O3 is updated and set as a new proportional correction amount PH03, the process proceeds to step 16.

また、空燃比がリーン(V’ 02<SL)と判定され
たときにはステップ15へ進み、同様にして得た比例分
補正量PH03−,に設定値DPHO3を加算した値を
新たな比例分補正量P HO3として更新設定した後、
ステップ16へ進む。
Further, when the air-fuel ratio is determined to be lean (V'02<SL), the process proceeds to step 15, and the value obtained by adding the set value DPHO3 to the proportional correction amount PH03-, obtained in the same manner, is set as the new proportional correction amount. After setting the update as P HO3,
Proceed to step 16.

ステップ16では、入力した第1の空燃比センサ19の
信号電圧V。、と目標空燃比(理論空燃比)相当の基準
値SLとを比較する。
In step 16, the input signal voltage V of the first air-fuel ratio sensor 19 is determined. , and a reference value SL corresponding to the target air-fuel ratio (stoichiometric air-fuel ratio).

そして、空燃比がリッチ(VO2>SL)と判定された
ときにはステップ17へ進み、空燃比かり一ンからリッ
チへの反転時か否かを判定する。
Then, when it is determined that the air-fuel ratio is rich (VO2>SL), the process proceeds to step 17, and it is determined whether or not the air-fuel ratio is being reversed from 1/2 to rich.

反転時と判定されたときはステップ18へ進み、空燃比
フィードバック補正係数ALPP設定用のリッチ反転時
に与える減少方向の比例分P、を基準値P1゜から前記
比例分補正量P HO3を減少した値で更新する。
When it is determined that the inversion is occurring, the process proceeds to step 18, where the proportional amount P in the decreasing direction given at the time of rich inversion for setting the air-fuel ratio feedback correction coefficient ALPP is set to a value obtained by subtracting the proportional correction amount PHO3 from the reference value P1°. Update with.

次いで、ステップ19で空燃比フィードバック補正係数
ALPPを現在値から前記比例分PRを減算した値で更
新する。
Next, in step 19, the air-fuel ratio feedback correction coefficient ALPP is updated with a value obtained by subtracting the proportional amount PR from the current value.

また、ステップ17でリーンからリッチへの反転時でな
いと判定されたときには、ステップ20へ進み、空燃比
フィードバック補正係数ALPPを現在値から積分分I
、を減算した値で更新する。
If it is determined in step 17 that it is not the time of reversal from lean to rich, the process proceeds to step 20, and the air-fuel ratio feedback correction coefficient ALPP is calculated by the integral I from the current value.
, is updated with the subtracted value.

一方、ステップ16で空燃比がリーン(VO2<SL)
と判定されたときにはステップ21へ進み、空燃比がリ
ッチからリーンへの反転時か否かを判定する。
On the other hand, in step 16, the air-fuel ratio is lean (VO2<SL)
When it is determined that this is the case, the process proceeds to step 21, and it is determined whether or not the air-fuel ratio is being reversed from rich to lean.

反転時と判定されたときはステップ22へ進み、空燃比
フィードバック補正係数ALPP設定用のり一ン反転時
に与える増大方向の比例分PLを基準値PL0を前記比
例分補正量PH03を加算した値で更新する。次いで、
ステップ23で空燃比フィードバック補正係数ALPP
を現在値から前記比例分PLを加算した値で更新する。
When it is determined that it is the time of reversal, the process proceeds to step 22, and the proportional amount PL in the increasing direction given at the time of reversal is updated with the value obtained by adding the proportional amount correction amount PH03 to the reference value PL0. do. Then,
In step 23, the air-fuel ratio feedback correction coefficient ALPP is
is updated with a value obtained by adding the proportional amount PL from the current value.

また、ステップ21でリッチがらリーンへの反転時でな
いと判定されたときには、ステップ24へ進み、空燃比
フィードバック補正係数ALPPを現在値に積分分IL
を加算した値で更新する。
Further, when it is determined in step 21 that it is not the time of reversal from rich to lean, the process proceeds to step 24, and the air-fuel ratio feedback correction coefficient ALPP is changed to the current value by the integral IL.
Update with the added value.

次いで、ステップ25ては第2の空燃比センサ21の出
力がリッチ→リーン、又はリーン→リッチへ反転した直
後か否かを判定する。
Next, in step 25, it is determined whether the output of the second air-fuel ratio sensor 21 has just changed from rich to lean or from lean to rich.

そして反転直後と判定された場合はステップ26へ進み
、前回の反転時から現在までの経過時間、つまり、第2
の空燃比センサ21の出力の反転周期をタイマのカウン
ト値Cから読み込む。
If it is determined that it is immediately after the reversal, the process proceeds to step 26, and the elapsed time from the previous reversal to the present time, that is, the second
The reversal period of the output of the air-fuel ratio sensor 21 is read from the count value C of the timer.

次いでステップ27へ進み、前記カウント値Cに応じた
比例分補正量PH03の更新量DPIO3をROMに記
憶されたマツプテーブルから読み込む。ここで、前記更
新量DPHO3は、図示の如くカウント値C(周期)が
大きいときほど、小さい値に設定されている。
Next, the process proceeds to step 27, where the update amount DPIO3 of the proportional correction amount PH03 corresponding to the count value C is read from the map table stored in the ROM. Here, the update amount DPHO3 is set to a smaller value as the count value C (cycle) is larger as shown in the figure.

ステップ28では、カウント値Cをクリアする。In step 28, the count value C is cleared.

これにより、次回の第2の空燃比出力の反転時に読み込
まれるカウント値Cは次回反転時までの周期を表すこと
になる。
As a result, the count value C read at the next time of reversal of the second air-fuel ratio output represents the period until the next time of reversal.

このようにすれば、三元触媒20の新品時は02ストレ
ージ能力が大きく、第2の空燃比センサ21の出力反転
周期が大きいときには、前記比例分補正量P HO3の
更新量DPIO3が大きく設定されることにより制御応
答性を良好に確保できる。また、三元触媒20の劣化が
進んて02ストレージ能力の減少により出力反転周期か
短縮されるにつれて更新量DPHOSを小さくすること
により、比例分補正量P HO8による過補正を防止で
きる。
In this way, when the three-way catalyst 20 is new, the 02 storage capacity is large, and the output reversal period of the second air-fuel ratio sensor 21 is large, the update amount DPIO3 of the proportional correction amount PHO3 is set to be large. By doing so, good control responsiveness can be ensured. Further, as the three-way catalyst 20 deteriorates and the output reversal period is shortened due to a decrease in the 02 storage capacity, the update amount DPHOS is made smaller, thereby making it possible to prevent over-correction by the proportional correction amount PHO8.

また、本実施例では第2の空燃比補正量として空燃比フ
ィードバック補正係数ALPPの比例分Pを補正する比
例分補正量P HO3としたものについて示したか、空
燃比フィードバック補正係数ALPPの積分分■を補正
するものについても同様に実施できる。
In addition, in this embodiment, the second air-fuel ratio correction amount is a proportional correction amount PHO3 that corrects the proportional portion P of the air-fuel ratio feedback correction coefficient ALPP. The same method can be used for correcting.

ここで、ステップ16〜ステツプ24の部分てステップ
18.ステップ22による補正を除いて空燃比フィード
バック補正係数ALPPを演算する機能か第1の空燃比
センサ】9による第1の空燃比補正量演算手段に相画し
、ステップ13〜ステツプ15の部分か第2の空燃比補
正量演算手段に相当し、ステップ18、ステップ22を
含めたステップ16〜ステツプ24の部分が空燃比補正
量演算手段に相当し、ステップ25.26.28とカウ
ンタの機能が第2空燃比センサ出力反転周期計測手段に
相当し、ステップ27の部分が第2の空燃比補正量更新
量設定手段に相当する。 第5図は、第2の空燃比補正
量として第1の空燃比センサ19の出力反転時から空燃
比フィードバック補正係数ALPPの制御方向反転まで
の遅延時間を補正するものの実施例の制御ルーチンを示
したものである。第6図は、本実施例方式における各部
の状態変化を示したものである。
Here, steps 16 to 24 are replaced by step 18. The function of calculating the air-fuel ratio feedback correction coefficient ALPP excluding the correction in step 22 is similar to the first air-fuel ratio correction amount calculating means of the first air-fuel ratio sensor]9, and the part of steps 13 to 15 is 2, steps 16 to 24 including step 18 and step 22 correspond to the air-fuel ratio correction amount calculation means, and steps 25, 26, and 28 and the function of the counter correspond to the air-fuel ratio correction amount calculation means. This corresponds to the second air-fuel ratio sensor output reversal period measuring means, and the part of step 27 corresponds to the second air-fuel ratio correction amount update amount setting means. FIG. 5 shows a control routine of an embodiment that corrects the delay time from when the output of the first air-fuel ratio sensor 19 is reversed to when the control direction of the air-fuel ratio feedback correction coefficient ALPP is reversed as the second air-fuel ratio correction amount. It is something that FIG. 6 shows changes in the state of each part in the method of this embodiment.

ステップ31〜ステツプ33は、第4図のステップ11
〜ステツプ13と同一である。
Steps 31 to 33 are steps 11 in FIG.
- Same as step 13.

ステップ33で空燃比がリッチと判定されたときは、ス
テップ34へ進んで第1の空燃比センサ19の出力がリ
ーン→リッチに反転してがら空燃比フィードバック補正
係数ALPPをリーン方向に制御するまでの遅延時間(
以下リッチ遅延時間という) TDRを設定量DTD加
算した値で更新する。
When the air-fuel ratio is determined to be rich in step 33, the process proceeds to step 34, where the output of the first air-fuel ratio sensor 19 is reversed from lean to rich until the air-fuel ratio feedback correction coefficient ALPP is controlled in the lean direction. delay time (
(hereinafter referred to as rich delay time) TDR is updated with a value obtained by adding a set amount DTD.

また、ステップ33で空燃比がリーンと判定されたとき
は、ステップ35へ進んで第1の空燃比センサI9の出
力がリッチ→リーンに反転してから空燃比フィードバッ
ク補正係数ALPPをリッチ方向に制御するまでの遅延
時間(以下リーン遅延時間という) TDLを設定量D
TD減算した値で更新する。
Further, when the air-fuel ratio is determined to be lean in step 33, the process proceeds to step 35, and after the output of the first air-fuel ratio sensor I9 is reversed from rich to lean, the air-fuel ratio feedback correction coefficient ALPP is controlled in the rich direction. The delay time until TDL (hereinafter referred to as lean delay time) is the set amount D
Update with the value obtained by subtracting TD.

ステップ36では、第1の空燃比センサ19の出力のリ
ッチ、リーン状態を判別し、リッチと判定されたときに
はステップ37へ進んでデイレイカウンタCDLYをデ
クリメントする。次いてステップ38てデイレイカウン
タCDLYO値を前記リッチ遅延時間TDRと比較して
、CDLY<TDRであれば、ステップ39でCDLY
= TDRに保持した後ステップ43へ進む。
In step 36, it is determined whether the output of the first air-fuel ratio sensor 19 is rich or lean, and if it is determined to be rich, the process proceeds to step 37, where the delay counter CDLY is decremented. Next, in step 38, the delay counter CDLYO value is compared with the rich delay time TDR, and if CDLY<TDR, then in step 39, the CDLYO value is compared with the rich delay time TDR.
= After holding at TDR, proceed to step 43.

一方、ステップ36でリーンと判定されたときにはステ
ップ40へ進んでデイレイカウンタCDLYをインクリ
メントし、ステップ41でデイレイカウンタCDLYの
値を前記リーン遅延時間TDLと比較し、CDLY>T
DLであれば、ステップ42てCDLY= TDLに保
持した後ステップ43へ進む。
On the other hand, when it is determined in step 36 that the lean state is reached, the process proceeds to step 40, where the delay counter CDLY is incremented, and in step 41, the value of the delay counter CDLY is compared with the lean delay time TDL, and CDLY>T
If it is DL, step 42 holds CDLY=TDL, and then the process advances to step 43.

ステップ43では、デイレイカウンタCDLYの値の正
負が反転したか否かを判定する。
In step 43, it is determined whether the sign of the value of the delay counter CDLY has been inverted.

反転時と判定されたときにはステップ44へ進んでデイ
レイカウンタCDLYの正負、つまり擬制された空燃比
のリッチ、リーンを判別し、正のときにはステップ45
へ進んで、空燃比フィードバック補正係数ALPPを現
在値から前記比例分P、を減算した値で更新し、負のと
きにはステップ46へ進んで空燃比フィードバック補正
係数ALPPを現在値に前記比例分PLを加算した値で
更新する。
When it is determined that it is the time of reversal, the process proceeds to step 44, where it is determined whether the delay counter CDLY is positive or negative, that is, whether the simulated air-fuel ratio is rich or lean, and when it is positive, step 45
Step 46 updates the air-fuel ratio feedback correction coefficient ALPP with the value obtained by subtracting the proportional portion P from the current value, and when it is negative, proceeds to step 46 and updates the air-fuel ratio feedback correction coefficient ALPP with the current value and the proportional portion PL. Update with the added value.

また、ステップ43て反転時てないと判定されたときに
は、ステップ47へ進んでステップ44同様にデイレイ
カウンタCDLYの正負を判別し、正のときにはステッ
プ48へ進んで空燃比フィードバック補正係数ALPP
を現在値から前記積分分■1を減算した値で更新し、負
のときにはステップ49へ進んて空燃比フィードバック
補正係数ALPPを現在値に前記積分分ILを加算した
値で更新する。
Further, when it is determined in step 43 that there is no inversion, the process proceeds to step 47 to determine whether the delay counter CDLY is positive or negative in the same manner as in step 44, and when it is positive, the process proceeds to step 48 to calculate the air-fuel ratio feedback correction coefficient ALPP.
is updated with a value obtained by subtracting the integral part (1) from the current value, and when it is negative, the process proceeds to step 49, where the air-fuel ratio feedback correction coefficient ALPP is updated with a value obtained by adding the integral part IL to the current value.

次いで、ステップ50では第2の空燃比センサ21の出
力か反転した直後か否かを判定し、反転直後と判定され
た場合はステップ51へ進み、第2の空燃比センサ出力
の反転周期をタイマのカウント値(:から読み込んだ後
ステップ52へ進み、前記カウント値Cに応じたリッチ
遅延時間TDR及びリーン遅延時間TDLの更新量DT
DをROMに記憶されたマツプテーブルから読み込む。
Next, in step 50, it is determined whether or not the output of the second air-fuel ratio sensor 21 has just been reversed. If it is determined that the output has just been reversed, the process proceeds to step 51, where a timer is set to determine the reversal period of the second air-fuel ratio sensor output. After reading the count value (:), the process proceeds to step 52, where the update amount DT of the rich delay time TDR and lean delay time TDL according to the count value C is
D is read from the map table stored in the ROM.

ここで、前記更新量DTDは、図示の如くカウント値C
(周期)が大きいときほど、小さい値に設定されている
Here, the update amount DTD is the count value C as shown in the figure.
The larger the (period) is, the smaller the value is set.

ステップ53ては、カウント値Cをクリアする。In step 53, the count value C is cleared.

ここで、ステップ36〜ステツプ49の部分てステップ
37〜ステツプ44及びステップ47を除いた部分か第
1の空燃比補正量演算手段に相当し、ステップ33〜ス
テツプ35の部分が第2の空燃比補正量演算手段に相当
し、ステップ36〜ステツプ49の全部分か空燃比補正
量演算手段に相当し、ステップ5051、53とカウン
タの機能か第2空燃比センサ出力反転周期計測手段に相
当し、ステップ52の部分が第2の空燃比補正量更新量
設定手段に相当する。
Here, the portion from step 36 to step 49 excluding step 37 to step 44 and step 47 corresponds to the first air-fuel ratio correction amount calculation means, and the portion from step 33 to step 35 corresponds to the second air-fuel ratio correction amount calculation means. Corresponds to correction amount calculation means, all of steps 36 to 49 corresponds to air-fuel ratio correction amount calculation means, steps 5051 and 53 and the counter function correspond to second air-fuel ratio sensor output reversal period measurement means, The part of step 52 corresponds to the second air-fuel ratio correction amount update amount setting means.

本実施例においても、遅延時間の更新量DPHOSを第
2の空燃比センサ出力の反転周期が長い時はど大きく設
定することにより、前記第1の実施例同様排気触媒新品
時の制御応答性確保と、劣化時の過補正防止を両立でき
るものである。
In this embodiment as well, control responsiveness when the exhaust catalyst is new is ensured as in the first embodiment by setting the delay time update amount DPHOS to be larger when the reversal period of the second air-fuel ratio sensor output is long. It is possible to achieve both this and prevention of over-correction at the time of deterioration.

〈発明の効果〉 以上説明したように本発明によれば、空燃比フィードバ
ック補正係数の比例分や積分分或いはリッチ、リーン制
御開始の遅延時間等を補正する第2の空燃比補正量の1
開当たりの更新量を、当該環2の空燃比補正量の制御周
期に応じて可変に設定する構成とすることにより、排気
浄化触媒の経時変化による制御性能の変化を回避でき、
新品時に制御応答性を確保しつつ劣化進行時の過補正を
防止できるものである。
<Effects of the Invention> As explained above, according to the present invention, 1 of the second air-fuel ratio correction amount for correcting the proportional component or integral component of the air-fuel ratio feedback correction coefficient, or the delay time of starting rich or lean control, etc.
By configuring the opening update amount to be variably set according to the control cycle of the air-fuel ratio correction amount of the ring 2, changes in control performance due to changes in the exhaust purification catalyst over time can be avoided,
It is possible to prevent over-correction when deterioration progresses while ensuring control responsiveness when new.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同じく空燃比フィードバック補正係数設定ルーチンを示
すフローチャート、第5図は別の実施例の空燃比フィー
ドバック補正係数設定ルーチンを示すフローチャート、
第6図は同上実施例の各部の状態を示す線図である。 11・・・内燃機関  12・・・吸気通路  15・
・・燃料噴射弁  16・・・コントロールユニット 
 19・・・第1の空燃比センサ  20・・・三元触
媒  21・・・第2の空燃比センサ 特許出願人   日本電子機器株式会社代理人 弁理士
 笹 島  富二雄 第3図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the fuel injection amount setting routine of the same embodiment, and FIG. Similarly, a flowchart showing an air-fuel ratio feedback correction coefficient setting routine, FIG. 5 is a flowchart showing an air-fuel ratio feedback correction coefficient setting routine of another embodiment,
FIG. 6 is a diagram showing the state of each part of the same embodiment. 11... Internal combustion engine 12... Intake passage 15.
...Fuel injection valve 16...Control unit
19...First air-fuel ratio sensor 20...Three-way catalyst 21...Second air-fuel ratio sensor Patent applicant Japan Electronics Co., Ltd. Representative Patent attorney Fujio Sasashima Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)機関の排気通路に備えられた排気浄化触媒の上流
側及び下流側に夫々設けられ、空燃比によって変化する
排気中特定気体成分の濃度比に感応して出力値が変化す
る第1及び第2の空燃比センサと、 前記第1の空燃比センサの出力値に応じて第1の空燃比
補正量を演算する第1の空燃比補正量演算手段と、 前記第2の空燃比センサの出力に基づいて第2の空燃比
補正量を演算する第2の空燃比補正量演算手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記第2の空燃比センサの出力値が反転する周期を計測
する第2空燃比センサ出力反転周期計測手段と、 前記第2の空燃比補正量演算手段によって更新演算され
る第2の空燃比補正量の1回当たりの更新量を、前記演
算された第2の空燃比センサの出力値の反転周期に応じ
て設定する第2の空燃比補正量更新量設定手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。
(1) The first and second catalysts are provided upstream and downstream of the exhaust purification catalyst provided in the exhaust passage of the engine, and whose output value changes in response to the concentration ratio of a specific gas component in the exhaust gas, which changes depending on the air-fuel ratio. a second air-fuel ratio sensor; a first air-fuel ratio correction amount calculating means for calculating a first air-fuel ratio correction amount according to an output value of the first air-fuel ratio sensor; a second air-fuel ratio correction amount calculating means for calculating a second air-fuel ratio correction amount based on the output; and a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount. an air-fuel ratio correction amount calculating means for calculating an air-fuel ratio correction amount; A fuel ratio sensor output reversal period measuring means and an update amount of the second air-fuel ratio correction amount updated by the second air-fuel ratio correction amount calculation means are calculated by the calculated second air-fuel ratio sensor. An air-fuel ratio control device for an internal combustion engine, comprising: second air-fuel ratio correction amount update amount setting means that is set in accordance with a reversal period of an output value.
(2)前記第1の空燃比補正量は、比例積分制御により
設定される空燃比フィードバック補正係数であり、第2
の空燃比補正量は、該空燃比フィードバック補正係数の
比例分又は積分分を補正する量である請求項1に記載の
内燃機関の空燃比制御装置。
(2) The first air-fuel ratio correction amount is an air-fuel ratio feedback correction coefficient set by proportional-integral control;
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio correction amount is an amount that corrects a proportional component or an integral component of the air-fuel ratio feedback correction coefficient.
(3)前記第1の空燃比補正量は、比例積分制御により
設定される空燃比フィードバック補正係数であり、第2
の空燃比補正量は、該空燃比フィードバック補正係数の
リッチ、リーン方向の制御の開始を遅延させる遅延時間
である請求項1に記載の内燃機関の空燃比制御装置。
(3) The first air-fuel ratio correction amount is an air-fuel ratio feedback correction coefficient set by proportional-integral control;
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio correction amount is a delay time for delaying the start of control of the air-fuel ratio feedback correction coefficient in a rich or lean direction.
JP24375890A 1990-09-17 1990-09-17 Air fuel ratio control device for internal combustion engine Pending JPH04124438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24375890A JPH04124438A (en) 1990-09-17 1990-09-17 Air fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24375890A JPH04124438A (en) 1990-09-17 1990-09-17 Air fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04124438A true JPH04124438A (en) 1992-04-24

Family

ID=17108549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24375890A Pending JPH04124438A (en) 1990-09-17 1990-09-17 Air fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04124438A (en)

Similar Documents

Publication Publication Date Title
JP2626384B2 (en) Catalyst deterioration determination device
JP2570930B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
JPH086624B2 (en) Air-fuel ratio control device for internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04109047A (en) Air-fuel ratio control device for internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03202652A (en) Air-fuel ratio control device of internal combustion engine
JPH0463936A (en) Air-fuel ratio control device for internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH04124438A (en) Air fuel ratio control device for internal combustion engine
JPH0211840A (en) Air-fuel ratio controller for internal combustion engine
JP2518254B2 (en) Air-fuel ratio control device for internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2503956B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0417749A (en) Air-fuel ratio control system of internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2692307B2 (en) Air-fuel ratio control device for internal combustion engine