JPH0417750A - Air-fuel ratio control system of internal combustion engine - Google Patents

Air-fuel ratio control system of internal combustion engine

Info

Publication number
JPH0417750A
JPH0417750A JP11589390A JP11589390A JPH0417750A JP H0417750 A JPH0417750 A JP H0417750A JP 11589390 A JP11589390 A JP 11589390A JP 11589390 A JP11589390 A JP 11589390A JP H0417750 A JPH0417750 A JP H0417750A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction value
learning correction
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11589390A
Other languages
Japanese (ja)
Other versions
JP2759545B2 (en
Inventor
Junichi Furuya
純一 古屋
Seiichi Otani
大谷 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP11589390A priority Critical patent/JP2759545B2/en
Publication of JPH0417750A publication Critical patent/JPH0417750A/en
Application granted granted Critical
Publication of JP2759545B2 publication Critical patent/JP2759545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable control in which steps are eliminated as many as possible while maintaining the accuracy of learning by performing learning when shifting a driving area whose learning correction value is renewed, with the average value of the renewed value and retrieved value of a learning correction value before and after the shift as an initial value. CONSTITUTION:A learning correction value is normally renewed according to another learning correction value retrieved by a learning correction value renewing means from the corresponding driving area of a learning correction value storage means and an output value from a second air-fuel ratio sensor. If in this case the driving area of the previous renewal is different from that of the retrieved learning correction value, learning correction is renewed while the average value of a learning correction value retrieved by the learning correction value initial setting means and the learning correction value of the initial renewal is used as an initial value. Fluctuation of air-fuel ratio can thus be restrained by reducing the number of steps between driving areas while maintaining the accuracy of learning.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、特
に空燃比センサを排気浄化触媒の上流側及び下流側に備
え、これら2つの空燃比センサの検出値に基づいて空燃
比を高精度にフィードハッり制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, an air-fuel ratio sensor is provided on the upstream side and downstream side of an exhaust purification catalyst. The present invention relates to a device that performs high-precision feed control of an air-fuel ratio based on a detected value of a fuel ratio sensor.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。
<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空気量に対
応する基本燃料供給量Tp(L=K・Q/N ; Kは
定数)を演算し、この基本燃料供給量T、を機関温度等
により補正したものを排気中酸素濃度の検出によって混
合気の空燃比を検出する空燃比センサ(酸素センサ)か
らの信号によって設定される空燃比フィードバック補正
係数(空燃比補正量)を用いてフィートノ\・ツク補正
を施し、バッテリ電圧による補正等をも行って最終的に
燃料供給量T、を設定する。
To give an overview of this, the intake air flow rate Q and rotational speed N of the engine are detected, and the basic fuel supply amount Tp (L=K・Q/N; K is a constant) corresponding to the amount of air taken into the cylinder is calculated. This basic fuel supply amount T is calculated and corrected based on engine temperature, etc., and then the air-fuel ratio is set by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. Feedback correction coefficient (air-fuel ratio correction amount) is used to perform fuel charge correction, and correction based on battery voltage is also performed to finally set the fuel supply amount T.

そして、このようにして設定された燃料供給量T1に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。
Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T1 thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine.

上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCo、HC(炭化水素)を酸化すると共にNOX
を還元して浄化する排気浄化触媒(三元触媒)の転化効
率(浄化効率)が理論空燃比燃焼時の排気状態で有効に
機能するように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes Co and HC (hydrocarbons) in the exhaust, as well as NOx.
This is because the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies the exhaust gas is set so that it functions effectively in the exhaust state during combustion at the stoichiometric air-fuel ratio.

前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で急変する特性を有しており、この出力電圧■
。と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比が理論空燃比に対してリッ
チかリーンかを判定する。そして、例えば空燃比がリー
ン(リッチ)の場合には、前記基本燃料供給量T、に乗
じるフィードバック補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数Iずつ徐々に増大($i少)していき燃料
供給量T1を増量(減量)補正することで空燃比を理論
空燃比近傍に制御する。
As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has the characteristic of rapidly changing near the stoichiometric air-fuel ratio, and this output voltage
. and the reference voltage (slice level) SL corresponding to the stoichiometric air-fuel ratio.
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. For example, when the air-fuel ratio is lean (rich), the feedback correction coefficient α multiplied by the basic fuel supply amount T is increased (decreased) by a large proportionality constant P at the first time when the basic fuel supply amount T is changed to lean (rich). By gradually increasing (decreasing $i) the fuel supply amount T1 by a predetermined integral constant I, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio.

ところで、上記のような通常の空燃比フィードハック制
御装置では1個の空燃比センサを応答性を高めるため、
できるだけ燃焼室に近い排気マニホールドの集合部分に
設けているが、この部分は排気温度が高いため空燃比セ
ンサが熱的影響や劣化により特性が変化し易く、また、
気筒毎の排気の混合が不十分であるため全気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難があり、
引いては空燃比制御精度を悪くしていた。
By the way, in the above-mentioned normal air-fuel ratio feed hack control device, in order to improve the responsiveness of one air-fuel ratio sensor,
It is installed in the gathering part of the exhaust manifold as close as possible to the combustion chamber, but since the exhaust temperature in this part is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is not sufficiently mixed, it is difficult to detect the average air-fuel ratio of all cylinders, and the air-fuel ratio detection accuracy is difficult.
This in turn worsened the accuracy of air-fuel ratio control.

この点に鑑み、排気浄化触媒の下流側にも空燃比センサ
を設け、2つの空燃比センサの検出値を用いて空燃比を
フィードバック制御するものが提案されている(特開昭
58−48756号公報参照)。
In view of this, it has been proposed that an air-fuel ratio sensor is also provided on the downstream side of the exhaust purification catalyst, and the air-fuel ratio is feedback-controlled using the detected values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-48756). (see official bulletin).

即ち、下流側の空燃比センサは燃焼室から離れているた
め応答性には難があるが、排気浄化触媒の下流であるた
め、排気成分バランスの影響(COHC,NOX、Co
t等)を受は難く、排気中の毒性成分による被毒量が少
ないため被毒による特性変化も受けにく(、しかも排気
の混合状態がよいため全気筒の平均的な空燃比を検出で
きる等上流側の空燃比センサに比較して、高精度で安定
した検出性能が得られる。
In other words, the air-fuel ratio sensor on the downstream side has difficulty in responsiveness because it is far from the combustion chamber, but since it is downstream of the exhaust purification catalyst, it is affected by the exhaust component balance (COHC, NOX, Co
t, etc.), and because the amount of poisoning by toxic components in the exhaust is small, it is also less susceptible to changes in characteristics due to poisoning (in addition, because the exhaust is in a good mixing state, the average air-fuel ratio of all cylinders can be detected. Highly accurate and stable detection performance can be obtained compared to air-fuel ratio sensors located on the same upstream side.

そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バンク補正係数を組み合わせたり、或いは上流側の空燃
比センサにより設定される空燃比フィードバック補正係
数の制御定数(比例骨や積分分)、上流側の空燃比セン
サの出力電圧の比較電圧や遅延時間を補正すること等に
よって上流側空燃比センサの出力特性のばらつきを下流
側の空燃比センサによって補償して高精度な空燃比フィ
ードバック制御を行うようにしている。
Therefore, it is possible to combine two air-fuel ratio feedbank correction coefficients that are respectively set by calculations similar to those described above based on the detection values of two air-fuel ratio sensors, or to use an air-fuel ratio feedback correction coefficient that is set by an upstream air-fuel ratio sensor. Variations in the output characteristics of the upstream air-fuel ratio sensor can be corrected by the downstream air-fuel ratio sensor by correcting the control constants (proportional and integral), comparison voltage and delay time of the output voltage of the upstream air-fuel ratio sensor, etc. This compensation is performed to perform highly accurate air-fuel ratio feedback control.

しかし、上記のように2個の空燃比センサによる空燃比
制御装置においては、フィードバック制御時の空燃比補
正に係わる要求レベルが、非フィードバンク制御時と大
きく離れることがあり、特に非フィードハック制御時か
らフィードバック制御時に移行する際のフィードバック
制御開始時点では次のような問題が発生する。
However, in the air-fuel ratio control device using two air-fuel ratio sensors as described above, the required level for air-fuel ratio correction during feedback control may be significantly different from that during non-feedbank control, especially in non-feedhack control. The following problem occurs at the start of feedback control when transitioning from time to feedback control.

即ち、上記の場合、通常下流側の空燃比センサによるフ
ィードバック制御速度は上流側の空燃比センサによるフ
ィードバック制御速度に比較して小さく設定されている
ので、下流側空燃比センサによるフィードバック制御で
制御される空燃比補正量(例えば上流側空燃比センサに
よる空燃比フィードバック補正係数の比例骨の補正量)
が要求値に達するのに時間を要し、延いては目標空燃比
に達するのに時間を要して、燃費、運転性、排気エミッ
ションの悪化等を招く。
That is, in the above case, the feedback control speed by the downstream air-fuel ratio sensor is usually set smaller than the feedback control speed by the upstream air-fuel ratio sensor, so the feedback control speed by the downstream air-fuel ratio sensor is not used. air-fuel ratio correction amount (for example, the proportional correction amount of the air-fuel ratio feedback correction coefficient by the upstream air-fuel ratio sensor)
It takes time for the air-fuel ratio to reach the required value, and in turn, it takes time to reach the target air-fuel ratio, resulting in deterioration of fuel efficiency, drivability, exhaust emissions, etc.

また、空燃比フィードバック制御中でも機関の運転状態
が異なる領域に遷移したときには、やはり空燃比が目標
空燃比から大きくずれることがあり、この場合にも、燃
費、運転性、排気エミッションの悪化等を招く。
Furthermore, even during air-fuel ratio feedback control, when the operating state of the engine changes to a different range, the air-fuel ratio may deviate significantly from the target air-fuel ratio, which also causes deterioration of fuel efficiency, drivability, and exhaust emissions. .

そこで、第2の空燃比補正量の平均的な値を逐次学習補
正値として演算し運転領域毎に記憶しておき、該学習補
正値を用いて燃料供給量を補正して設定することにより
、常に安定した空燃比制御を行えるようにしたものが提
案されている(特開昭63−97851号公報等参照)
Therefore, by sequentially calculating the average value of the second air-fuel ratio correction amount as a learning correction value and storing it for each driving region, and correcting and setting the fuel supply amount using the learning correction value, A system that allows stable air-fuel ratio control at all times has been proposed (see Japanese Patent Application Laid-Open No. 63-97851, etc.).
.

〈発明が解決しようとする課題〉 しかしながら、第2の空燃比補正量は第1の空燃比補正
量のずれを長期的に補正するものであるため、制御周期
は第1の空燃比補正量の制御周期に比較して非常に長く
、したがって前記学習補正値を記憶する運転領域を細か
くすることができない。即ち、運転領域を細かくすると
、各領域に留まる時間が短くなって学習が進行せず、ま
た、学習補正値の要求値がEGRの有無、吸入空気流量
や排気温度の条件によって異なる。
<Problems to be Solved by the Invention> However, since the second air-fuel ratio correction amount corrects the deviation of the first air-fuel ratio correction amount over a long period of time, the control period is longer than the first air-fuel ratio correction amount. It is very long compared to the control cycle, and therefore the operating range in which the learning correction value is stored cannot be made finer. That is, if the operating ranges are made smaller, the time spent in each range becomes shorter and learning does not progress, and the required value of the learning correction value differs depending on the presence or absence of EGR, intake air flow rate, and exhaust temperature conditions.

このように、運転領域が大きいと領域間で大幅な段差を
生じる一方、学習補正値の要求値は領域の切り換わり前
後で大きな段差は有しないため、空燃比に段差を生し、
排気エミッション性能を悪化させてしまうことがあった
In this way, if the operating range is large, there will be a large step difference between the regions, but since the required value of the learning correction value does not have a large step difference before and after switching between regions, a step difference will occur in the air-fuel ratio.
This sometimes resulted in deterioration of exhaust emission performance.

本発明は、このような従来の問題点に鑑みなされたもの
で、学習補正値が記憶される運転領域の切り換え前後で
学習精度を保ちつつ学習補正値の段差を極力無くすこと
により、上記問題点を解決した内燃機関の空燃比制御装
置を提供することを目的とする。
The present invention has been made in view of these conventional problems.The present invention solves the above-mentioned problems by eliminating as much as possible the difference in learning correction values while maintaining learning accuracy before and after switching the driving range in which learning correction values are stored. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that solves the problem.

〈課題を解決するための手段〉 このため本発明は第1図に示すように、機関の排気通路
に備えられた排気浄化触媒の上流側及び下流側に夫々設
けられ、空燃比によって変化する排気中特定気体成分の
濃度比に感応して出力値が変化する第1及び第2の空燃
比センサと、前記第1の空燃比センサの出力値に応じて
第1の空燃比補正量を演算する第1の空燃比補正量演算
手段と、 前記第2の空燃比センサの出力と学習補正値とに基づい
て第2の空燃比補正量を演算する第2の空燃比補正量演
算手段と、 前記第2の空燃比補正量の学習補正値を運転領域毎に記
憶する学習補正値記憶手段と、前記学習値記憶手段から
検索した学習補正値と第2の空燃比センサの出力とに基
づいて新たな学習補正値を設定すると共に、該学習補正
値で前記学習値記憶手段の対応する運転領域の学習補正
値を更新する学習補正値更新手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 学習補正値検索時の運転状態が、前回学習補正値が更新
された運転領域に属さない場合には前回更新時の学習補
正値と今回検索された学習補正値との平均値を演算し、
該平均値を学習補正値の初期値として学習補正値の更新
を行う学習補正値初期設定手段と、 を備えて構成した。
<Means for Solving the Problems> For this reason, as shown in FIG. calculating a first air-fuel ratio correction amount according to the output value of first and second air-fuel ratio sensors whose output values change in response to the concentration ratio of the middle specific gas component; and the first air-fuel ratio sensor. a first air-fuel ratio correction amount calculation means; a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the second air-fuel ratio sensor and the learning correction value; learning correction value storage means for storing a learning correction value of a second air-fuel ratio correction amount for each driving region; and learning correction value storage means for storing a learning correction value of a second air-fuel ratio correction amount; learning correction value updating means for setting a learning correction value and updating the learning correction value of the corresponding operating region in the learning value storage means with the learning correction value; the first air-fuel ratio correction amount; an air-fuel ratio correction amount calculation means for calculating a final air-fuel ratio correction amount based on the air-fuel ratio correction amount; If the state does not belong to the operating region in which the learning correction value was updated last time, calculate the average value of the learning correction value at the time of the previous update and the learning correction value searched this time,
Learning correction value initial setting means for updating the learning correction value using the average value as the initial value of the learning correction value.

く作用〉 第1の空燃比補正量設定手段は、第1の空燃比センサか
らの検出値に基づいて、第1の空燃比補正量を設定する
Function> The first air-fuel ratio correction amount setting means sets the first air-fuel ratio correction amount based on the detected value from the first air-fuel ratio sensor.

また、通常は学習補正値更新手段によって学習補正値記
憶手段の対応する運転領域から検索された学習補正値と
第2の空燃比センサからの出力値とに基づいて学習補正
値が更新されるが、その際に、前回更新時の運転領域と
前記検索された学習補正値の運転領域とが異なっている
場合には、学習補正値初期設定手段により検索された学
習補正値と前回更新時の学習補正値との平均値を学習補
正値の初期値として学習補正値の更新を行う。
Further, normally, the learning correction value is updated by the learning correction value updating means based on the learning correction value retrieved from the corresponding operating region in the learning correction value storage means and the output value from the second air-fuel ratio sensor. At that time, if the operating area at the time of the previous update and the operating area of the searched learning correction value are different, the learning correction value searched by the learning correction value initial setting means and the learning at the time of the previous update are different. The learning correction value is updated by using the average value of the learning correction value as the initial value of the learning correction value.

これにより、学習精度を保ちつつ、運転領域間の段差を
少なくして空燃比の変動を抑制できる。
Thereby, while maintaining learning accuracy, it is possible to reduce the difference in level between operating regions and suppress fluctuations in the air-fuel ratio.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に燃料供給手段としての電磁式の燃料噴射
弁15が設けられる。
In FIG. 2 showing the configuration of one embodiment, an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. An electromagnetic fuel injection valve 15 serving as a fuel supply means is provided for each cylinder in the downstream manifold portion.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ッシャレギュレータにより所定圧力6二制御された燃料
を噴射供給する。更に、機関11の冷却ジャケット内の
冷却水温度Twを検出する水温センサ17が設けられる
。一方、排気通路18にはマニホールド集合部に排気中
酸素濃度を検出することによって吸入混合気の空燃比を
検出する第1の空燃比センサ19が設けられ、その下流
側の排気管に排気中のCO,HCの酸化とNOxの還元
を行って浄化する排気浄化触媒としての三元触媒20が
設けられ、更に該三元触媒20の下流側に第1空燃比セ
ンサと同一の機能を持つ第2の空燃比センサ21が設け
られる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled at a predetermined pressure by a pressure regulator. Further, a water temperature sensor 17 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 11. On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold gathering part, and the exhaust gas A three-way catalyst 20 is provided as an exhaust purification catalyst that performs purification by oxidizing CO and HC and reducing NOx, and furthermore, a second air-fuel ratio sensor having the same function as the first air-fuel ratio sensor is provided downstream of the three-way catalyst 20. An air-fuel ratio sensor 21 is provided.

また、第2図で図示しないディストリビュータには、ク
ランク角センサ22が内蔵されており、該クランク角セ
ンサ22から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。
Further, the distributor (not shown in FIG. 2) has a built-in crank angle sensor 22, and a crank angle signal outputted from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10is)毎に行われる。
Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed every predetermined period (for example, 10 is).

ステップ(図ではSと記す)1では、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ24からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。このステップ
1の機能が基本燃料供給量設定手段に相当する。
In step 1 (denoted as S in the figure), the amount of intake air per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 24. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation. The function of step 1 corresponds to basic fuel supply amount setting means.

T、=KXQ/N   (Kは定数) ステップ2では、水温センサ17によって検出された冷
却水温度Tw等に基づいて各種補正係数C0EFを設定
する。
T,=KXQ/N (K is a constant) In step 2, various correction coefficients C0EF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.

ステップ3では、後述するフィードバック補正係数設定
ルーチンにより設定されたフィードバンク補正係数αを
読み込む。
In step 3, a feed bank correction coefficient α set by a feedback correction coefficient setting routine to be described later is read.

ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.

ステップ5では、最終的な燃料噴射量(燃料供給量)T
1を次式に従って演算する。このステップ5の機能が燃
料供給量設定手段に相当する。
In step 5, the final fuel injection amount (fuel supply amount) T
1 is calculated according to the following formula. The function of step 5 corresponds to fuel supply amount setting means.

T + = T p X COE F Xα+T。T+=TpXCOEFXα+T.

ステップ6では、演算された燃料噴射弁T、を出力用レ
ジスタにセットする。
In step 6, the calculated fuel injection valve T is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T1のパルス中
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射が行われる。
As a result, at a predetermined fuel injection timing synchronized with the engine rotation, a drive pulse signal having a pulse of the calculated fuel injection amount T1 is applied to the fuel injection valve 15, and fuel injection is performed.

次に、空燃比フィードバック補正係数設定ルーチンを第
4図に従って説明する。このルーチンは機関回転に同期
して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be explained with reference to FIG. This routine is executed in synchronization with engine rotation.

ステップ11では、空燃比のフィードバック制御を行う
運転条件であるか否かを判定する。運転条件を満たして
いないときには、このルーチンを終了する。この場合、
フィードバック補正係数αは前回のフィードバック制御
終了時の値若しくは一定の基準値にクランプされ、フィ
ードバック制御は停止される。
In step 11, it is determined whether the operating conditions are such that feedback control of the air-fuel ratio is performed. If the operating conditions are not met, this routine ends. in this case,
The feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップ12では、第1の空燃比センサ19からの信号
電圧VOR及び第2の空燃比センサ21からの信号電圧
V゛。2を入力する。
In step 12, the signal voltage VOR from the first air-fuel ratio sensor 19 and the signal voltage V' from the second air-fuel ratio sensor 21 are determined. Enter 2.

ステップ13では、ステップ11で入力した信号電圧V
OZと目標空燃比(理論空燃比)相当の基準値SLとを
比較し、空燃比がリーンからリッチ又はリッチからリー
ンへの反転時か否かを判定する。
In step 13, the signal voltage V input in step 11 is
OZ is compared with a reference value SL corresponding to the target air-fuel ratio (stoichiometric air-fuel ratio), and it is determined whether the air-fuel ratio is inverted from lean to rich or from rich to lean.

反転時と判定されたときはステップ14へ進み、機関回
転速度Nと基本燃料噴射量TPとに基づいて複数の運転
領域毎に後述する比例骨の学習補正値PH0SLを記憶
させたマツプ(コントロールユニン目6内蔵のマイクロ
コンピュータのRAMに記憶)から対応する運転領域に
記憶された学習補正値PH03tを検索する。尚、前記
マツプは、機関回転速度Nと基本燃料噴射IiT Pと
によって夫々2分され計4個の運転領域に区分され、こ
のマツプを書き込んだRAMが学習補正値記憶手段に相
当する。
When it is determined that it is the time of reversal, the process proceeds to step 14, where a map (control unit The learning correction value PH03t stored in the corresponding operating region is retrieved from the memory stored in the RAM of the built-in microcomputer in the sixth step. The map is divided into two parts depending on the engine rotational speed N and the basic fuel injection IiT P into a total of four operating ranges, and the RAM in which this map is written corresponds to the learning correction value storage means.

ステップ15では現在の運転状態(前記学習補正値検索
時の運転状態)が、前回の学習補正値P)10SL更新
時において前記マツプの運転領域に属しているか否かを
判定する。
In step 15, it is determined whether the current driving state (the driving state at the time of the learning correction value search) belongs to the driving region of the map at the time of the previous learning correction value P)10SL update.

そして、属していると判定された場合には、そのままス
テップ17へ進むが、属していないと判定された場合に
はステップ16へ進み、前記ステップ14で検索した学
習補正値PH05LOと前回異なる運転領域の更新され
た学習補正値PH05L−1との平均値を学習補正値P
H0SLの初期値として設定した後ステップ17へ進む
。即ち、前記ステップ15とステップ托の機能が学習補
正値初期設定手段に相当する。
If it is determined that it belongs, the process directly proceeds to step 17, but if it is determined that it does not belong, the process proceeds to step 16, and the operation area that is different from the previous learning correction value PH05LO searched in step 14 is The average value with the updated learning correction value PH05L-1 is the learning correction value P
After setting as the initial value of H0SL, the process advances to step 17. In other words, the functions of step 15 and step A correspond to learning correction value initial setting means.

ステップ17では、第2の空燃比センサ21からの信号
電圧v’、、と目標空燃比(理論空燃比)相当の基準値
SLとを比較する。
In step 17, the signal voltage v' from the second air-fuel ratio sensor 21 is compared with a reference value SL corresponding to the target air-fuel ratio (theoretical air-fuel ratio).

そして、空燃比がリッチ(V’oz>SL)と判定され
たときにはステップ18へ進み、ステップ14で検索さ
れ又はステップ16で初期設定された学習補正値PH0
SLから所定値叶HO5を差し引いた値を第2の空燃比
補正量P HOSとして設定する。
When the air-fuel ratio is determined to be rich (V'oz>SL), the process proceeds to step 18, and the learning correction value PH0 searched in step 14 or initialized in step 16 is
The value obtained by subtracting the predetermined value HO5 from SL is set as the second air-fuel ratio correction amount PHOS.

また、空燃比がリーン(■”。2<SL)と判定された
ときにはステップ19へ進み、同様に検索又は初期設定
された学習補正値PH0SLに、所定値DPHO5を加
算した値を第2の空燃比補正量P HOSとして設定す
る。
Furthermore, when the air-fuel ratio is determined to be lean (■".2<SL), the process proceeds to step 19, and the value obtained by adding the predetermined value DPHO5 to the similarly searched or initialized learning correction value PH0SL is added to the second air-fuel ratio. Set as fuel ratio correction amount PHOS.

即ち、前記ステップ14.17.18.19の機能が第
2の学習補正値演算手段に相当する。
That is, the functions of steps 14, 17, 18, and 19 correspond to the second learning correction value calculation means.

次いでステップ20では、マツプの対応する運転領域の
学習補正値PH0SLを前記第2の空燃比補正量P )
IOSによって書き換え更新する。
Next, in step 20, the learning correction value PH0SL of the corresponding operating region of the map is set as the second air-fuel ratio correction amount P).
Rewrite and update using IOS.

このように本実施例では第2の空燃比補正量をそのまま
学習補正値として記憶更新するため、ステップ14.1
7.18.19.20の機能が学習補正値更新手段に相
当する。
In this way, in this embodiment, the second air-fuel ratio correction amount is stored and updated as a learned correction value, so step 14.1
The functions of 7.18.19.20 correspond to learning correction value updating means.

次にステップ21へ進み、第1の空燃比センサ19によ
るリッチ、リーン判定を行い、リーン−リッチの反転時
にはステップ22へ進んで、空燃比フィードバック補正
係数α設定用のリッチ反転時に与える減少方向の比例骨
P、lを基準値Proから前記第2の空燃比補正量P 
HOSを減少した値で更新する。次いで、ステップ23
で空燃比フィードバンク補正係数αを現在値から前記比
例骨P、を滅じた値で更新する。
Next, the process proceeds to step 21, where the first air-fuel ratio sensor 19 makes a rich/lean judgment, and when the lean-rich state is reversed, the process proceeds to step 22, where the decreasing direction given at the time of rich reversal is used to set the air-fuel ratio feedback correction coefficient α. The proportional bones P, l are calculated from the reference value Pro by the second air-fuel ratio correction amount P.
Update HOS with reduced value. Then step 23
Then, the air-fuel ratio feed bank correction coefficient α is updated to a value obtained by subtracting the proportional bone P from the current value.

又、リッチ−リーンの反転時にはステップ24へ進み、
空燃比フィードバンク補正係数α設定用のリーン反転時
に与える増加方向の比例骨PLを基準値PLOに第2の
空燃比補正量P HOSを加算した値で更新する。次い
で、ステップ25で空燃比フィー下ハック補正係数αを
現在値に前記比例骨PLを加算した値で更新する。
Also, when the rich-lean state is reversed, the process proceeds to step 24,
The proportional bone PL in the increasing direction given at the time of lean inversion for setting the air-fuel ratio feed bank correction coefficient α is updated with the value obtained by adding the second air-fuel ratio correction amount P HOS to the reference value PLO. Next, in step 25, the air-fuel ratio fee lower hack correction coefficient α is updated with a value obtained by adding the proportional bone PL to the current value.

また、ステップ13で第1の空燃比センサ19の出力が
反転時でないと判定された時には、ステップ26へ進ん
でリンチ、リーン判定を行い、リッチ時はステップ27
へ進んで空燃比フィードバック補正係数αを現在値から
積分分■3を減少した値で更新し、リーン時はステップ
28へ進んで積分分Itを加算した値で更新する。
Further, when it is determined in step 13 that the output of the first air-fuel ratio sensor 19 is not in the inversion state, the process proceeds to step 26 to perform a lynch/lean determination, and if the output is rich, step 27
The process proceeds to step 28, where the air-fuel ratio feedback correction coefficient α is updated with a value obtained by subtracting the integral 3 from the current value, and when the process is lean, the process proceeds to step 28, where the air-fuel ratio feedback correction coefficient α is updated with a value obtained by adding the integral It.

ここで、ステップ21〜ステツプ28の部分でステップ
22.ステップ24による補正を除いて空燃比フィード
バック補正係数αを設定する機能が第1の空燃比センサ
19による第1の空燃比補正量設定手段に相当し、ステ
ップ22.ステップ24を含めてステップ21〜ステツ
プ28の部分が空燃比補正量設定手段に相当する。
Here, steps 21 to 28 are replaced by step 22. The function of setting the air-fuel ratio feedback correction coefficient α, excluding the correction in step 24, corresponds to the first air-fuel ratio correction amount setting means by the first air-fuel ratio sensor 19, and step 22. Steps 21 to 28 including step 24 correspond to air-fuel ratio correction amount setting means.

かかる構成とすれば、学習補正値PH05Lを更新する
運転領域が切り換わる際の学習補正値PH03,の段差
が従来の半分となり、学習精度と段差軽減との調和の採
れた空燃比補正が行われ、排気エミッション性能を向上
することができる。第5図は領域Aから領域Bへ運転状
態が移行する際の学習補正値PH05Lの変化を示した
もので、点線が従来例、実線が本発明の状態を示す。
With such a configuration, the difference in the learning correction value PH03 when the operating range in which the learning correction value PH05L is updated is changed to half that of the conventional one, and air-fuel ratio correction is performed that balances learning accuracy and reduction in difference. , the exhaust emission performance can be improved. FIG. 5 shows changes in the learning correction value PH05L when the operating state shifts from region A to region B, where the dotted line shows the conventional example and the solid line shows the state of the present invention.

尚、本実施例では第1の空燃比センサ19の検出値に基
づく空燃比フィードバック制御を基調としつつ、その空
燃比フィードバック補正係数の比例骨を第2の空燃比セ
ンサの検出値に基づいて補正するものに適用した例を示
したが、これに限らず夫々の空燃比センサによって空燃
比フィードバック補正係数を設定し、双方の値を合成し
て得た空燃比フィードバック補正係数を使用したり、第
1の空燃比センサによる空燃比フィードバック制御を行
いつつ、リッチ、リーン判定の基準値SLや出力遅延時
間を第2の空燃比センサの検出で補正したりするような
ものにも適用できる。
In this embodiment, while air-fuel ratio feedback control is based on the detected value of the first air-fuel ratio sensor 19, the proportionality of the air-fuel ratio feedback correction coefficient is corrected based on the detected value of the second air-fuel ratio sensor. Although we have shown an example in which the air-fuel ratio feedback correction coefficient is set by each air-fuel ratio sensor and the air-fuel ratio feedback correction coefficient obtained by combining both values is used, the application is not limited to this. The present invention can also be applied to a system in which the air-fuel ratio feedback control is performed using the first air-fuel ratio sensor while correcting the reference value SL for rich/lean determination or the output delay time using the detection by the second air-fuel ratio sensor.

また、学習補正値も本実施例では第2の空燃比補正量を
そのまま学習補正値として記憶する簡易な制御方式を示
したが、例えば、本実施例同様第1の空燃比セン、すの
リッチ、リーンに基づいて第2の空燃比補正量P HO
Sを増減補正しつつ、第2の空燃比センサの反転毎に該
反転時の補正量PH08と前回反転時の補正量P HO
Sとの平均値を演算し、且つ該平均値と過去の平均値の
加重平均値とを新たに加重平均して学習補正値を設定す
るような構成としてもよい。
Furthermore, as for the learning correction value, in this embodiment, a simple control method is shown in which the second air-fuel ratio correction amount is stored as a learning correction value. , the second air-fuel ratio correction amount P HO based on lean
While increasing or decreasing S, each time the second air-fuel ratio sensor is reversed, the correction amount PH08 at the time of the reversal and the correction amount PHO at the previous reversal are calculated.
It may be configured such that the learning correction value is set by calculating an average value with S, and then calculating a new weighted average of the average value and a weighted average value of past average values.

〈発明の効果〉 以上説明したように本発明によれば、排気浄化触媒の上
流側及び下流側に空燃比センサを備え、これら雨空燃比
センサの検出値に基づいて空燃比フィードバック制御を
行うものにおいて、学習補正値が更新される運転領域が
切り換わる際には、切り換え前後の学習補正値の更新値
と検索値との平均値を初期値として学習を行う構成とし
たため、学習の精度を保ちつつ、段差を極力無くした空
燃比フィードハック制御を行うことができ、排気エミッ
ション性能等を向上できる。
<Effects of the Invention> As explained above, according to the present invention, air-fuel ratio sensors are provided on the upstream and downstream sides of the exhaust purification catalyst, and air-fuel ratio feedback control is performed based on the detected values of these rain air-fuel ratio sensors. When the operating region where the learning correction value is updated changes, the learning is performed using the average value of the updated learning correction value before and after the change and the search value as the initial value, so the accuracy of learning can be maintained. , it is possible to perform air-fuel ratio feed-hack control with as little difference as possible, and it is possible to improve exhaust emission performance, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同じく空燃比フィートノ入・ツク補正係数設定ルーチン
を示すフローチャート、第5回は運転状態が異なる運転
領域間を移行する際の学習補正値P)IQsLの変化を
示した線図である。 11・・・内燃機関  12・・・吸気通路  15・
・・燃料噴射弁16・・・コントロールユニット  1
9・・・第1の空燃比センサ  20・・・三元触媒 
 21・・・第2の空燃比センサ 特許出願人   日本電子機器株式会社代理人 弁理士
 笹 島  冨二雄 第1図 第5図 第2図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the fuel injection amount setting routine of the same embodiment, and FIG. Similarly, the fifth flowchart is a flowchart showing the air-fuel ratio foot correction coefficient setting routine. 11... Internal combustion engine 12... Intake passage 15.
...Fuel injection valve 16...Control unit 1
9... First air-fuel ratio sensor 20... Three-way catalyst
21...Second Air-Fuel Ratio Sensor Patent Applicant Japan Electronics Co., Ltd. Agent Patent Attorney Fujio SasashimaFigure 1Figure 5Figure 2

Claims (1)

【特許請求の範囲】  機関の排気通路に備えられた排気浄化触媒の上流側及
び下流側に夫々設けられ、空燃比によって変化する排気
中特定気体成分の濃度比に感応して出力値が変化する第
1及び第2の空燃比センサと、前記第1の空燃比センサ
の出力値に応じて第1の空燃比補正量を演算する第1の
空燃比補正量演算手段と、 前記第2の空燃比センサの出力と学習補正値とに基づい
て第2の空燃比補正量を演算する第2の空燃比補正量演
算手段と、 前記第2の空燃比補正量の学習補正値を運転領域毎に記
憶する学習補正値記憶手段と、 前記学習補正値記憶手段から検索した学習補正値と第2
の空燃比センサの出力とに基づいて新たな学習補正値を
設定すると共に、該学習補正値で前記学習値記憶手段の
対応する運転領域の学習補正値を更新する学習補正値更
新手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 学習補正値検索時の運転状態が、前回学習補正値が更新
された運転領域に属さない場合には前回更新時の学習補
正値と今回検索された学習補正値との平均値を演算し、
該平均値を学習補正値の初期値として学習補正値の更新
を行う学習補正値初期設定手段と、 を備えて構成したことを特徴とする内燃機関の空燃比制
御装置。
[Claims] The catalyst is provided on the upstream and downstream sides of an exhaust purification catalyst provided in the exhaust passage of an engine, and its output value changes in response to the concentration ratio of a specific gas component in the exhaust gas, which changes depending on the air-fuel ratio. first and second air-fuel ratio sensors; first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to the output value of the first air-fuel ratio sensor; a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the fuel ratio sensor and the learning correction value; learning correction value storage means to store the learning correction value retrieved from the learning correction value storage means and a second learning correction value;
learning correction value updating means for setting a new learning correction value based on the output of the air-fuel ratio sensor, and updating the learning correction value of the corresponding operating region in the learning value storage means with the learning correction value; an air-fuel ratio correction amount calculation means for calculating a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount; In the control device, if the operating state at the time of the learning correction value search does not belong to the operating region in which the learning correction value was updated last time, the average value of the learning correction value at the previous update and the learning correction value searched this time is used. calculate,
An air-fuel ratio control device for an internal combustion engine, comprising: learning correction value initial setting means for updating a learning correction value using the average value as an initial value of the learning correction value.
JP11589390A 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2759545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11589390A JP2759545B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11589390A JP2759545B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0417750A true JPH0417750A (en) 1992-01-22
JP2759545B2 JP2759545B2 (en) 1998-05-28

Family

ID=14673808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11589390A Expired - Fee Related JP2759545B2 (en) 1990-05-07 1990-05-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2759545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153608A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Air/fuel ratio learning control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153608A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Air/fuel ratio learning control device for internal combustion engine

Also Published As

Publication number Publication date
JP2759545B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04109047A (en) Air-fuel ratio control device for internal combustion engine
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH0417750A (en) Air-fuel ratio control system of internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP2916804B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JPH06200809A (en) Air-fuel ratio control device of internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2004044444A (en) Air-fuel ratio control system of internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH08312422A (en) Air-fuel ratio control device of engine
JPH04124438A (en) Air fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees