JPH08312422A - Air-fuel ratio control device of engine - Google Patents

Air-fuel ratio control device of engine

Info

Publication number
JPH08312422A
JPH08312422A JP11339195A JP11339195A JPH08312422A JP H08312422 A JPH08312422 A JP H08312422A JP 11339195 A JP11339195 A JP 11339195A JP 11339195 A JP11339195 A JP 11339195A JP H08312422 A JPH08312422 A JP H08312422A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
idling
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11339195A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwano
岩野  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11339195A priority Critical patent/JPH08312422A/en
Publication of JPH08312422A publication Critical patent/JPH08312422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To maintain a logical mixing ratio while suppressing the torque variation of an engine in an idling time following an air-fuel ratio feedback control. CONSTITUTION: While an air-fuel ratio feedback correcting coefficiemt in the idling time after a warm-up to specific cylinders is operated by using a feedback constant in a nonidling time, the air-fuel ratio feedback correcting amount in the idling time after a warm-up to the remaining cylinders is clamped to a specific value, in an operation and clamping means 24, and the air-fuel ratio learning value in the idling time after the warm-up is operated by an operation means 25, depending on the air-fuel ratio feedback correcting coefficient as to the specific cylinders. A standard injection amount is corrected by the air-fuel ratio feedback correction coefficennt and the air-fuel ratio learning amount to the specific cylinders so as to correct the fuel injection amount, while the standard injection amount is corrected by the clamped air-fuel ratio feedback correction coefficient and the air-fuel learning value to the remaining cylinders so as to correct the fuel injection amount, by an oepration means 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はエンジンの空燃比制御
装置、特にO2センサーを用いて空燃比フィードバック
制御を行うものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine air-fuel ratio control device, and more particularly to an air-fuel ratio feedback control using an O 2 sensor.

【0002】[0002]

【従来の技術】排気管に三元触媒を設けるとともに、三
元触媒上流のO2センサーからの出力信号に基づいて排
気空燃比が理論空燃比となるように空燃比フィードバッ
ク制御を行うようにした制御システムにおいて、暖機後
アイドル時にも空燃比フィードバック制御を行うときは
その空燃比フィードバック制御に伴う空燃比変動がエン
ジンのトルク変動に大きく影響し、最悪の場合にはハン
チング等が発生して運転性を悪化させるので、暖機後ア
イドル時には比例分や積分分といった空燃比フィードバ
ック補正係数αを演算するための定数(以下フィードバ
ック定数という)を非アイドル時より小さい値に設定
し、暖機後アイドル時の空燃比の変動幅を抑制するもの
が提案されている(特開昭61−81544号公報参
照)。
2. Description of the Related Art A three-way catalyst is provided in an exhaust pipe, and air-fuel ratio feedback control is performed based on an output signal from an O 2 sensor upstream of the three-way catalyst so that the exhaust air-fuel ratio becomes a stoichiometric air-fuel ratio. In the control system, when the air-fuel ratio feedback control is performed even after idling after warming up, the air-fuel ratio fluctuation accompanying the air-fuel ratio feedback control greatly affects the torque fluctuation of the engine, and in the worst case, hunting occurs and the engine is operated. Performance is deteriorated, set a constant (hereinafter referred to as a feedback constant) for calculating the air-fuel ratio feedback correction coefficient α such as proportional or integral during idle after warm-up to a value smaller than that during non-idle It has been proposed to suppress the fluctuation range of the air-fuel ratio at the time (see Japanese Patent Laid-Open No. 61-81544).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、暖機後
アイドル時はもともと回転が低く非アイドル時のフィー
ドバック定数を用いたとしても空燃比フィードバック制
御周期が長くなり、空燃比の制御性が低下することがあ
るのに、従来例のようにフィードバック定数を非アイド
ル時より小さな値に設定するのでは、暖機後アイドル時
の空燃比の制御周期が一段と長引くことになるので、空
燃比がリーンとなっている時間が長びくことによって、
暖機後アイドル時のエンジン安定性がさらに悪くなる。
However, when the engine is idling after warm-up, the rotation is originally low, and the air-fuel ratio feedback control cycle becomes long even if the feedback constant at the time of non-idling is used, and the controllability of the air-fuel ratio deteriorates. However, if the feedback constant is set to a value smaller than that during non-idle as in the conventional example, the control cycle of the air-fuel ratio during idle after warm-up will be prolonged, and the air-fuel ratio will become lean. By spending more time
After warming up, the engine stability at idle becomes even worse.

【0004】一方、暖機後アイドル時に非アイドル時の
フィードバック定数を用いて数回だけ空燃比フィードバ
ック制御を行い、そのときの空燃比フィードバック補正
係数に基づいて空燃比学習値を演算しておき、その後の
アイドル時にはこの空燃比学習値を用いて燃料噴射パル
ス幅を演算するだけで空燃比フィードバック制御を中止
することが考えられる。
On the other hand, the air-fuel ratio feedback control is performed only a few times by using the feedback constant when the engine is idling after warming up, and the air-fuel ratio learning value is calculated based on the air-fuel ratio feedback correction coefficient at that time. At the time of idling thereafter, it is considered that the air-fuel ratio feedback control is stopped only by calculating the fuel injection pulse width using this air-fuel ratio learned value.

【0005】しかしながら、このものでは、走行状態か
らアイドル状態になったときのように、エンジンルーム
内の掃気の不十分によりエンジンルーム内温度が上昇し
て一時的に冷却水温や燃料温度が上昇するときに、冷
却水温の上昇により空気量検出誤差を修正するための補
正係数Ktrmの要求値が異なったり、燃料温度の上
昇により燃料密度が低下し供給燃料質量が変化するなど
の現象が生じ、徐々に空燃比が変化し理論混合比からず
れてくることがある。
However, in this engine, the temperature inside the engine room rises due to insufficient scavenging inside the engine room, and the temperature of the cooling water and the fuel temperature rise temporarily, as when the vehicle is in the idle state from the running state. At this time, the required value of the correction coefficient Ktrm for correcting the air amount detection error varies due to the increase of the cooling water temperature, and the phenomenon that the fuel density decreases due to the increase of the fuel temperature and the supplied fuel mass changes, and so on, gradually. The air-fuel ratio may change and deviate from the theoretical mixing ratio.

【0006】まずについて詳述すると、空気量検出誤
差は吸気脈動に伴う現象のため吸気脈動に影響を与える
絞り弁開度をパラメーターとして補正係数Ktrmの値
を設定し、エアフローメーターにより検出される吸入空
気量Qaに乗算することによって空気量補正を行ってい
る。一方、絞り弁がほぼ全閉位置にくるアイドル時に
は、アイドル回転数を維持するため、絞り弁をバイパス
する空気通路に設けた補助空気弁の開度を調整してい
る。この場合に、上記のようにエンジンルーム内温度の
上昇に伴う空気密度の低下により実質の空気量が低下
し、このことはアイドル回転の低下となって現れるの
で、アイドル安定性に必要な空気量(質量)を維持する
ために補助空気弁開度がエンジンルーム内温度の上昇が
ないときよりも大きくされる。しかしながら、絞り弁開
度はアイドル位置で変わらないため、アイドル回転の低
下に伴って空気量が増えたときにも同じ値のKtrmし
か与えられない。つまり、アイドル位置の絞り弁開度に
関係なく、補助空気弁によって調整される空気量の分だ
け、空気量検出誤差の要求補正値が変わってしまい、こ
のときの要求から空燃比学習値がずれてくるのである。
First, in detail, since the air amount detection error is a phenomenon associated with intake pulsation, the value of the correction coefficient Ktrm is set by using the throttle valve opening that affects the intake pulsation as a parameter, and the intake detected by the air flow meter is set. The air amount is corrected by multiplying the air amount Qa. On the other hand, at the time of idling when the throttle valve is almost in the fully closed position, the opening degree of the auxiliary air valve provided in the air passage that bypasses the throttle valve is adjusted in order to maintain the idling speed. In this case, as described above, the actual air amount decreases due to the decrease in the air density accompanying the increase in the temperature inside the engine room, which appears as a decrease in idle rotation. In order to maintain (mass), the opening degree of the auxiliary air valve is made larger than that when the temperature in the engine room does not rise. However, since the throttle valve opening does not change at the idle position, only the same value of Ktrm is given when the air amount increases as the idle rotation decreases. That is, the required correction value of the air amount detection error changes by the amount of air adjusted by the auxiliary air valve regardless of the throttle valve opening at the idle position, and the air-fuel ratio learning value deviates from the request at this time. It will come.

【0007】については、燃料流量は噴射弁のオリフ
ィスで決まる通過面積と燃料圧力で決まる流速を管理し
ているため体積流量管理となり、噴射弁の開弁時間でそ
の流量を調整している。したがって、燃料温度の上昇で
燃料密度が低下したときは、噴射弁の開弁時間が同じで
も質量流量が低下することになり、空燃比が変化してし
まうわけである。
With respect to the fuel flow rate, since the passage area determined by the orifice of the injection valve and the flow velocity determined by the fuel pressure are controlled, the volume flow rate is controlled, and the flow rate is adjusted by the opening time of the injection valve. Therefore, when the fuel density decreases due to the increase in fuel temperature, the mass flow rate decreases even if the injection valve opening time is the same, and the air-fuel ratio changes.

【0008】このように、の現象によって徐々に空
燃比が変化し理論混合比からずれてくる場合にはエンジ
ンの安定性を損なうだけでなく、触媒の転換性能が悪化
し、特にそのアイドル後に発進等の空気量増加があると
きは、触媒の転換性能が著しく低下して排気エミッショ
ンが悪くなる。アイドル時の空燃比のリーン側へのずれ
により、触媒に過剰のO2が触媒に、またリッチ側への
ずれにより過剰のCOが触媒にそれぞれ吸着されるた
め、その後の発進等で空気量増加があった場合には、そ
のときの空燃比が理論値になっていたとしても、先に吸
着されていた過剰のO2やCOにより触媒内部の空燃比
がずれることになり、排気エミッションが悪化するので
ある。
As described above, when the air-fuel ratio gradually changes and deviates from the theoretical mixing ratio due to the phenomenon of, not only the stability of the engine is impaired, but also the conversion performance of the catalyst is deteriorated, and the engine is started especially after the idling. If there is an increase in the amount of air, the conversion performance of the catalyst will be significantly reduced and exhaust emission will be deteriorated. Excessive O 2 is adsorbed to the catalyst due to the shift of the air-fuel ratio to the lean side during idling, and excess CO is adsorbed to the catalyst due to the shift to the rich side. In that case, even if the air-fuel ratio at that time is the theoretical value, the air-fuel ratio inside the catalyst will shift due to the excess O 2 or CO that was adsorbed earlier, and the exhaust emission will deteriorate. To do.

【0009】そこでこの発明は、暖機後アイドル時に特
定気筒でだけ非アイドル時のフィードバック定数を用い
て非アイドル時の空燃比フィードバック制御と空燃比学
習とを行い、他方、残りの気筒については暖機後アイド
ル時に空燃比フィードバック補正係数を所定値にクラン
プし、特定気筒について演算された空燃比学習値を用い
て残りの気筒についての燃料噴射パルス幅を演算するこ
とにより、空燃比フィードバック制御に伴うエンジンの
トルク変動を抑制しつつ理論混合比に保つことを目的と
する。
Therefore, the present invention performs air-fuel ratio feedback control and air-fuel ratio learning during non-idle by using the feedback constant during non-idle only in a specific cylinder during warm-up after idling, while warming the remaining cylinders. The air-fuel ratio feedback correction coefficient is clamped to a predetermined value when the engine is idle, and the air-fuel ratio learning control value calculated for the specific cylinder is used to calculate the fuel injection pulse width for the remaining cylinders. The purpose is to keep the theoretical mixture ratio while suppressing engine torque fluctuations.

【0010】[0010]

【課題を解決するための手段】第1の発明は、図8に示
すように、運転条件に応じた基本噴射量Tpを演算する
手段21と、暖機後アイドル時かどうかを判定する手段
22と、いずれの気筒であるかを判定する手段23と、
これら判定結果より特定気筒についての暖機後アイドル
時の空燃比フィードバック補正係数を非アイドル時のフ
ィードバック定数を用いて演算するとともに、残りの気
筒についての暖機後アイドル時の空燃比フィードバック
補正係数を所定値にクランプする手段24と、前記特定
気筒についての空燃比フィードバック補正係数に基づい
て暖機後アイドル時の空燃比学習値αmを演算する手段
25と、前記特定気筒については特定気筒について演算
される前記空燃比フィードバック補正係数と前記空燃比
学習値αmとで前記基本噴射量Tpを補正して燃料噴射
量を、また前記残りの気筒については残りの気筒につい
てクランプされる前記空燃比フィードバック補正係数と
前記空燃比学習値αmとで前記基本噴射量Tpを補正し
て燃料噴射量をそれぞれ演算する手段26と、これら演
算される燃料噴射量を対応する気筒に供給する手段27
とを設けた。
As shown in FIG. 8, a first invention is a means 21 for calculating a basic injection amount Tp according to an operating condition, and a means 22 for determining whether or not the engine is in a post-warm idle state. And means 23 for determining which cylinder it is,
From these judgment results, the air-fuel ratio feedback correction coefficient for the specific cylinder at the time of idling after warm-up is calculated using the feedback constant at the time of non-idling, and the air-fuel ratio feedback correction coefficient for the remaining cylinders at the time of idling after warm-up is calculated. Means 24 for clamping at a predetermined value, means 25 for calculating the air-fuel ratio learning value αm at the time of idling after warm-up based on the air-fuel ratio feedback correction coefficient for the specific cylinder, and for the specific cylinder, it is calculated for the specific cylinder. The basic fuel injection amount Tp is corrected by the air-fuel ratio feedback correction coefficient and the air-fuel ratio learning value αm, and the fuel injection amount is clamped with respect to the remaining cylinders. And the air-fuel ratio learning value αm, the basic injection amount Tp is corrected to determine the fuel injection amount. It is a means 26 for computing, means for supplying a fuel injection amount by these operations on the corresponding cylinder 27
And.

【0011】第2の発明では、第1の発明において、三
元触媒がバンク毎に独立して設けられるV型エンジンで
はバンク毎に独立に前記特定気筒を選択する。
According to a second aspect of the present invention, in the V-type engine according to the first aspect of the invention, in which the three-way catalyst is provided independently for each bank, the specific cylinder is independently selected for each bank.

【0012】第3の発明では、第1または第2の発明に
おいて、アイドル状態となってから空燃比フィードバッ
ク補正係数の所定の演算周期が経過するまでは前記暖機
後アイドル時の空燃比学習値の演算を行わない。
According to a third aspect of the present invention, in the first or second aspect of the invention, the air-fuel ratio learning value during idle after the warm-up until the predetermined calculation cycle of the air-fuel ratio feedback correction coefficient elapses. Is not calculated.

【0013】第4の発明では、第1から第3までのいず
れか一つの発明において、前記暖機後アイドル時の空燃
比学習値の演算に用いる更新係数を、暖機後アイドル時
に空燃比フィードバック制御を行っている特定気筒の空
燃比の全気筒分平均空燃比に対する割合が大きくなるほ
ど小さくなる値で設定する。
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the update coefficient used for calculating the air-fuel ratio learning value during idle after warm-up is used as an air-fuel ratio feedback during idle after warm-up. It is set to a value that decreases as the ratio of the air-fuel ratio of the specific cylinder under control to the average air-fuel ratio for all cylinders increases.

【0014】[0014]

【作用】暖機後アイドル時はもともと回転が低く非アイ
ドル時のフィードバック定数を用いたとしても空燃比フ
ィードバック制御周期が長くなり、空燃比の制御性が低
下することがあるのに、従来例のようにフィードバック
定数を非アイドル時より小さな値に設定するのでは、暖
機後アイドル時の空燃比の制御周期が一段と長引くこと
になるので、空燃比がリーンとなっている時間が長びく
ことによって、暖機後アイドル時のエンジン安定性がさ
らに悪くなる。
When the idling after warm-up is low and the feedback constant during non-idling is used originally, the air-fuel ratio feedback control cycle becomes long and the controllability of the air-fuel ratio may deteriorate. If the feedback constant is set to a value smaller than that during non-idle, the control cycle of the air-fuel ratio during idle after warm-up will be prolonged, and the time during which the air-fuel ratio is lean will increase. After warming up, the engine stability at idle becomes even worse.

【0015】これに対して第1の発明では、特定気筒に
ついての空燃比フィードバック補正係数に応じて特定気
筒についての空燃比が周期的に変化するが、特定気筒に
ついての暖機後アイドル時空燃比フィードバック補正係
数の演算に非アイドル時の空燃比フィードバック制御に
用いると同じフィードバック定数が用いられるので、特
定気筒の空燃比、全気筒の平均空燃比とも、空燃比の制
御周期が非アイドル時の空燃比フィードバック制御時の
制御周期と同程度になり、従来例のように制御周期が長
くなることがない。つまりアイドル時にリーンとなる期
間が長くならないので、燃焼不安定に至らないのであ
る。
On the other hand, in the first aspect of the invention, the air-fuel ratio of the specific cylinder periodically changes according to the air-fuel ratio feedback correction coefficient of the specific cylinder. Since the same feedback constants used for non-idle air-fuel ratio feedback control are used to calculate the correction coefficient, the air-fuel ratio when the control cycle of the air-fuel ratio is non-idle is used for both the air-fuel ratio of a specific cylinder and the average air-fuel ratio of all cylinders. The control cycle is almost the same as that in the feedback control, and the control cycle does not become long as in the conventional example. In other words, since the lean period during idling does not become long, combustion instability does not occur.

【0016】また、特定気筒についての暖機後アイドル
時空燃比フィードバック補正係数αに基づいて空燃比学
習値αmが演算され、この空燃比学習値αmが残りの気
筒についての暖機後アイドル時の燃料噴射量の演算に用
いられるので、残りの気筒についても平均空燃比が理論
空燃比付近で一定となり、燃焼安定性がよくなる。
Further, the air-fuel ratio learning value αm is calculated based on the post-warm-up idle-time air-fuel ratio feedback correction coefficient α for the specific cylinder, and the air-fuel ratio learning value αm is used for the remaining cylinders after warm-up idle fuel. Since it is used to calculate the injection amount, the average air-fuel ratio of the remaining cylinders becomes constant near the stoichiometric air-fuel ratio, and combustion stability improves.

【0017】また、全気筒の平均空燃比もほぼ理論混合
比となっているため、三元触媒の転換性能を損なうこと
もない。
Further, since the average air-fuel ratio of all the cylinders is almost the theoretical mixture ratio, the conversion performance of the three-way catalyst is not impaired.

【0018】一方、暖機後アイドル時に非アイドル時の
フィードバック定数を用いて数回だけ空燃比フィードバ
ック制御を行い、そのときの空燃比フィードバック補正
係数に基づいて空燃比学習値を演算しておき、その後の
アイドル時にはこの空燃比学習値を用いて燃料噴射パル
ス幅を演算するだけで空燃比フィードバック制御を中止
するものでは、走行状態からアイドル状態になったとき
のように、アイドル直後の一時的な冷却水温や燃料温度
の上昇に伴って、空気量検出誤差を修正するための補正
係数の要求値が異なったり、供給燃料質量が変化するな
どの現象が生じ、徐々に空燃比が変化し理論混合比から
ずれてくることがあるが、第1の発明では、暖機後アイ
ドル時に特定気筒について空燃比フィードバック制御が
必ず行われることから、暖機後アイドル時の空燃比が理
論空燃比の付近に保たれる。アイドル直後の一時的な冷
却水温や燃料温度の上昇に伴い、たとえば空燃比がかり
にリーン側にずれたとしても、この空燃比をリッチ側に
戻すため特定気筒についての燃料増量が行われ、全気筒
の平均空燃比が理論空燃比の付近に戻されるわけであ
る。
On the other hand, the air-fuel ratio feedback control is performed only a few times by using the feedback constant when the engine is idling after warming up, and the air-fuel ratio learning value is calculated based on the air-fuel ratio feedback correction coefficient at that time. At the time of idling thereafter, the air-fuel ratio feedback control is stopped only by calculating the fuel injection pulse width using this air-fuel ratio learning value. As the cooling water temperature and the fuel temperature rise, the correction coefficient required to correct the air amount detection error varies, the supplied fuel mass changes, and other phenomena occur, gradually changing the air-fuel ratio and causing theoretical mixing. However, in the first aspect of the invention, the air-fuel ratio feedback control must be performed for the specific cylinder at idle after warm-up. Et al., The air-fuel ratio during idling after warm-up is kept near the stoichiometric air-fuel ratio. Even if the air-fuel ratio shifts to the lean side due to a temporary increase in the cooling water temperature or the fuel temperature immediately after idling, the fuel increase for the specific cylinder is performed to return the air-fuel ratio to the rich side, and all cylinders are increased. The average air-fuel ratio of is returned to near the stoichiometric air-fuel ratio.

【0019】このようにして、第1の発明によれば、空
燃比フィードバック制御に伴うエンジンのトルク変動を
起こすことなく理論空燃比に保つことができ、これによ
ってアイドル時の安定性や排気エミッションを改善する
効果が得られる。
As described above, according to the first aspect of the present invention, the stoichiometric air-fuel ratio can be maintained without causing the torque fluctuation of the engine due to the air-fuel ratio feedback control, and thereby the stability at idle and the exhaust emission can be achieved. The effect of improvement is obtained.

【0020】第2の発明では、三元触媒がバンク毎に独
立して設けられるV型エンジンにおいて、バンク毎に独
立に特定気筒が選択されるので、V型エンジンにおいて
も、空燃比フィードバック制御に伴うエンジンのトルク
変動を起こすことなく理論空燃比に保つことができ、こ
れによってアイドル時の安定性や排気エミッションを改
善する効果が得られる。
According to the second aspect of the present invention, in the V-type engine in which the three-way catalyst is provided independently for each bank, the specific cylinder is selected independently for each bank. Therefore, the V-type engine also has the air-fuel ratio feedback control. The stoichiometric air-fuel ratio can be maintained without accompanying engine torque fluctuations, which has the effect of improving stability at idle and exhaust emission.

【0021】アイドル成立直後の空燃比はアイドル成立
前の運転状態による影響を強く受け、たとえば減速から
のアイドルではポート内の付着燃料がシリンダー内に吸
入されるため空燃比がアイドル成立直後に一時的にリッ
チ化することがあり、このときにまで暖機後アイドル時
の空燃比学習値の演算を行ったのでは、その学習値が安
定しないが、第3の発明では、アイドル状態となってか
ら空燃比フィードバック補正係数の所定の演算周期が経
過するまでは暖機後アイドル時の空燃比学習値の演算を
行わないので、その学習値が安定する。
The air-fuel ratio immediately after the idle is established is strongly influenced by the operating state before the idle is established. For example, in idle after deceleration, the adhering fuel in the port is sucked into the cylinder, so that the air-fuel ratio is temporarily set immediately after the idle is established. However, if the air-fuel ratio learning value is calculated after idling after warming up, the learning value is not stable. However, in the third invention, after the idling state, Until the predetermined calculation cycle of the air-fuel ratio feedback correction coefficient elapses, the air-fuel ratio learning value at the time of idling after warm-up is not calculated, so that the learning value becomes stable.

【0022】第4の発明では、前記暖機後アイドル時の
空燃比学習値の演算に用いる更新係数を、暖機後アイド
ル時に空燃比フィードバック制御を行っている特定気筒
の空燃比の全気筒分平均空燃比に対する割合を考慮して
設定、たとえば特定気筒の空燃比の影響が大きい場合に
は更新係数を小さい値とすればよいので、いずれの気筒
をも特定気筒として選択することができる。
In the fourth aspect of the present invention, the update coefficient used for calculating the air-fuel ratio learning value at the time of idling after warm-up is used for all cylinders of the air-fuel ratio of the specific cylinder for which air-fuel ratio feedback control is being performed at the time of idling after warm-up. The setting is made in consideration of the ratio to the average air-fuel ratio, for example, when the influence of the air-fuel ratio of the specific cylinder is large, the update coefficient may be set to a small value, so that any cylinder can be selected as the specific cylinder.

【0023】[0023]

【実施例】図1において、1はエンジン本体で、その吸
気通路8には吸気絞り弁5の下流に位置して燃料噴射弁
7が設けられ、コントロールユニット(図ではC/Uで
略記)2からの噴射信号により運転条件に応じて所定の
空燃比となるように、所定のタイミングごとに吸気中に
燃料を噴射供給する。この場合にエンジンに供給される
燃料流量は体積流量管理であり、噴射弁の開弁時間によ
ってその流量を調整している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, an engine body 1 is provided with a fuel injection valve 7 in an intake passage 8 located downstream of an intake throttle valve 5, and a control unit (abbreviated as C / U in the drawing) 2 Fuel is injected and supplied into the intake air at every predetermined timing so that a predetermined air-fuel ratio is obtained according to the operating condition by the injection signal from the. In this case, the flow rate of fuel supplied to the engine is controlled by volume flow rate, and the flow rate is adjusted by the opening time of the injection valve.

【0024】コントロールユニット2にはクランク角セ
ンサー4からのRef信号とPos信号、エアフローメ
ーター6からの吸入空気量信号、排気通路8に設置した
2センサー3からの空燃比(酸素濃度)信号、さらに
は水温センサー11からのエンジン冷却水温信号等が入
力され、これらに基づいてコントロールユニット2では
空燃比制御を行う。
In the control unit 2, the Ref signal and the Pos signal from the crank angle sensor 4, the intake air amount signal from the air flow meter 6, the air-fuel ratio (oxygen concentration) signal from the O 2 sensor 3 installed in the exhaust passage 8, Further, an engine cooling water temperature signal or the like from the water temperature sensor 11 is input, and the control unit 2 controls the air-fuel ratio based on these signals.

【0025】この空燃比制御では、吸入空気量Qとエン
ジン回転数Neとから基本噴射パルス幅TpをTp=k
×Q/Ne(ただしkは定数)の式により演算し、この
Tpを基本として、非アイドル時で空燃比フィードバッ
ク制御条件の成立時には空燃比フィードバック制御を行
うわけである。
In this air-fuel ratio control, the basic injection pulse width Tp is set to Tp = k from the intake air amount Q and the engine speed Ne.
The calculation is performed by the formula × Q / Ne (where k is a constant), and based on this Tp, the air-fuel ratio feedback control is performed when the air-fuel ratio feedback control condition is satisfied during non-idle.

【0026】また、空気量検出誤差を修正するための補
正係数Ktrmを導入し(公知)、このKtrmを吸気
脈動に影響を与える絞り弁開度をパラメーターとして設
定しており、この補正係数Ktrmをエアフローメータ
ーにより検出される吸入空気量Qaに乗算することによ
って空気量補正を行っている。つまり、Tpを演算する
ための空気量QをQ=Qa×Ktrmにより計算するの
である。
Further, a correction coefficient Ktrm for correcting the air amount detection error is introduced (known), and this Ktrm is set as a parameter of the throttle valve opening which influences the intake pulsation, and this correction coefficient Ktrm is set. The air amount is corrected by multiplying the intake air amount Qa detected by the air flow meter. That is, the air amount Q for calculating Tp is calculated by Q = Qa × Ktrm.

【0027】さて、暖機後アイドル時はもともと回転が
低く非アイドル時のフィードバック定数を用いたとして
も空燃比フィードバック制御周期が長くなり、空燃比の
制御性が低下することがあるので、従来例のようにフィ
ードバック定数を非アイドル時より小さな値に設定する
のでは、暖機後アイドル時の空燃比の制御周期が一段と
長引くことになり、暖機後アイドル時のエンジン安定性
がさらに悪くなる。
Since the rotation is originally low at the time of idling after warm-up and the feedback constant at the time of non-idling is used, the air-fuel ratio feedback control cycle may become long and the controllability of the air-fuel ratio may deteriorate. If the feedback constant is set to a value smaller than that in the non-idle state as described above, the control cycle of the air-fuel ratio at the time of idling after warming up is further prolonged, and the engine stability at idling after warming up becomes worse.

【0028】一方、暖機後アイドル時に非アイドル時の
フィードバック定数を用いて数回だけ空燃比フィードバ
ック制御を行い、そのときの空燃比フィードバック補正
係数に基づいて空燃比学習値を演算しておき、その後の
アイドル時にはこの空燃比学習値を用いて燃料噴射パル
ス幅を演算するだけで空燃比フィードバック制御を中止
するものでは、走行状態からアイドル状態になったとき
のようにエンジンルーム内の温度上昇で一時的に冷却水
温や燃料温度が上昇するときに、冷却水温の上昇により
上記のKtrmに対する要求値が異なったり、燃料温度
の上昇により燃料密度が低下し噴射弁からの供給燃料質
量が変化するなどの現象が生じ、徐々に空燃比が変化し
理論混合比からずれてくることがあり、この場合にはエ
ンジンの安定性を損なうだけでなく、触媒の転換性能が
悪化し、特にそのアイドル後に発進等の空気量増加があ
ると触媒の転換性能が著しく低下して排気エミッション
が悪くなる。
On the other hand, the air-fuel ratio feedback control is performed only a few times by using the feedback constant when the engine is idle after warming up, and the air-fuel ratio learning value is calculated based on the air-fuel ratio feedback correction coefficient at that time. At the time of idling thereafter, the air-fuel ratio feedback control is stopped only by calculating the fuel injection pulse width using this air-fuel ratio learned value. When the cooling water temperature or the fuel temperature rises temporarily, the required value for the above Ktrm differs due to the rise of the cooling water temperature, or the fuel density decreases due to the rise of the fuel temperature, and the fuel mass supplied from the injection valve changes. May occur, and the air-fuel ratio may gradually change and deviate from the theoretical mixture ratio.In this case, the stability of the engine Not only Nau, conversion performance of the catalyst deteriorates, the exhaust emission is deteriorated particularly decreases its When after idle is air amount increased starting such catalytic conversion performance significantly.

【0029】これに対処するため本発明では暖機後アイ
ドル時に特定気筒でだけ非アイドル時のフィードバック
定数を用いて非アイドル時の空燃比フィードバック制御
と空燃比学習とを行い、他方、残りの気筒については暖
機後アイドル時に空燃比フィードバック補正係数を所定
値にクランプし、特定気筒について演算された空燃比学
習値を用いて残りの気筒についての燃料噴射パルス幅を
演算する。
In order to cope with this, the present invention performs air-fuel ratio feedback control and air-fuel ratio learning in the non-idle state using the feedback constant in the non-idle state only in a specific cylinder during warm-up idle, while the remaining cylinders With respect to, the air-fuel ratio feedback correction coefficient is clamped to a predetermined value during idle after warm-up, and the fuel injection pulse width for the remaining cylinders is calculated using the air-fuel ratio learning value calculated for the specific cylinder.

【0030】コントロールユニット2で実行されるこの
制御の内容を、以下のフローチャートにしたがって説明
する。
The contents of this control executed by the control unit 2 will be described with reference to the following flow chart.

【0031】まず、図2のフローチャートは空燃比フィ
ードバック(図ではF/Bで略記)補正係数を演算する
ためのもので、Ref信号(各気筒が所定のクランク角
となったときにクランク角センサー4が出力するレファ
レンス信号:4気筒エンジンの場合はクランク角度18
0毎に発生)に同期して実行する。
First, the flow chart of FIG. 2 is for calculating an air-fuel ratio feedback (abbreviated as F / B in the figure) correction coefficient, and a Ref signal (a crank angle sensor when each cylinder reaches a predetermined crank angle). Reference signal output by 4: crank angle 18 in the case of a 4-cylinder engine
It occurs every 0).

【0032】STEP−1ではエンジン回転数Ne、基
本噴射パルス幅Tp、冷却水温Twから空燃比のフィー
ドバック制御条件が成立しているかどうかみて、空燃比
フィードバック制御条件が成立していないときは図2の
フローを終わる。空燃比フィードバック制御条件が成立
しない場合とは、始動時、低水温時などである。したが
って暖機後アイドル時には空燃比フィードバック制御条
件が成立する。
In STEP-1, the engine speed Ne, the basic injection pulse width Tp, and the cooling water temperature Tw are checked to see if the air-fuel ratio feedback control condition is satisfied. The flow ends. The case where the air-fuel ratio feedback control condition is not satisfied is when the engine is started, when the water temperature is low, or the like. Therefore, the air-fuel ratio feedback control condition is satisfied during idling after warm-up.

【0033】空燃比フィードバック制御条件が成立する
場合にはSTEP−2でアイドルスイッチからの信号よ
りアイドル(図ではIdleで略記)状態かどうかをみ
て、非アイドル時であればSTEP−7、−8で、従来
と同様にして非アイドル時の空燃比フィードバック補正
係数αの演算と非アイドル時の空燃比学習値αmの演算
とを行い、図2のフローを終了する。空燃比フィードバ
ック制御は比例積分制御のためフィードバック定数は比
例分Pと積分分Iである。
When the air-fuel ratio feedback control condition is satisfied, in STEP-2, it is checked from the signal from the idle switch whether it is in the idle state (abbreviated as Idle in the figure). If it is not idle, STEP-7, -8 Then, the air-fuel ratio feedback correction coefficient α at the time of non-idling and the air-fuel ratio learning value αm at the time of non-idling are calculated in the same manner as in the conventional case, and the flow of FIG. 2 ends. Since the air-fuel ratio feedback control is proportional-integral control, the feedback constant is proportional P and integral I.

【0034】アイドル状態のときはSTEP−3に進
み、アイドル状態になってからX周期の空燃比学習値の
演算が終了したかどうかみて、X周期が経過していない
ときは非アイドル時と同様にSTEP−7、−8に進ん
で図2のフローを終了する。
In the idle state, the process proceeds to STEP-3, and it is checked whether the calculation of the air-fuel ratio learning value in the X cycle has ended after the idle state. If the X cycle has not elapsed, it is the same as in the non-idle state. 2 to end the flow of FIG. 2.

【0035】ここで、アイドル状態となってからX周期
が経過するまでSTEP−4以降に進ませないのは次の
理由からである。アイドル成立直後の空燃比はアイドル
成立前の運転状態による影響を強く受け、たとえば減速
からのアイドルではポート内の付着燃料がシリンダー内
に吸入されるため空燃比がアイドル成立直後に一時的に
リッチ化することがある。そこで、アイドル成立後空燃
比が安定するまでを空燃比フィードバック補正係数の演
算周期で与え(これがX周期)、しばらくのあいだ通常
の空燃比フィードバック制御を行い、空燃比学習値を安
定させるのである。
Here, the reason why the process does not proceed to STEP-4 and thereafter until the X period elapses after the idle state is set is as follows. The air-fuel ratio immediately after the idling is strongly affected by the operating condition before the idling is established.For example, during idling after deceleration, the adhering fuel in the port is sucked into the cylinder, so the air-fuel ratio is temporarily enriched immediately after the idling is established. I have something to do. Therefore, the period until the air-fuel ratio becomes stable after the idling is established is given in the calculation period of the air-fuel ratio feedback correction coefficient (this is the X period), and the normal air-fuel ratio feedback control is performed for a while to stabilize the air-fuel ratio learning value.

【0036】Xの値はエンジンの種類によって異なり、
たとえばポート内の付着燃料が多くアイドル直後に空燃
比がなかなか安定しない場合には大きな値で、逆に空燃
比が安定しやすい場合には小さな値で設定すればよい。
The value of X depends on the type of engine,
For example, a large value may be set when the air-fuel ratio is not stable immediately after idling due to a large amount of adhered fuel in the port, and conversely, a small value may be set when the air-fuel ratio is easy to stabilize.

【0037】STEP−4では特定気筒であるかどうか
をみる。特定気筒はアイドル時に空燃比フィードバック
制御を実施する1つの気筒(たとえば1番気筒)のこと
である。
In STEP-4, it is checked whether the cylinder is a specific cylinder. The specific cylinder is one cylinder (for example, the first cylinder) that performs the air-fuel ratio feedback control during idling.

【0038】特定気筒でなく残りの気筒であるときはS
TEP−9に進み、残りの気筒についての空燃比フィー
ドバック補正係数αの値を1にクランプ(つまり空燃比
フィードバック制御を行わない)して、図2のフローを
終了する。
When it is not the specific cylinder but the remaining cylinders, S
Proceeding to TEP-9, the value of the air-fuel ratio feedback correction coefficient α for the remaining cylinders is clamped to 1 (that is, the air-fuel ratio feedback control is not performed), and the flow of FIG. 2 ends.

【0039】特定気筒であれば、STEP−5、−6に
進んで、特定気筒についての暖機後アイドル時の空燃比
フィードバック補正係数αの演算と暖機後アイドル時の
空燃比学習値αmの演算とを行う。
If it is a specific cylinder, the process proceeds to STEP-5 and -6 to calculate the air-fuel ratio feedback correction coefficient α at the time of idling after warming up for the specific cylinder and to calculate the air-fuel ratio learning value αm at the time of idling after warming up. Perform calculations and.

【0040】暖機後アイドル時の空燃比フィードバック
制御および空燃比学習は、非アイドル時の空燃比フィー
ドバック制御および空燃比学習と基本的に同じで、非ア
イドル時のフィードバック定数をそのまま用い、また記
号α、αmも同じものを使う。
The air-fuel ratio feedback control and the air-fuel ratio learning at the time of idling after warm-up are basically the same as the air-fuel ratio feedback control and the air-fuel ratio learning at the time of non-idling, and the feedback constant at the time of non-idling is used as it is. The same thing is used for α and αm.

【0041】まず特定気筒についての暖機後アイドル時
の空燃比フィードバック補正係数αの演算については図
3のフローチャートによって説明する。
First, the calculation of the air-fuel ratio feedback correction coefficient α at the time of idling after warming up for a specific cylinder will be described with reference to the flowchart of FIG.

【0042】図3のSTEP−1ではO2センサー(図
ではO2/Sで略記)出力とリッチ、リーンを判定する
スライスレベルVSLとを比較する。なお、特定気筒で
燃焼したときの排気空燃比を検出するために、ここで使
うO2センサー出力の読み込みは特定気筒の排気行程で
行う。
In STEP-1 of FIG. 3, the output of the O 2 sensor (abbreviated as O 2 / S in the figure) is compared with the slice level VSL for determining rich or lean. In addition, in order to detect the exhaust air-fuel ratio when burning in a specific cylinder, the output of the O 2 sensor used here is read in the exhaust stroke of the specific cylinder.

【0043】O2センサー出力がVSLより大きいとき
はSTEP−2に進み、前回のO2センサー出力とVS
Lの比較を行う。VSLより前回のO2センサー出力の
ほうが大きい場合にはSTEP−3、−4に、前回のO
2センサー出力のほうが小さい場合にはSTEP−5、
−6に進む。つまり、STEP−3、−4に流れるのは
今回の空燃比がリッチでかつ前回の空燃比がリッチの場
合(リッチ状態が続いている場合)、またSTEP−
5、−6に流れるのは空燃比がリーンからリッチに反転
した瞬間である。したがって、STEP−3、−4で
は、フィードバック定数である積分分Iに所定値−I0
(I0>0)を、もう一つのフィードバック定数である
比例分Pに0をそれぞれ入れ、またSTEP−5、−6
では積分分Iに0を、比例分Pに所定値−Pr(Pr>
0)をそれぞれ入れる。
When the O 2 sensor output is larger than VSL, the process proceeds to STEP-2, where the previous O 2 sensor output and VS are compared.
Compare L. If the previous O 2 sensor output is larger than VSL, go to STEP-3 and -4.
2 If the sensor output is smaller, STEP-5,
Go to -6. That is, what flows to STEP-3 and -4 is when the air-fuel ratio of this time is rich and the air-fuel ratio of the previous time is rich (when the rich state continues), or STEP-
The flow to 5 and -6 is the moment when the air-fuel ratio is reversed from lean to rich. Therefore, in STEP-3 and -4, the integral I, which is the feedback constant, has a predetermined value -I 0.
(I 0 > 0) is set to 0 in the proportional component P which is another feedback constant, and STEP-5 and -6
Then, the integral component I is set to 0 and the proportional component P is set to a predetermined value −Pr (Pr>
0) respectively.

【0044】同様にして、STEP−1でO2センサー
出力がVSLより小さい場合はSTEP−9に進み、S
TEP−2と同様に前回のO2センサー出力とVSLの
比較を行い、前回のO2センサー出力のほうが小さいと
きはSTEP−13に、前回のO2センサー出力のほう
が大きいときはSTEP−10に進む。つまり、STE
P−13、−14に流れるのはリーン状態が続いている
場合、またSTEP−10、−11に流れるのは空燃比
がリッチからリーンに反転した瞬間である。したがっ
て、STEP−13、−14では積分分Iに所定値I0
を、比例分Pに0をそれぞれ入れ、またSTEP−1
0、−11では積分分Pに0を、比例分Pに所定値Pl
(Pl>0)をそれぞれ入れる。
Similarly, if the output of the O 2 sensor is smaller than VSL in STEP-1, the process proceeds to STEP-9 and S
Similar to TEP-2, the previous O 2 sensor output is compared with VSL. If the previous O 2 sensor output is smaller, go to STEP-13. If the previous O 2 sensor output is greater, go to STEP-10. move on. That is, STE
P-13 and -14 flow when the lean state continues, and STEP-10 and -11 flow at the moment when the air-fuel ratio changes from rich to lean. Therefore, in STEP-13 and -14, the integrated value I is set to the predetermined value I 0.
, 0 in proportional P, and STEP-1
At 0 and -11, 0 is set for the integral P and a predetermined value Pl is set for the proportional P.
(Pl> 0) respectively.

【0045】一方、空燃比がリーンからリッチに反転し
た瞬間において空燃比フィードバック補正係数αが極大
値をとるので、STEP−7ではこのときのαを極大値
αmaxとしてメモリーに記憶し、またリッチからリー
ンに反転した瞬間において空燃比フィードバック補正係
数αが極小値をとるので、STEP−12でこのときの
αを極小値αminとしてメモリーに記憶する。反転時
にはまたSTEP−8で極大値αmaxと極小値αmi
nとの平均値αmeanを計算した後、これもメモリー
に記憶する。、STEP−15では積分分Iと比例分P
の和を前回の空燃比フィードバック補正係数αに加算す
ることによって空燃比フィードバック補正係数αを更新
し、図3のフローを終了する。
On the other hand, since the air-fuel ratio feedback correction coefficient α takes a maximum value at the moment when the air-fuel ratio is changed from lean to rich, in STEP-7, α at this time is stored in the memory as a maximum value αmax, and from rich, Since the air-fuel ratio feedback correction coefficient α takes a minimum value at the moment of lean reversal, in STEP-12 α at this time is stored in the memory as a minimum value αmin. At the time of reversal, again in STEP-8, the maximum value αmax and the minimum value αmi
After calculating the mean value αmean with n, this is also stored in memory. , STEP-15, integral I and proportional P
Is added to the previous air-fuel ratio feedback correction coefficient α to update the air-fuel ratio feedback correction coefficient α, and the flow of FIG. 3 ends.

【0046】次に、暖機後アイドル時の空燃比学習値α
mの演算について図4のフローチャートによって説明す
る。
Next, the air-fuel ratio learning value α during idling after warm-up
The calculation of m will be described with reference to the flowchart of FIG.

【0047】図4のSTEP−1ではエンジンの運転条
件より学習条件が成立するかどうかみて、学習条件が非
成立のときには図4のフローを終了する。
In STEP-1 of FIG. 4, the learning condition is satisfied based on the engine operating condition. When the learning condition is not satisfied, the flow of FIG. 4 is terminated.

【0048】学習条件が成立したときは、STEP−2
でメモリーに記憶させている空燃比フィードバック補正
係数の平均値αmeanを読み込み、STEP−3で学
習値を更新するのに用いる更新係数K(0≦K≦1)を
演算し、STEP−4で暖機後アイドル時の空燃比学習
値αmを αm=αm(前回)+K・(αmean−1) …(1) ただし、αm(前回):前回のαmの式によりで更新
し、図4のフローを終了する。
When the learning condition is satisfied, STEP-2
The average value αmean of the air-fuel ratio feedback correction coefficient stored in the memory is read by, the update coefficient K (0 ≦ K ≦ 1) used to update the learning value is calculated in STEP-3, and the warm-up is performed in STEP-4. The air-fuel ratio learning value αm at the time of idling after the aircraft is αm = αm (previous) + K · (αmean-1) (1) where αm (previous): is updated by the equation of previous αm, and the flow of FIG. 4 is changed. finish.

【0049】空燃比フィードバック補正係数αの制御中
心値は暖機後アイドル時にも1.0であるから、1−α
meanの値が暖機後アイドル時の空燃比学習値αmの
エラー分であり、(1)式によればαmのエラー分に更
新係数Kを乗算した値だけ前回値を書き換えるわけであ
る。なお、学習値αmはエンジンの停止後もバックアッ
プしておくことはいうまでもない。
Since the control center value of the air-fuel ratio feedback correction coefficient α is 1.0 even after idling after warming up, 1-α
The value of mean is an error amount of the air-fuel ratio learning value αm after idling after warming up, and according to the equation (1), the previous value is rewritten by a value obtained by multiplying the error amount of αm by the update coefficient K. Needless to say, the learning value αm is backed up even after the engine is stopped.

【0050】上記Kの値は暖機後アイドル時に空燃比フ
ィードバック制御を行っている特定気筒空燃比の全気筒
分平均空燃比に対する割合を考慮して設定する。たとえ
ば特定気筒の空燃比の影響が大きい場合にはKを小さい
値とすればよい。
The value of K is set in consideration of the ratio of the air-fuel ratio of the specific cylinder for which the air-fuel ratio feedback control is performed at the time of idling after warm-up to the average air-fuel ratio for all cylinders. For example, when the influence of the air-fuel ratio of the specific cylinder is large, K may be set to a small value.

【0051】このようにして全気筒に共通の暖機後アイ
ドル時空燃比学習値αmを更新したら図2に戻って図2
のフローチャートを終了する。
When the post-warm-up idle air-fuel ratio learning value αm common to all cylinders is updated in this way, the flow returns to FIG.
The flow chart of is ended.

【0052】図5のフローチャートは、燃料噴射パルス
幅Tiの演算を行うためのもので、これも10ms周期
で実行する。STEP−1では所定の空燃比が得られる
基本噴射パルス幅Tpを、Q/Neに定数kと空気量検
出誤差を修正するための補正係数Ktrmとを乗算する
ことによって求め、STEP−2では燃料噴射パルス幅
Tiを、 Ti=Tp×TFBYA×(α+αm−1)×2+Ts …(2) の式によって計算し、図5のフローを終了する。
The flowchart of FIG. 5 is for calculating the fuel injection pulse width Ti, which is also executed in a cycle of 10 ms. In STEP-1, the basic injection pulse width Tp with which a predetermined air-fuel ratio is obtained is obtained by multiplying Q / Ne by a constant k and a correction coefficient Ktrm for correcting the air amount detection error, and in STEP-2, the fuel injection is performed. The ejection pulse width Ti is calculated by the following formula: Ti = Tp × TFBYA × (α + αm−1) × 2 + Ts (2), and the flow of FIG. 5 ends.

【0053】(2)式においてTFBYAは目標燃空比
で、暖機後アイドル時には1となる。Tsは電圧低下に
伴う噴射弁の開弁遅れを補正するための補正分である。
In the equation (2), TFBYA is the target fuel-air ratio, which becomes 1 during idling after warm-up. Ts is a correction amount for correcting the valve opening delay of the injection valve due to the voltage drop.

【0054】(2)式のTiは一般式であるので、これ
を暖機後アイドル時につき、特定気筒と残りの気筒につ
いて分けて書くと次のようになる。つまり、暖機後にア
イドルになるたびに、空燃比フィードバック制御が特定
気筒でだけ行われ、このとき特定気筒について求められ
る空燃比フィードバック補正係数から演算される空燃比
学習値は全気筒に共通に用いられるのである。
Since Ti in the equation (2) is a general equation, it is as follows when it is written separately for the specific cylinder and the remaining cylinders at the time of idling after warming up. In other words, every time the engine becomes idle after warm-up, the air-fuel ratio feedback control is performed only in the specific cylinder, and the air-fuel ratio learning value calculated from the air-fuel ratio feedback correction coefficient obtained for the specific cylinder is used in common for all cylinders. Be done.

【0055】 特定気筒:Ti=Tp×(α+αm−1)×2+Ts …(3) 残りの気筒:Ti=Tp×(1+αm−1)×2+Ts =Tp×αm×2+Ts …(4) コントロールユニット2の内部では、このようにして求
めたTiの値が出力レジスターに書き込まれ、特定気筒
についての噴射タイミングになると、特定気筒の噴射弁
に(3)式のTiに応じた駆動信号が、また残りの気筒
についての噴射タイミングになると、残りの気筒の噴射
弁に(4)式のTiに応じた駆動信号が出力され、燃料
噴射がシーケンシャルに行われる(図6のSTEP−
1)。図6の処理は具体的にはRef信号に同期して行
われる。
Specific cylinder: Ti = Tp × (α + αm−1) × 2 + Ts (3) Remaining cylinders: Ti = Tp × (1 + αm−1) × 2 + Ts = Tp × αm × 2 + Ts (4) Control unit 2 Internally, the value of Ti obtained in this way is written in the output register, and when the injection timing for the specific cylinder comes, the drive signal corresponding to the Ti of the formula (3) is applied to the injection valve of the specific cylinder and the remaining At the injection timing for the cylinders, a drive signal corresponding to Ti in equation (4) is output to the injection valves of the remaining cylinders, and fuel injection is performed sequentially (STEP- in FIG. 6).
1). The process of FIG. 6 is specifically performed in synchronization with the Ref signal.

【0056】ここで、本発明による作用を説明する。Now, the operation of the present invention will be described.

【0057】上記のように、走行状態からアイドル状態
になったときのように、アイドル直後の一時的な冷却水
温や燃料温度の上昇に伴って、空気量検出誤差を修正す
るための補正係数の要求値が異なったり、供給燃料質量
が変化するなどの現象が生じ、徐々に空燃比が変化し理
論混合比からずれてくることがある場合でも、本発明で
は、暖機後アイドル時に特定気筒について空燃比フィー
ドバック制御が必ず行われることから、暖機後アイドル
時の空燃比が理論空燃比の付近に保たれる。アイドル直
後の一時的な冷却水温や燃料温度の上昇に伴い、たとえ
ば空燃比がかりにリーン側にずれたとしても、この空燃
比をリッチ側に戻すため特定気筒についてのαが1.0
より大きくなり、特定気筒についての燃料増量が行わ
れ、全気筒の平均空燃比が理論空燃比の付近に戻される
わけである。
As described above, the correction coefficient of the correction coefficient for correcting the air amount detection error is temporarily increased immediately after the idling, such as when the running state is changed to the idling state. Even when a phenomenon such as a different required value or a change in the supplied fuel mass occurs and the air-fuel ratio gradually changes and deviates from the stoichiometric mixture ratio, the present invention relates to a specific cylinder during idling after warm-up. Since the air-fuel ratio feedback control is always performed, the air-fuel ratio during idling after warm-up is maintained near the stoichiometric air-fuel ratio. Even if the air-fuel ratio deviates to the lean side due to a temporary increase in the cooling water temperature or the fuel temperature immediately after idling, α is 1.0 for the specific cylinder in order to return the air-fuel ratio to the rich side.
Therefore, the fuel amount is increased for a specific cylinder, and the average air-fuel ratios of all the cylinders are returned to near the stoichiometric air-fuel ratio.

【0058】また、特定気筒についての空燃比フィード
バック補正係数αに応じて特定気筒についての空燃比が
周期的に変化するが、特定気筒についての暖機後アイド
ル時空燃比フィードバック補正係数αの演算に非アイド
ル時の空燃比フィードバック制御に用いると同じフィー
ドバック定数を用いているので、特定気筒の空燃比、全
気筒の平均空燃比とも、空燃比の制御周期が非アイドル
時の空燃比フィードバック制御時の制御周期と同程度に
なり、従来例のように制御周期が長くなることがない
(図7参照)。つまりアイドル時にリーンとなる期間が
長くならないので、燃焼不安定に至らないのである。
Further, although the air-fuel ratio of the specific cylinder changes periodically according to the air-fuel ratio feedback correction coefficient α of the specific cylinder, it is not calculated in the post-warm idle air-fuel ratio feedback correction coefficient α of the specific cylinder. Since the same feedback constants used for air-fuel ratio feedback control during idling are used, control for air-fuel ratio feedback control when the air-fuel ratio control cycle is non-idle for both the air-fuel ratio of a specific cylinder and the average air-fuel ratio of all cylinders It becomes almost the same as the cycle, and the control cycle does not become longer as in the conventional example (see FIG. 7). In other words, since the lean period during idling does not become long, combustion instability does not occur.

【0059】一方、特定気筒についての暖機後アイドル
時空燃比フィードバック補正係数αから全気筒に共通の
暖機後アイドル時空燃比学習値αmが演算され、この空
燃比学習値αmが残りの気筒についての暖機後アイドル
時の燃料噴射パルス幅の設定に用いられるので、残りの
気筒についても空燃比が理論空燃比付近で一定となり、
燃焼安定性がよくなる。
On the other hand, the post-warm idle air-fuel ratio learning value αm common to all cylinders is calculated from the post-warm idle air-fuel ratio feedback correction coefficient α for the specific cylinder, and this air-fuel ratio learning value αm is calculated for the remaining cylinders. Since it is used to set the fuel injection pulse width during idle after warm-up, the air-fuel ratio for the remaining cylinders is constant near the theoretical air-fuel ratio,
Combustion stability is improved.

【0060】また、全気筒の平均空燃比もほぼ理論混合
比となっているため、三元触媒の転換性能を損なうこと
もない。
Further, since the average air-fuel ratios of all the cylinders are almost the theoretical mixing ratio, the conversion performance of the three-way catalyst will not be impaired.

【0061】なお、いずれの気筒を特定気筒に選択しよ
うと、上記の更新係数Kを適切に設定してやることで対
応可能である。さらにV型エンジンのように三元触媒が
バンク毎に独立して設けられる場合にはバンク毎に独立
に特定気筒を選択する必要がある。
It should be noted that which cylinder is selected as the specific cylinder can be dealt with by appropriately setting the above-mentioned update coefficient K. Furthermore, when a three-way catalyst is provided independently for each bank like a V-type engine, it is necessary to select a specific cylinder independently for each bank.

【0062】[0062]

【発明の効果】第1の発明では、空燃比フィードバック
制御に伴うエンジンのトルク変動を起こすことなく理論
空燃比に保つことができ、これによってアイドル時の安
定性や排気エミッションを改善する効果が得られる。
According to the first aspect of the present invention, the stoichiometric air-fuel ratio can be maintained without causing the engine torque fluctuations associated with the air-fuel ratio feedback control, which has the effect of improving the stability at idle and exhaust emission. To be

【0063】第2の発明では、V型エンジンにおいて
も、空燃比フィードバック制御に伴うエンジンのトルク
変動を起こすことなく理論空燃比に保つことができ、こ
れによってアイドル時の安定性や排気エミッションを改
善する効果が得られる。
According to the second aspect of the invention, even in the V-type engine, the stoichiometric air-fuel ratio can be maintained without causing engine torque fluctuations associated with the air-fuel ratio feedback control, thereby improving stability at idle and exhaust emission. The effect is obtained.

【0064】第3の発明では、ポート内の付着燃料がシ
リンダー内に吸入されるため空燃比がアイドル成立直後
に一時的にリッチ化する減速からのアイドルにおいて暖
機後アイドル時の空燃比学習値の演算を行うことによる
学習値の不安定を避けることができる。
In the third aspect of the present invention, the adhering fuel in the port is sucked into the cylinder, so that the air-fuel ratio is temporarily enriched immediately after the idling is established. It is possible to avoid instability of the learning value due to the calculation of.

【0065】第4の発明では、いずれの気筒をも特定気
筒として選択することができる。
In the fourth invention, any cylinder can be selected as the specific cylinder.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の制御システム図である。FIG. 1 is a control system diagram of an embodiment.

【図2】空燃比フィードバック補正係数αの演算を説明
するためのフローチャートである。
FIG. 2 is a flowchart for explaining calculation of an air-fuel ratio feedback correction coefficient α.

【図3】特定気筒についての暖機後アイドル時の空燃比
フィードバック補正係数αの演算を説明するためのフロ
ーチャートである。
FIG. 3 is a flowchart for explaining calculation of an air-fuel ratio feedback correction coefficient α for a specific cylinder at the time of idling after warm-up.

【図4】全気筒に共通の暖機後アイドル時の空燃比学習
値αmの演算を説明するためのフローチャートである。
FIG. 4 is a flowchart for explaining calculation of an air-fuel ratio learning value αm during idle after warm-up, which is common to all cylinders.

【図5】燃料噴射パルス幅Tiの演算を説明するための
フローチャートである。
FIG. 5 is a flowchart for explaining calculation of a fuel injection pulse width Ti.

【図6】噴射タイミングに同期して実行するフローチャ
ートである。
FIG. 6 is a flowchart executed in synchronization with injection timing.

【図7】暖機後アイドル時の空燃比フィードバック制御
を説明するための波形図である。
FIG. 7 is a waveform diagram for explaining air-fuel ratio feedback control at the time of idling after warm-up.

【図8】第1の発明のクレーム対応図である。FIG. 8 is a diagram corresponding to claims of the first invention.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 コントロールユニット 3 O2センサー 4 クランク角センサー 6 エアフローメーター 7 燃料噴射弁(燃料供給手段) 11 水温センサー 21 基本噴射量演算手段 22 暖機後アイドル時判定手段 23 気筒判定手段 24 空燃比フィードバック補正係数演算・クランプ手
段 25 空燃比学習値演算手段 26 燃料噴射量演算手段 27 燃料供給手段
1 Engine Main Body 2 Control Unit 3 O 2 Sensor 4 Crank Angle Sensor 6 Air Flow Meter 7 Fuel Injection Valve (Fuel Supply Means) 11 Water Temperature Sensor 21 Basic Injection Amount Calculation Means 22 Warm Up Idle Judgment Means 23 Cylinder Judgment Means 24 Air-Fuel Ratio Feedback correction coefficient calculation / clamping means 25 Air-fuel ratio learning value calculation means 26 Fuel injection amount calculation means 27 Fuel supply means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】運転条件に応じた基本噴射量を演算する手
段と、 暖機後アイドル時かどうかを判定する手段と、 いずれの気筒であるかを判定する手段と、 これら判定結果より特定気筒についての暖機後アイドル
時の空燃比フィードバック補正係数を非アイドル時のフ
ィードバック定数を用いて演算するとともに、残りの気
筒についての暖機後アイドル時の空燃比フィードバック
補正係数を所定値にクランプする手段と、 前記特定気筒についての空燃比フィードバック補正係数
に基づいて暖機後アイドル時の空燃比学習値を演算する
手段と、 前記特定気筒については特定気筒について演算される前
記空燃比フィードバック補正係数と前記空燃比学習値と
で前記基本噴射量を補正して燃料噴射量を、また前記残
りの気筒については残りの気筒についてクランプされる
前記空燃比フィードバック補正係数と前記空燃比学習値
とで前記基本噴射量を補正して燃料噴射量をそれぞれ演
算する手段と、 これら演算される燃料噴射量を対応する気筒に供給する
手段とを設けたことを特徴とするエンジンの空燃比制御
装置。
1. A means for calculating a basic injection amount according to an operating condition, a means for determining whether or not the engine is in a post-warm idle state, a means for determining which cylinder it is, and a specific cylinder based on these determination results. Means for calculating the air-fuel ratio feedback correction coefficient during idle after warm-up using the feedback constant during non-idle, and clamping the air-fuel ratio feedback correction coefficient during idle after warm-up for the remaining cylinders to a predetermined value A means for calculating an air-fuel ratio learning value at the time of idling after warm-up based on the air-fuel ratio feedback correction coefficient for the specific cylinder; and for the specific cylinder, the air-fuel ratio feedback correction coefficient and the air-fuel ratio feedback correction coefficient calculated for the specific cylinder. The fuel injection amount is corrected by correcting the basic injection amount with the air-fuel ratio learning value, and the remaining cylinder is set to the remaining cylinder. Means for correcting the basic injection amount by the clamped air-fuel ratio feedback correction coefficient and the air-fuel ratio learning value, and calculating the fuel injection amount, and supplying the calculated fuel injection amount to the corresponding cylinder. And an air-fuel ratio control device for an engine.
【請求項2】三元触媒がバンク毎に独立して設けられる
V型エンジンにおいてバンク毎に独立に前記特定気筒を
選択することを特徴とする請求項1に記載のエンジンの
空燃比制御装置。
2. The air-fuel ratio control device for an engine according to claim 1, wherein the specific cylinder is independently selected for each bank in a V-type engine in which a three-way catalyst is provided independently for each bank.
【請求項3】アイドル状態となってから空燃比フィード
バック補正係数の所定の演算周期が経過するまでは前記
暖機後アイドル時の空燃比学習値の演算を行わないこと
を特徴とする請求項1または2に記載のエンジンの空燃
比制御装置。
3. The air-fuel ratio learning value at the time of idling after warm-up is not calculated until a predetermined calculation cycle of the air-fuel ratio feedback correction coefficient elapses after the idling state. Alternatively, the air-fuel ratio control device for the engine according to item 2.
【請求項4】前記暖機後アイドル時の空燃比学習値の演
算に用いる更新係数を、暖機後アイドル時に空燃比フィ
ードバック制御を行っている特定気筒の空燃比の全気筒
分平均空燃比に対する割合が大きくなるほど小さくなる
値で設定することを特徴とする請求項1から3までのい
ずれか一つに記載のエンジンの空燃比制御装置。
4. The update coefficient used in the calculation of the air-fuel ratio learning value at the time of idling after warming up is compared with the average air-fuel ratio for all cylinders of the air-fuel ratio of the specific cylinder for which air-fuel ratio feedback control is being performed at the time of idling after warming up. The air-fuel ratio control device for an engine according to any one of claims 1 to 3, wherein the larger the ratio is, the smaller the value is set.
JP11339195A 1995-05-11 1995-05-11 Air-fuel ratio control device of engine Pending JPH08312422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11339195A JPH08312422A (en) 1995-05-11 1995-05-11 Air-fuel ratio control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11339195A JPH08312422A (en) 1995-05-11 1995-05-11 Air-fuel ratio control device of engine

Publications (1)

Publication Number Publication Date
JPH08312422A true JPH08312422A (en) 1996-11-26

Family

ID=14611130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11339195A Pending JPH08312422A (en) 1995-05-11 1995-05-11 Air-fuel ratio control device of engine

Country Status (1)

Country Link
JP (1) JPH08312422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247241A (en) * 2010-05-31 2011-12-08 Suzuki Motor Corp Device, method and program for controlling air-fuel ratio of internal combustion engine for outboard motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247241A (en) * 2010-05-31 2011-12-08 Suzuki Motor Corp Device, method and program for controlling air-fuel ratio of internal combustion engine for outboard motor

Similar Documents

Publication Publication Date Title
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6411814B2 (en)
JPH04112941A (en) Air-fuel ratio control device for internal combustion engine
US6530214B2 (en) Air-fuel ratio control apparatus having sub-feedback control
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
US5634449A (en) Engine air-fuel ratio controller
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08312422A (en) Air-fuel ratio control device of engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP3687128B2 (en) Engine air-fuel ratio control device
JP3006304B2 (en) Air-fuel ratio controller for multi-fuel engines
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH07310570A (en) Lean burn controller for internal combustion engine
JPH07127505A (en) Air-fuel ratio controller for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine
JP3453815B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JP4044978B2 (en) Engine air-fuel ratio control device
JPH07180580A (en) Air-fuel ratio control device for engine
JPH068287Y2 (en) Air-fuel ratio controller