JPH07127505A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPH07127505A
JPH07127505A JP5275722A JP27572293A JPH07127505A JP H07127505 A JPH07127505 A JP H07127505A JP 5275722 A JP5275722 A JP 5275722A JP 27572293 A JP27572293 A JP 27572293A JP H07127505 A JPH07127505 A JP H07127505A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen sensor
output value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5275722A
Other languages
Japanese (ja)
Other versions
JP3596011B2 (en
Inventor
Hideyuki Matsushima
秀行 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27572293A priority Critical patent/JP3596011B2/en
Priority to KR1019940028793A priority patent/KR0161699B1/en
Publication of JPH07127505A publication Critical patent/JPH07127505A/en
Application granted granted Critical
Publication of JP3596011B2 publication Critical patent/JP3596011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To favorably maintain air-fuel ratio feedback control accuracy by correcting a map table in which an air-fuel ratio is set according to the output value of an oxygen sensor based on the output value under the specified operational condition of the oxygen sensor. CONSTITUTION:An oxygen sensor A, 19 whose output value is varied in response to oxygen concentration in the exhaust gas of an internal combustion engine 11 is provided and an air-fuel ratio feedback control means C, 16 is provided for detecting the air-fuel ratio based on a map table B in which the air-fuel ratio of air-fuel mixture supplied to the engine 11 in response to the output value of the oxygen sensor A, 19, and making the air-fuel ratio to approach a target air-fuel ratio. Especially, a specified operational condition detection means D, 21 for detecting the specified operational condition of the engine 11 in which the output value of the oxygen sensor A, 19 becomes stable, and a set value corrective means E for correcting the set value of the map table B based on the output value of the oxygen sensor A, 19 under the specified operational condition, are provided. Consequently, air-fuel ratio flow chart control accuracy can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比制御
装置に関し、特に排気中の酸素濃度に感応して出力値が
変化する酸素センサの出力値に対応して空燃比をリニア
に検出し、該検出値に基づいて空燃比を目標空燃比に近
づけるようにフィードバック制御するようにした装置の
制御精度の安定化を図った技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly to linearly detecting the air-fuel ratio corresponding to the output value of an oxygen sensor whose output value changes in response to the oxygen concentration in exhaust gas. However, the present invention relates to a technique for stabilizing the control accuracy of an apparatus that performs feedback control so that the air-fuel ratio approaches the target air-fuel ratio based on the detected value.

【0002】[0002]

【従来の技術】電子制御燃料噴射装置を備えた内燃機関
においては、排気通路に空燃比を検出する酸素センサを
備え、所定の運転条件で前記検出された空燃比に基づい
て空燃比をフィードバック制御することが一般的に行わ
れている (特開昭58−10644 号公報参照) 。
2. Description of the Related Art In an internal combustion engine equipped with an electronically controlled fuel injection device, an oxygen sensor for detecting an air-fuel ratio is provided in an exhaust passage, and the air-fuel ratio is feedback-controlled on the basis of the detected air-fuel ratio under a predetermined operating condition. This is generally done (see Japanese Patent Laid-Open No. 58-10644).

【0003】通常の空燃比フィードバック制御では酸素
センサの出力をスライスレベルと比較し、スライスレベ
ルよりも高い場合、低い場合に空燃比がリッチ,リーン
であると検出して、夫々空燃比をリーン化,リッチ化方
向に制御している。具体的には、空燃比がリッチ (リー
ン) と判定されると、始めに比例分P等により大きく空
燃比をリーン (リッチ) 化し、それから積分分I等によ
り徐々に空燃比をリーン (リッチ) 化するように燃料供
給量を増減制御している。
In the normal air-fuel ratio feedback control, the output of the oxygen sensor is compared with the slice level, and if the output is higher than the slice level, it is detected that the air-fuel ratio is rich or lean, and the air-fuel ratio is made lean respectively. , It is controlling in the direction of enrichment. Specifically, when the air-fuel ratio is determined to be rich (lean), the proportional-fuel ratio P is first used to greatly increase the air-fuel ratio (rich), and then the integral I is used to gradually increase the air-fuel ratio to lean (rich). The fuel supply amount is controlled to increase or decrease so that

【0004】このような制御に対応して、通常の酸素セ
ンサは目標空燃比を境として比較的急激に値を反転する
ように形成されている。しかしながら、上記のように空
燃比センサの出力から目標空燃比に対するリッチ,リー
ンの判定のみを行う制御方式では、前記のようなPI制
御を行ったとしても、空燃比の変化に良好に対応した空
燃比制御を行っているとはいえず、排気エミッション性
能や、運転性能に改善の余地があった。
In response to such control, a normal oxygen sensor is formed so as to relatively rapidly reverse the value with the target air-fuel ratio as a boundary. However, as described above, in the control method in which only the rich / lean determination with respect to the target air-fuel ratio is performed from the output of the air-fuel ratio sensor, even if the PI control as described above is performed, the air-fuel ratio that responds well to the change in the air-fuel ratio is used. It cannot be said that fuel ratio control is being performed, and there was room for improvement in exhaust emission performance and operating performance.

【0005】そこで、前記のような通常の酸素センサの
変化する出力に対応する空燃比を予め求めておき、該出
力値から求められた空燃比に応じて比例分Pや積分分I
等の制御定数を可変に設定して実空燃比に見合ったきめ
細かなフィードバック制御を行うことにより、空燃比の
ずれを極力小さくして排気浄化性能,運転性能をより改
善することが提案されている。
Therefore, the air-fuel ratio corresponding to the changing output of the normal oxygen sensor as described above is obtained in advance, and the proportional component P and the integral component I are calculated according to the air-fuel ratio obtained from the output value.
It has been proposed to variably set the control constants such as, and perform fine feedback control in accordance with the actual air-fuel ratio to minimize the deviation of the air-fuel ratio and improve the exhaust purification performance and operation performance. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この種
の酸素センサにおいては、劣化や製品のバラツキにより
出力値と空燃比との対応関係にずれを生じることがあ
り、空燃比フィードバック制御精度を低下させてしまう
ことがあった。本発明は、このような従来の問題点に鑑
みなされたもので、酸素センサの出力値と空燃比との対
応を常時正しい関係に維持することにより、空燃比フィ
ードバック制御精度を良好に維持できるようにした内燃
機関の空燃比制御装置を提供することを目的とする。
However, in this type of oxygen sensor, the correspondence between the output value and the air-fuel ratio may deviate due to deterioration or product variation, which reduces the air-fuel ratio feedback control accuracy. There were times when it happened. The present invention has been made in view of such conventional problems, and by always maintaining a correct relationship between the output value of the oxygen sensor and the air-fuel ratio, it is possible to maintain good air-fuel ratio feedback control accuracy. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine.

【0007】[0007]

【課題を解決するための手段】このため本発明は、図1
に示すように、機関の排気中の酸素濃度に感応して出力
値が変化する酸素センサAを備え、該酸素センサAの出
力値に対応して機関に供給される混合気の空燃比を設定
したマップテーブルBに基づいて空燃比を検出し、空燃
比を目標空燃比に近づけるようにフィードバック制御す
る空燃比フィードバック制御手段Cを備えた内燃機関の
空燃比制御装置において、前記酸素センサAの出力値が
安定する機関の特定の運転状態を検出する特定運転状態
手段Dと、前記特定運転状態での酸素センサAの出力値
に基づいて前記マップテーブルの設定値を修正する設定
値修正手段Eと、を設けたことを特徴とする。
Therefore, the present invention is based on FIG.
As shown in, an oxygen sensor A whose output value changes in response to the oxygen concentration in the exhaust gas of the engine is provided, and the air-fuel ratio of the air-fuel mixture supplied to the engine is set in accordance with the output value of the oxygen sensor A. In the air-fuel ratio control device for an internal combustion engine, which includes an air-fuel ratio feedback control means C for detecting an air-fuel ratio based on the map table B and performing feedback control so that the air-fuel ratio approaches the target air-fuel ratio, the output of the oxygen sensor A Specific operating state means D for detecting a specific operating state of the engine whose value is stable, and set value correcting means E for correcting the set value of the map table based on the output value of the oxygen sensor A in the specific operating state. , Are provided.

【0008】[0008]

【作用】酸素センサが劣化したり、製品バラツキを生じ
ていたりすると、空燃比が目標空燃比 (理論空燃比) に
対してリッチ状態又はリーン状態で安定しているときの
出力値が基準値に対してずれており、それに伴って出力
値と空燃比との対応関係も初期に設定された特性に対し
てずれてくる。
[Function] When the oxygen sensor deteriorates or product variations occur, the output value when the air-fuel ratio is stable in the rich state or lean state with respect to the target air-fuel ratio (theoretical air-fuel ratio) becomes the reference value. However, the correspondence relationship between the output value and the air-fuel ratio also deviates from the initially set characteristic.

【0009】そこで、特定運転状態検出手段により運転
状態がリッチ状態やリーン状態で安定するような特定の
運転状態を検出し、該運転状態における酸素センサの出
力値に基づいてマップテーブルの設定値を設定値修正手
段で修正することにより、酸素センサの出力値と空燃比
との対応関係が良好に保持され、以て、空燃比フィード
バック制御精度を良好に保持することができる。
Therefore, the specific operating state detecting means detects a specific operating state in which the operating state is stable in a rich state or a lean state, and the set value of the map table is set based on the output value of the oxygen sensor in the operating state. By correcting with the set value correction means, the correspondence relationship between the output value of the oxygen sensor and the air-fuel ratio can be kept good, and thus the air-fuel ratio feedback control accuracy can be kept good.

【0010】[0010]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。一実施例の構成を示す図2において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメータ
13及びアクセルペダルと連動して吸入空気流量Qを制御
する絞り弁14が設けられ、下流のマニホールド部分には
気筒毎に燃料供給手段としての電磁式の燃料噴射弁15が
設けられる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing the configuration of one embodiment, an air flow meter for detecting an intake air flow rate Q is provided in an intake passage 12 of an engine 11.
A throttle valve 14 that controls the intake air flow rate Q in association with 13 and the accelerator pedal is provided, and an electromagnetic fuel injection valve 15 as fuel supply means is provided for each cylinder in the downstream manifold portion.

【0011】燃料噴射弁15は、マイクロコンピュータを
内蔵したコントロールユニット16からの噴射パルス信号
によって開弁駆動し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータにより所定圧力に制御され
た燃料を噴射供給する。更に、機関11の冷却ジャケット
内の冷却水温度Twを検出する水温センサ17が設けられ
る。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and is fuel-fed from a fuel pump (not shown) to be injected under control to a predetermined pressure by a pressure regulator. . Further, a water temperature sensor 17 for detecting the cooling water temperature Tw in the cooling jacket of the engine 11 is provided.

【0012】一方、排気通路18にはマニホールド集合部
に排気中酸素濃度を検出することによって吸入混合気の
空燃比を検出する酸素センサ19が設けられ、その下流側
の排気管に排気中のCO,HCの酸化とNOX の還元を
行って浄化する排気浄化触媒としての三元触媒20が設け
られる。前記酸素センサ19は、例えば基準気体としての
大気中の酸素濃度と排気中の酸素濃度との比に応じた起
電力を発生する公知のジルコニア酸素センサであり、空
燃比 (空気過剰率λ) に対して図3に示すような静的出
力特性を有する。但し、酸素センサ19は、前記ジルコニ
ア酸素センサに限定されるものではない。
On the other hand, the exhaust passage 18 is provided with an oxygen sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold collecting portion, and the CO in the exhaust gas is provided in the exhaust pipe downstream thereof. , A three-way catalyst 20 is provided as an exhaust gas purification catalyst that purifies by oxidizing HC and reducing NO x . The oxygen sensor 19 is, for example, a known zirconia oxygen sensor that generates an electromotive force according to the ratio of the oxygen concentration in the atmosphere as the reference gas and the oxygen concentration in the exhaust gas, and the air-fuel ratio (excess air ratio λ) On the other hand, it has a static output characteristic as shown in FIG. However, the oxygen sensor 19 is not limited to the zirconia oxygen sensor.

【0013】また、図2で図示しないディストリビュー
タには、クランク角センサ21が内蔵されており、該クラ
ンク角センサ21から機関回転と同期して出力されるクラ
ンク単位角信号を一定時間カウントして、又は、クラン
ク基準角信号の周期を計測して機関回転速度Nを検出す
る。次に、コントロールユニット16により燃料噴射量を
制御することによって空燃比を制御するルーチンを図4
のフローチャートに従って説明する。
A crank angle sensor 21 is built in a distributor (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 21 in synchronization with engine rotation is counted for a certain period of time. Alternatively, the engine rotation speed N is detected by measuring the cycle of the crank reference angle signal. Next, a routine for controlling the air-fuel ratio by controlling the fuel injection amount by the control unit 16 is shown in FIG.
It will be described according to the flowchart of

【0014】ステップ(図ではSと記す)1では、エア
フローメータ13によって検出された吸入空気流量Qとク
ランク角センサ22からの信号に基づいて算出した機関回
転速度Nとに基づき、単位回転当たりの吸入空気量に相
当する基本燃料噴射量TP を次式によって演算する。 TP =K×Q/N (Kは定数) ステップ2では、水温センサ17によって検出された冷却
水温度Tw等に基づいて各種補正係数COEFを設定す
る。
In step (denoted as S in the figure) 1, the amount of intake air per unit rotation based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 22. The basic fuel injection amount T P corresponding to the intake air amount is calculated by the following equation. T P = K × Q / N (K is a constant) In step 2, various correction factors COEF are set based on the cooling water temperature Tw detected by the water temperature sensor 17.

【0015】ステップ3では、酸素センサ19の出力値
(電圧) VO2を読み込む。ステップ4では、前記出力値
O2に対応する空燃比を、マップテーブルからの検索に
より求める。ここで、前記マップテーブルは、書換え可
能なRAMに酸素センサ19の出力値に対応する空燃比の
値として設定されており、後述するルーチンにより酸素
センサ19の劣化や製品バラツキに応じて修正される。
In step 3, the output value of the oxygen sensor 19
(Voltage) Read V O2 . In step 4, the air-fuel ratio corresponding to the output value V O2 is obtained by searching the map table. Here, the map table is set in a rewritable RAM as the value of the air-fuel ratio corresponding to the output value of the oxygen sensor 19, and is corrected according to the deterioration of the oxygen sensor 19 and the product variation by a routine described later. .

【0016】ステップ5では、ステップ4で求められた
空燃比に基づいて空燃比フィードバック制御における空
燃比補正量αを設定する。具体例として空燃比補正量を
PID制御により設定する場合について示すと、求めら
れた空燃比と目標空燃比との偏差に対して比例的に設定
される比例分Pと、毎回求められる前記偏差を積分した
値に対して比例的に設定される積分分Iと、偏差の変化
量つまり今回値と前回値との差に対して比例的に設定さ
れる微分分Dと、を加算することにより設定される。
In step 5, the air-fuel ratio correction amount α in the air-fuel ratio feedback control is set based on the air-fuel ratio obtained in step 4. As a specific example, the case of setting the air-fuel ratio correction amount by PID control will be described. The proportional amount P set proportionally to the deviation between the obtained air-fuel ratio and the target air-fuel ratio, and the deviation obtained each time are shown. It is set by adding the integral I set proportionally to the integrated value and the differential D set proportionally to the variation of the deviation, that is, the difference between the current value and the previous value. To be done.

【0017】ステップ5では、バッテリ電圧値に基づい
て電圧補正分TS を設定する。これは、バッテリ電圧変
動による燃料噴射弁15の噴射流量変化を補正するための
ものである。ステップ6では、最終的な燃料噴射量TI
を次式に従って演算し、該演算された燃料噴射量TI
出力用レジスタにセットする。
In step 5, the voltage correction component T S is set based on the battery voltage value. This is for correcting the change in the injection flow rate of the fuel injection valve 15 due to the battery voltage change. In step 6, the final fuel injection amount T I
Is calculated according to the following equation, and the calculated fuel injection amount T I is set in the output register.

【0018】TI =TP ×COEF×α+TS これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量TI のパルス巾
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃料
噴射が行われる。次に、酸素センサの劣化による基本的
な特性変化について説明する。
T I = T P × COEF × α + T S As a result, when the predetermined fuel injection timing of engine rotation synchronization is reached, a drive pulse signal having a pulse width of the calculated fuel injection amount T I is given to the fuel injection valve 15 And fuel injection is performed. Next, a basic characteristic change due to deterioration of the oxygen sensor will be described.

【0019】酸素センサの劣化は、次の2パターンに大
別できる。 リッチシフト 高温による劣化や鉛 (Pb) による被毒により、図5
(A) に示すようにリッチ出力が低下し、空燃比の制御
点がリッチ側にシフトする。 リーンシフト シリコン (Si) やリン (P) による被毒を受けると、
図5 (B) に示すようにリーン出力が上昇し、空燃比の
制御点がリーン側にシフトする。
The deterioration of the oxygen sensor can be roughly classified into the following two patterns. Rich shift Due to deterioration due to high temperature and poisoning by lead (Pb),
As shown in (A), the rich output decreases and the air-fuel ratio control point shifts to the rich side. Lean shift When poisoned by silicon (Si) or phosphorus (P),
As shown in FIG. 5B, the lean output rises and the air-fuel ratio control point shifts to the lean side.

【0020】かかる酸素センサの劣化や製品バラツキに
よる特性変化に対処しべくマップテーブルの設定値を修
正する本発明に係るルーチンを図6のフローチャートに
従って説明する。ステップ11では、酸素センサ19が活性
化しているか否かを判定する。活性化していないときは
修正を行える条件ではないので修正を行うことなく、ス
テップ28で後述する値n,mを0リセットした後このル
ーチンを終了し、また、活性化している場合はステップ
12へ進む。
A routine according to the present invention for correcting the set value of the map table in order to cope with the characteristic change due to the deterioration of the oxygen sensor and the product variation will be described with reference to the flowchart of FIG. In step 11, it is determined whether or not the oxygen sensor 19 is activated. If it is not activated, the condition is not such that the correction can be made. Therefore, without making any correction, the values n and m, which will be described later, are reset to 0 in step 28, and this routine is terminated.
Go to 12.

【0021】ステップ12では、燃料噴射量を増量補正中
か否かを判定する。ステップ12で増量補正中である、つ
まりリッチ制御状態であると判定された場合はステップ
13へ進み、酸素センサ19の出力値VR を読み込み記憶す
る。ここで、リッチ制御状態であるため酸素センサ19の
出力値 (電圧) VR は最大となっている。
In step 12, it is determined whether or not the fuel injection amount is being increased and corrected. If it is determined in step 12 that the amount is being increased, that is, if the rich control state is in effect, step
Advances to 13, Reads stores the output value V R of the oxygen sensor 19. Here, the output value of the oxygen sensor 19 since it is rich control state (voltage) V R is maximum.

【0022】次いでステップ14へ進んで前記ステップ13
における読み込み回数nをインクリメントし、ステップ
15で該回数nが所定値Nに達したか否かを判定し、達し
たときはステップ16へ進む。ステップ16では、nを0リ
セットすると共に、前記リッチ制御状態での酸素センサ
19のn回分の出力値VR の平均値とVRAV 前回のリッチ
制御状態で同様にして求められたn回分の出力値の平均
値VRAV0との偏差ΔVR を演算する。
Then, the process proceeds to step 14 and step 13
Increment the reading count n in
In step 15, it is judged whether or not the number of times n reaches a predetermined value N, and when it reaches, the process proceeds to step 16. In step 16, n is reset to 0 and the oxygen sensor in the rich control state is
Calculates a deviation [Delta] V R between the average value V RAV0 of the output value of n times that obtained in the same manner at 19 the average value and the V RAV previous rich control state of the output value V R of the n times of.

【0023】ステップ17では、前記偏差ΔVR が設定値
Aに達したか否かを判定する。そして、設定値Aに達し
ていないときはステップ11へ戻るが、設定値Aに達した
ときはステップ18へ進み、前記マップテーブルの出力値
Vに対応する空燃比の設定値λT(V)を現在の値から前記
偏差ΔVR の関数f (ΔVR )を減少した値で修正更新
する。ここで、前記関数f (ΔVR )は、図7 (A) に
示すように出力値Vの増大に応じて増大するように設定
されるが、例えば、同時に偏差ΔVR に対して比例的に
設定する{f (ΔVR )=a・ΔVR ・f’ (V) }こ
とで、出力値の低下量に見合った特性に修正することが
できる。
In step 17, it is judged whether or not the deviation ΔV R has reached the set value A. Then, when the set value A is not reached, the process returns to step 11, but when the set value A is reached, the process proceeds to step 18, and the set value λ T (V) of the air-fuel ratio corresponding to the output value V of the map table. Is corrected and updated with a value obtained by reducing the function f (ΔV R ) of the deviation ΔV R from the current value. Here, the function f (ΔV R ) is set so as to increase in accordance with the increase of the output value V as shown in FIG. 7 (A). For example, at the same time, the function f (ΔV R ) is proportional to the deviation ΔV R. By setting {f (ΔV R ) = a · ΔV R · f ′ (V)}, it is possible to correct the characteristics in accordance with the decrease amount of the output value.

【0024】ステップ19では、次回の演算のため、前記
今回の出力値の平均値VRAV を前回の出力値の平均値V
RAV0としてセットする。一方、前記ステップ12で燃料増
量中でないと判定されたときはステップ20へ進み、フュ
ーエルカット中か又は二次空気供給中 (エアポンプO
N) 、つまりリーン制御状態であるか否かを判定する。
In step 19, for the next calculation, the average value V RAV of the current output values is changed to the average value V RAV of the previous output values.
Set as RAV0 . On the other hand, when it is determined in step 12 that the fuel amount is not being increased, the process proceeds to step 20, and the fuel is being cut or the secondary air is being supplied (air pump O
N), that is, whether or not it is in the lean control state.

【0025】そして、前記リーン制御状態でない場合
は、マップテーブルを修正する条件でないので、このル
ーチンを終了するが、リーン制御状態と判定されたとき
はステップ21へ進む。ステップ21では、酸素センサ19の
出力値VL を読み込み記憶する。ここで、該出力値VL
はリーン制御状態であるため最小となっている。
If it is not in the lean control state, it is not a condition for correcting the map table, so this routine is ended, but if it is determined that it is in the lean control state, the routine proceeds to step 21. In step 21, the output value V L of the oxygen sensor 19 is read and stored. Here, the output value V L
Is the minimum because it is a lean control state.

【0026】以下前記リッチ制御状態の場合と同様にし
てステップ22でステップ21での読み込み回数mをインク
リメントし、ステップ23で該回数mを所定値Mと比較し
てMに達すると、ステップ24でmを0リセットすると共
に今回のm回の出力値VL の平均値VLAV と前回の平均
値VLAVOとの偏差ΔVL を演算し、ステップ25で偏差Δ
L を設定値Bと比較し、ΔVL ≧Bのときにステップ
25でマップテーブルの出力値Vに対応する空燃比の設定
値λT(V)を現在の値に前記偏差ΔVL の関数g(Δ
L )を加算した値で修正更新する。ここで、前記関数
g (ΔVL )は、図7 (B) に示すように出力値Vの減
少に応じて増大するように設定されるが、例えば、同時
に偏差ΔVL に対して比例的に設定する{g (ΔVL
=b・ΔVL・g’ (V) }ことで、出力値の低下量に
見合った特性に修正することができる。ステップ26で
は、今回の平均値VLAV を前回の出力値の平均値VLAV0
としてセットする。
In the same manner as in the rich control state, the number of readings m in step 21 is incremented in step 22, and the number of readings m is compared with a predetermined value M in step 23, and when M is reached, in step 24. the m calculates a deviation [Delta] V L between the current m times the mean value V LAV and the last average value V Lavo output value V L with reset to zero, the deviation Δ in step 25
The V L is compared with a set value B, step when the [Delta] V L ≧ B
25 by the setting value of the air-fuel ratio corresponding to the output value V of the map table lambda T (V) is the current value deviation [Delta] V L of the function g (delta
VL ) is added and corrected and updated. Here, the function g (ΔV L ) is set so as to increase in accordance with the decrease of the output value V as shown in FIG. 7 (B). For example, at the same time, the function g (ΔV L ) is proportional to the deviation ΔV L. set {g (ΔV L)
= BΔV L g '(V)}, it is possible to correct the characteristics to match the decrease amount of the output value. In step 26, the current average value V LAV is set to the average value V LAV0 of the previous output values.
Set as.

【0027】このようにして、酸素センサ19の出力特性
が劣化や製品バラツキによって基準特性に対してずれを
生じた場合には、リッチ制御状態における最大出力やリ
ーン制御状態における最小出力の基準値に対するずれの
大きさに応じて出力値に対して空燃比を設定したマップ
テーブルの設定値を修正するようにしたため、空燃比を
常に精度よく検出することができ、以て、空燃比を目標
空燃比に精度よくフィードバック制御することができ、
排気浄化性能, 運転性能を可及的に良好に維持すること
ができる。
In this way, when the output characteristic of the oxygen sensor 19 deviates from the reference characteristic due to deterioration or product variation, the maximum output in the rich control state and the minimum output in the lean control state are compared with the reference value. Since the set value of the map table that sets the air-fuel ratio for the output value is modified according to the size of the deviation, the air-fuel ratio can always be detected accurately, and the air-fuel ratio can be set to the target air-fuel ratio. Feedback control with high accuracy,
Exhaust gas purification performance and operation performance can be maintained as good as possible.

【0028】尚、本発明は、元々目標空燃比に対してリ
ッチ・リーンを検出するタイプの酸素センサに対して適
用できるが、空燃比に対する出力値の傾斜をより滑らか
となるように形成されたタイプのものに適用できること
は勿論であり、更には、同様のセンサ素子を用いるが、
該センサ素子を通電して所定の空室における酸素濃度を
基準値とするように排気中から前記センサ素子を介して
酸素を輸送し、そのときの通電電流値 (限界電流) から
空燃比をリニアに求める所謂広域型空燃比センサにも適
用可能である。この場合には、リッチ制御状態あるいは
リーン制御状態における電流値がセンサの劣化や製品バ
ラツキに応じて変化してくるので、該変化量に応じて電
流値に対応して設定した空燃比のマップテーブルを修正
すればよい。
The present invention is originally applicable to an oxygen sensor of the type that detects rich / lean with respect to the target air-fuel ratio, but is formed so that the slope of the output value with respect to the air-fuel ratio becomes smoother. Of course, it can be applied to the type, and the same sensor element is used,
Oxygen is transported from the exhaust gas through the sensor element so that the sensor element is energized so that the oxygen concentration in a predetermined chamber becomes the reference value, and the air-fuel ratio is linearly calculated from the current value (limit current) at that time. It is also applicable to a so-called wide area type air-fuel ratio sensor required for. In this case, the current value in the rich control state or the lean control state changes according to the deterioration of the sensor or the product variation.Therefore, the map table of the air-fuel ratio set corresponding to the current value according to the change amount. Should be corrected.

【0029】[0029]

【発明の効果】以上説明してきたように本発明によれ
ば、酸素センサの出力値に対して空燃比を設定したマッ
プテーブルを、酸素センサの特定の運転状態における出
力値に基づいて修正する構成としたため、劣化や製品バ
ラツキにより出力値と空燃比との対応がずれを生じても
適宜修正されるので、常時良好な目標空燃比へのフィー
ドバック制御を行え、排気浄化性能, 運転性能を可及的
に良好に維持できる。
As described above, according to the present invention, the map table in which the air-fuel ratio is set for the output value of the oxygen sensor is modified based on the output value of the oxygen sensor in a specific operating state. Therefore, even if the output value and the air-fuel ratio are misaligned due to deterioration or product variation, the output value and the air-fuel ratio can be corrected as appropriate, so feedback control to a target air-fuel ratio that is always good can be performed, and exhaust purification performance and operating performance can be maximized. Can be maintained in good condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】 本発明の一実施例の構成を示す図。FIG. 2 is a diagram showing the configuration of an embodiment of the present invention.

【図3】 同上実施例で使用する酸素センサの出力特性
を示す図。
FIG. 3 is a diagram showing the output characteristics of the oxygen sensor used in the above-mentioned embodiment.

【図4】 同上実施例の空燃比制御ルーチンを示すフロ
ーチャート。
FIG. 4 is a flowchart showing an air-fuel ratio control routine of the above embodiment.

【図5】 酸素センサの劣化による特性変化を示す図。FIG. 5 is a diagram showing characteristic changes due to deterioration of the oxygen sensor.

【図6】 同上実施例のマップテーブル修正ルーチンを
示すフローチャート。
FIG. 6 is a flowchart showing a map table correction routine of the above embodiment.

【図7】 同上実施例におけるリッチシフト時とリーン
シフト時とにおけるマップテーブルの修正を示す図。
FIG. 7 is a diagram showing correction of the map table at the time of rich shift and at the time of lean shift in the same embodiment.

【符号の説明】[Explanation of symbols]

11 内燃機関 13 エアフローメータ 15 燃料噴射弁 16 コントロールユニット 19 酸素センサ 21 クランク角センサ 11 Internal combustion engine 13 Air flow meter 15 Fuel injection valve 16 Control unit 19 Oxygen sensor 21 Crank angle sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機関の排気中の酸素濃度に感応して出力値
が変化する酸素センサを備え、該酸素センサの出力値に
対応して機関に供給される混合気の空燃比を設定したマ
ップテーブルに基づいて空燃比を検出し、空燃比を目標
空燃比に近づけるようにフィードバック制御する空燃比
フィードバック制御手段を備えた内燃機関の空燃比制御
装置において、 前記酸素センサの出力値が安定する機関の特定の運転状
態を検出する特定運転状態手段と、 前記特定運転状態での酸素センサの出力値に基づいて前
記マップテーブルの設定値を修正する設定値修正手段を
設けたことを特徴とする内燃機関の空燃比制御装置。
1. A map provided with an oxygen sensor whose output value changes in response to the oxygen concentration in the exhaust gas of the engine, and in which the air-fuel ratio of the air-fuel mixture supplied to the engine is set corresponding to the output value of the oxygen sensor. In an air-fuel ratio control device for an internal combustion engine, which detects an air-fuel ratio based on a table, and performs feedback control so that the air-fuel ratio approaches the target air-fuel ratio, an engine in which the output value of the oxygen sensor is stable A specific operating state means for detecting a specific operating state of the internal combustion engine, and a set value correcting means for correcting the set value of the map table based on the output value of the oxygen sensor in the specific operating state. Air-fuel ratio control system for engines.
JP27572293A 1993-11-04 1993-11-04 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3596011B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27572293A JP3596011B2 (en) 1993-11-04 1993-11-04 Air-fuel ratio control device for internal combustion engine
KR1019940028793A KR0161699B1 (en) 1993-11-04 1994-11-03 Air fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27572293A JP3596011B2 (en) 1993-11-04 1993-11-04 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07127505A true JPH07127505A (en) 1995-05-16
JP3596011B2 JP3596011B2 (en) 2004-12-02

Family

ID=17559473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27572293A Expired - Fee Related JP3596011B2 (en) 1993-11-04 1993-11-04 Air-fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP3596011B2 (en)
KR (1) KR0161699B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769422B2 (en) 2001-06-04 2004-08-03 Unisia Jecs Corporation Apparatus and method for controlling air-fuel ratio of engine
US6848439B2 (en) 2001-11-08 2005-02-01 Hitachi Unisia Automotive, Ltd. Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine
KR100794542B1 (en) * 2005-12-28 2008-01-17 도요다 지도샤 가부시끼가이샤 Power output apparatus, vehicle equipped with power output apparatus, and control method of power output apparatus
JP2015517618A (en) * 2012-05-15 2015-06-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and control unit for compensating voltage offset of a two-point lambda probe
JP5851569B1 (en) * 2014-08-22 2016-02-03 三菱電機株式会社 Engine control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769422B2 (en) 2001-06-04 2004-08-03 Unisia Jecs Corporation Apparatus and method for controlling air-fuel ratio of engine
DE10224797B4 (en) * 2001-06-04 2005-09-15 Hitachi, Ltd. Apparatus and method for controlling the air-fuel ratio of an engine
US6848439B2 (en) 2001-11-08 2005-02-01 Hitachi Unisia Automotive, Ltd. Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine
KR100794542B1 (en) * 2005-12-28 2008-01-17 도요다 지도샤 가부시끼가이샤 Power output apparatus, vehicle equipped with power output apparatus, and control method of power output apparatus
JP2015517618A (en) * 2012-05-15 2015-06-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and control unit for compensating voltage offset of a two-point lambda probe
US9696289B2 (en) 2012-05-15 2017-07-04 Robert Bosch Gmbh Method and control unit for compensating for a voltage offset of a two-point lambda sensor
JP5851569B1 (en) * 2014-08-22 2016-02-03 三菱電機株式会社 Engine control device

Also Published As

Publication number Publication date
KR950014554A (en) 1995-06-16
JP3596011B2 (en) 2004-12-02
KR0161699B1 (en) 1999-01-15

Similar Documents

Publication Publication Date Title
US5157920A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
US5638800A (en) Method and apparatus for controlling air-fuel ratio learning of an internal combustion engine
KR100240970B1 (en) Method for controlling mixture compositions of fuel and air for internal combustion engine
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0515910B2 (en)
JPS639654A (en) Fuel injection controller for internal combustion engine
JPH0423099B2 (en)
JPH07119521A (en) Air-fuel ratio learning controller of internal combustion engine
JPH0422725A (en) Air fuel ratio control device of internal combustion engine
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees