JPH1030479A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH1030479A
JPH1030479A JP18956196A JP18956196A JPH1030479A JP H1030479 A JPH1030479 A JP H1030479A JP 18956196 A JP18956196 A JP 18956196A JP 18956196 A JP18956196 A JP 18956196A JP H1030479 A JPH1030479 A JP H1030479A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
delay
zero
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18956196A
Other languages
Japanese (ja)
Inventor
Akira Uchikawa
晶 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP18956196A priority Critical patent/JPH1030479A/en
Publication of JPH1030479A publication Critical patent/JPH1030479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate any slippage in an air-fuel ratio due to the response delay of a large-area type air-fuel ratio sensor. SOLUTION: Various state quantities of an engine are inputted (S1), a target air-fuel ratio TGLMD is set up (S2) from engine speed Ne and basic fuel injection quantity TP, a variation ΔQ of intake air flow rate, a variation ΔTVO of throttle valve opening, and a variation ΔA/F of air-fuel ratio detected value are all calculated (S3), while a zero-order delay till the detected value of an air-fuel ratio sensor starts its change to a target air-fuel ratio change is calculated (S4), likewise a first-order delay till the detected value comes to the target air-fuel ratio TGLMD after being changed since it has started the change is calculated (S5), and then a proportional part P is compensated from the zero- order delay (S6), and further an integral part I is compensated (S7) from the first-order delay as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、特に、空燃比を検出して目標空燃比に
フィードバック制御するものの制御精度向上を図った技
術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to a technology for detecting an air-fuel ratio and performing feedback control to a target air-fuel ratio to improve control accuracy.

【0002】[0002]

【従来の技術】従来の内燃機関の空燃比制御装置として
は例えば特開昭60−240840号公報に示されるよ
うなものがある。このものの概要を説明すると、機関の
吸入空気流量Qa及び回転速度Nを検出してシリンダに
吸入される空気量に対応する基本燃料供給量TP (=K
・Qa/N;Kは分)を演算し、この基本燃料供給量T
P を機関温度等により補正したものを排気中酸素濃度の
検出によって混合気の空燃比を検出する空燃比センサ
(酸素センサ)からの信号によってフィードバック補正
を施し、バッテリ電圧による補正等をも行って最終的に
燃料供給量TI を設定する。
2. Description of the Related Art A conventional air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840. To explain the outline of this, the basic fuel supply amount TP (= K) corresponding to the amount of air sucked into the cylinder by detecting the intake air flow rate Qa and the rotation speed N of the engine.
Qa / N; K is a minute), and this basic fuel supply amount T
P is corrected by the engine temperature, etc., and feedback correction is performed by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas, and correction by the battery voltage is also performed. finally setting the fuel supply quantity T I.

【0003】そして、このようにして設定された燃料供
給量TI に相当するパルス巾の駆動パルス信号を所定タ
イミングで出力することにより、機関に所定量の燃料を
噴射供給するようにしている。ところで、近年では空燃
比を大幅にリーン化制御して排気浄化性能及び燃費を改
善することが試みられており、そのために目標空燃比を
運転条件に応じて広範囲に変化させて設定しつつ空燃比
フィードバック制御を行うため、これに対処できる排気
中の酸素濃度等から空燃比をリニアに検出できるいわゆ
る広域型の空燃比センサが用いられる。
[0003] Then, by outputting a driving pulse signal having a pulse width corresponding to the thus set fuel supply quantity T I at a predetermined timing, so that injects supply a predetermined amount of fuel to the engine. In recent years, attempts have been made to improve the exhaust purification performance and the fuel efficiency by controlling the air-fuel ratio to be significantly lean, so that the air-fuel ratio is set while changing the target air-fuel ratio in a wide range according to the operating conditions. In order to perform feedback control, a so-called wide-range air-fuel ratio sensor that can linearly detect the air-fuel ratio from the oxygen concentration or the like in the exhaust gas that can cope with the feedback control is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記空
燃比センサは、目標空燃比が変化してから該目標空燃比
を検出するまでの応答に遅れを生じ、該応答遅れにより
目標空燃比へのフィードバック制御、特に過渡時の制御
が良好に行われておらず、まだ、排気浄化性能や燃費改
善の面で十分効果を発揮できていない状態であった。
However, the air-fuel ratio sensor delays the response from the change of the target air-fuel ratio to the detection of the target air-fuel ratio, and the feedback to the target air-fuel ratio is caused by the response delay. The control, especially during the transition, has not been performed well, and the exhaust purification performance and the fuel efficiency have not yet been sufficiently improved.

【0005】本発明は、このような従来の問題点に鑑み
なされたもので、空燃比センサの応答遅れを正確に把握
し、該応答遅れに対してフィードバック補正係数設定用
の制御定数を適切な値に設定することにより応答性が改
善されることに着目し、機関運転状態が変化する過渡時
にも適正な制御定数が設定されることにより、目標空燃
比近傍に維持することができるようにした内燃機関の空
燃比制御装置を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and accurately grasps a response delay of an air-fuel ratio sensor and appropriately sets a control constant for setting a feedback correction coefficient in response to the response delay. Focusing on improving the responsiveness by setting the value, the appropriate control constant is set even during the transition when the engine operating state changes, so that it can be maintained near the target air-fuel ratio. An object is to provide an air-fuel ratio control device for an internal combustion engine.

【0006】[0006]

【課題を解決するための手段】このため請求項1に係る
発明は、図1に実線で示すように、排気通路に設けられ
排気中成分から機関に供給される混合気の空燃比を広範
囲に検出する空燃比検出手段と、該空燃比検出手段によ
る空燃比の検出値と目標空燃比とを比較しつつ制御定数
を用いて設定されるフィードバック補正係数により、空
燃比を目標空燃比に近づけるように制御する空燃比フィ
ードバック制御手段と、を含んでなる内燃機関の空燃比
制御装置において、機関の運転状態を検出する運転状態
検出手段と、目標空燃比の変化に対して、前記空燃比検
出手段の検出値が変化しはじめるまでの0次遅れを算出
する0次遅れ算出手段と、目標空燃比の変化に対して、
前記空燃比検出手段の検出値が変化しはじめてから、変
化後の目標空燃比を検出するまでの1次遅れを算出する
1次遅れ算出手段と、前記算出された空燃比検出手段の
0次遅れ及び1次遅れに基づいて、前記空燃比フィード
バック制御手段における制御定数を補正する制御定数補
正手段と、を含んで構成したことを特徴とする。
According to the first aspect of the present invention, as shown by the solid line in FIG. 1, the air-fuel ratio of the air-fuel mixture supplied to the engine from the components in the exhaust gas is provided in a wide range. The air-fuel ratio is made closer to the target air-fuel ratio by an air-fuel ratio detecting means to be detected and a feedback correction coefficient set by using a control constant while comparing the detected value of the air-fuel ratio by the air-fuel ratio detecting means with the target air-fuel ratio. An air-fuel ratio feedback control means for controlling an internal combustion engine, an operation state detection means for detecting an operation state of the engine, and an air-fuel ratio detection means for detecting a change in a target air-fuel ratio. A zero-order delay calculating means for calculating a zero-order delay until the detection value of the target air-fuel ratio starts to change;
First-order delay calculating means for calculating a first-order delay from when the detection value of the air-fuel ratio detecting means starts to change to detecting the changed target air-fuel ratio; and zero-order delay of the calculated air-fuel ratio detecting means. And a control constant correction means for correcting a control constant in the air-fuel ratio feedback control means based on the first-order lag.

【0007】該請求項1に係る発明の作用・効果は以下
のとおりである。目標空燃比TGLMDが変化して制御
空燃比が変化すると、図4に示すように、空燃比検出手
段はすぐには変化せず、変化しはじめるまでに0次の遅
れがある。そこで、0次遅れ算出手段は、運転状態検出
手段によって検出された運転状態に基づいて該0次の遅
れを算出する。
The operation and effect of the invention according to claim 1 are as follows. When the target air-fuel ratio TGLMD changes and the control air-fuel ratio changes, as shown in FIG. 4, the air-fuel ratio detection means does not change immediately, and there is a zero-order delay before the change starts. Thus, the zero-order delay calculating means calculates the zero-order delay based on the operating state detected by the operating state detecting means.

【0008】また、図4に示すように、空燃比検出手段
の検出値が変化しはじめてから、目標空燃比に対応した
検出値となるまでに1次の遅れがある。そこで、1次遅
れ算出手段は、運転状態検出手段によって検出された運
転状態に基づいて該1次の遅れを算出する。このように
して算出された空燃比検出手段の0次の遅れと1次の遅
れとに基づいて、制御定数補正手段が空燃比フィードバ
ック制御手段における制御定数を補正する。
Further, as shown in FIG. 4, there is a first-order delay from when the detection value of the air-fuel ratio detecting means starts to change to when the detection value corresponding to the target air-fuel ratio is obtained. Therefore, the primary delay calculating means calculates the primary delay based on the operating state detected by the operating state detecting means. The control constant correction means corrects the control constant in the air-fuel ratio feedback control means based on the zero-order delay and the first-order delay of the air-fuel ratio detection means thus calculated.

【0009】このようにすれば、空燃比検出手段の応答
遅れを0次遅れと1次遅れとに分けて算出し、それらに
基づいて制御定数を補正するようにしたので、応答遅れ
に対する空燃比のずれを良好に補正して、過渡時にも良
好な空燃比フィードバック制御を行うことができる。ま
た、請求項2に係る発明は、図1に一点鎖線で示すよう
に、機関の運転状態を検出する運転状態検出手段と、車
速を検出する車速検出手段と、を備え、前記0次遅れ算
出手段は、前記検出された機関の運転状態を含む条件に
基づいて、前記0次遅れを算出し、前記1次遅れ算出手
段は、前記検出された機関の運転状態と前記検出された
車速とを含む条件に基づいて、前記1次遅れを算出する
ことを特徴とする。
With this configuration, the response delay of the air-fuel ratio detecting means is calculated separately for the 0th-order delay and the 1st-order delay, and the control constant is corrected based on the calculated delay. Satisfactorily, the air-fuel ratio feedback control can be performed even during a transition. Further, the invention according to claim 2 includes an operating state detecting means for detecting an operating state of the engine and a vehicle speed detecting means for detecting a vehicle speed, as indicated by a dashed line in FIG. The means calculates the 0th-order delay based on a condition including the detected operating state of the engine, and the first-order delay calculating means calculates the detected operating state of the engine and the detected vehicle speed. The method is characterized in that the first-order lag is calculated based on the included conditions.

【0010】該請求項2に係る発明の作用・効果は以下
のとおりである。前記空燃比検出手段の0次の遅れは、
空燃比が変化した排気が空燃比検出手段に到達するまで
の遅れの他、吸入空気流量,スロットル弁開度変化量,
機関冷却水温度や吸入空気温度等の機関運転状態によっ
て決定される。そこで、前記0次遅れ算出手段は、運転
状態検出手段によって検出された前記各種の機関運転状
態を含む条件に基づいて0次遅れを精度良く算出するこ
とができる。
The operation and effect of the invention according to claim 2 are as follows. The zero-order delay of the air-fuel ratio detection means is as follows:
In addition to the delay until the exhaust gas whose air-fuel ratio has changed reaches the air-fuel ratio detection means, the intake air flow rate, the throttle valve opening change amount,
It is determined by the engine operating state such as the engine cooling water temperature and the intake air temperature. Therefore, the zero-order delay calculating means can accurately calculate the zero-order delay based on the conditions including the various engine operating states detected by the operating state detecting means.

【0011】また、前記空燃比検出手段の1次の遅れ
は、吸入空気流量の他、該吸入空気流量の変化量、空燃
比の変化量、機関冷却水温度や吸入空気温度、車速等に
よって決定される。そこで、前記1次遅れ算出手段は、
運転状態検出手段によって検出された前記各種の機関運
転状態と車速検出手段によって検出された車速とを含む
条件に基づいて1次遅れを精度良く算出することができ
る。
The primary delay of the air-fuel ratio detecting means is determined by the amount of change of the intake air flow, the amount of change of the air-fuel ratio, the temperature of the engine cooling water, the temperature of the intake air, the vehicle speed, etc., in addition to the amount of intake air. Is done. Therefore, the first-order lag calculating means includes:
The first-order lag can be accurately calculated based on the conditions including the various engine operating states detected by the operating state detecting means and the vehicle speed detected by the vehicle speed detecting means.

【0012】また、請求項3に係る発明は、前記空燃比
フィードバック制御手段は、制御定数として比例分と積
分分とを含んでフィードバック補正係数を設定し、前記
制御定数補正手段は、前記0次遅れ算出手段によって算
出された0次遅れに応じて前記比例分を補正し、前記1
次遅れ算出手段によって算出された1次遅れに応じて前
記積分分を補正することを特徴とする。
According to a third aspect of the present invention, the air-fuel ratio feedback control means sets a feedback correction coefficient including a proportional component and an integral component as control constants, and the control constant correction means sets the zero-order The proportional component is corrected according to the 0th-order delay calculated by the delay calculation means,
It is characterized in that the integral is corrected according to the primary delay calculated by the secondary delay calculating means.

【0013】該請求項3に係る発明の作用・効果は以下
のとおりである。0次遅れに応じて比例分を補正し、1
次遅れに応じて積分分を補正することで、それぞれの遅
れに見合った補正がなされ、過渡時の空燃比フィードバ
ック制御を可及的に良好に行うことができる。
The functions and effects of the invention according to claim 3 are as follows. The proportional component is corrected according to the 0th-order lag, and 1
By correcting the integral according to the next delay, the correction corresponding to each delay is performed, and the air-fuel ratio feedback control during the transient can be performed as well as possible.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。一実施形態におけるシステム構成を
示す図2において、機関11の吸気通路12には吸入空気流
量Qaを検出するエアフローメータ13及びアクセルペダ
ルと連動して吸入空気流量Qaを制御する絞り弁14が設
けられ、下流のマニホールド部分には気筒毎に燃料供給
手段としての電磁式の燃料噴射弁15が設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing a system configuration according to an embodiment, an intake passage 12 of an engine 11 is provided with an air flow meter 13 for detecting an intake air flow rate Qa and a throttle valve 14 for controlling the intake air flow rate Qa in conjunction with an accelerator pedal. In the downstream manifold portion, an electromagnetic fuel injection valve 15 is provided for each cylinder as fuel supply means.

【0015】燃料噴射弁15は、マイクロコンピュータを
内蔵したコントロールユニット16からの噴射パルス信号
によって開弁駆動し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータにより所定圧力に制御され
た燃料を噴射供給する。更に、機関11の冷却ジャケット
内の冷却水温度Twを検出する水温センサ17、吸入空気
温度TAIR を検出する吸入空気温度センサ31、前記絞り
弁14の開度TVOを検出するスロットルセンサ32が設け
られると共に、排気通路18の排気中酸素濃度を検出する
ことによって吸入混合気の空燃比を検出する広域型の空
燃比センサ19が設けられ、更に下流側の排気中のCO,
HCの酸化とNOX の還元を行って浄化する三元触媒20
が設けられる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 containing a microcomputer, and is supplied by pressure from a fuel pump (not shown) to inject and supply fuel controlled to a predetermined pressure by a pressure regulator. . Further, a water temperature sensor 17 for detecting a cooling water temperature Tw in a cooling jacket of the engine 11, an intake air temperature sensor 31 for detecting an intake air temperature T AIR, and a throttle sensor 32 for detecting an opening TVO of the throttle valve 14 are provided. And a wide-range air-fuel ratio sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the concentration of oxygen in the exhaust gas in the exhaust passage 18.
Three-way catalyst 20 that purifies by oxidizing HC and reducing NO X 20
Is provided.

【0016】また、図示しないディストリビュータに
は、クランク角センサ21が内蔵されており、前記コント
ロールユニット16は該クランク角センサ21から機関回転
と同期して出力されるクランク単位角信号を入力して一
定時間カウントして、又は、クランク基準角信号の周期
を計測して機関回転速度Neを検出する。さらに、図示
しない変速機出力軸等に車速VSPを検出する車速セン
サ33が設けられる。
A distributor (not shown) has a built-in crank angle sensor 21. The control unit 16 receives a crank unit angle signal output from the crank angle sensor 21 in synchronization with the engine rotation and outputs a constant signal. The engine speed Ne is detected by counting time or measuring the cycle of the crank reference angle signal. Further, a vehicle speed sensor 33 for detecting a vehicle speed VSP is provided on a transmission output shaft or the like (not shown).

【0017】そして、前記コントロールユニット16は、
機関運転状態に基づいて目標空燃比TGLMDを設定
し、該目標空燃比TGLMDが得られるように前記空燃
比センサ19からの空燃比検出値に基づいて燃料噴射弁15
からの燃料噴射量を制御することにより空燃比のフィー
ドバック制御を行うが、その際に、該空燃比センサ19の
応答遅れを算出し、該応答遅れに基づいて制御定数を補
正することにより、過渡運転時にも応答性のよい制御を
行うことができる。
The control unit 16
The target air-fuel ratio TGLMD is set based on the engine operating state, and the fuel injection valve 15 is set based on the air-fuel ratio detection value from the air-fuel ratio sensor 19 so that the target air-fuel ratio TGLMD is obtained.
The feedback control of the air-fuel ratio is performed by controlling the fuel injection amount from the air-fuel ratio.At this time, the response delay of the air-fuel ratio sensor 19 is calculated, and the control constant is corrected based on the response delay, thereby making the transient. Control with good responsiveness can be performed even during operation.

【0018】以下に、前記空燃比フィードバック制御の
ルーチンを、図3のフローチャートに基づいて説明す
る。ステップ (図ではSと記す。以下同様) 1では、前
記クランク角センサ21からの信号に基づいて機関回転速
度Neを算出すると共に、前記エアフローメータ13によ
って検出された吸入空気流量Q、空燃比センサ19によっ
て検出された空燃比A/F、水温センサ17によって検出
された冷却水温度 (以下水温という) Tw、吸入空気温
度センサ31によって検出された吸入空気温度TAIR 、ス
ロットルセンサ32によって検出された絞り弁開度TV
O、車速センサ33によって検出された車速VSPを入力
すると共に、別ルーチンで算出された前記燃料噴射弁15
からの基本燃料噴射量TP (=K・Q/Ne;Kは定
数) を入力する。
Hereinafter, the routine of the air-fuel ratio feedback control will be described with reference to the flowchart of FIG. Step (referred to as S in the figure; hereinafter the same) In step 1, the engine rotation speed Ne is calculated based on the signal from the crank angle sensor 21, the intake air flow rate Q detected by the air flow meter 13, the air-fuel ratio sensor The air-fuel ratio A / F detected by 19, the cooling water temperature (hereinafter referred to as water temperature) Tw detected by the water temperature sensor 17, the intake air temperature T AIR detected by the intake air temperature sensor 31, and detected by the throttle sensor 32 Throttle valve opening TV
O: The vehicle speed VSP detected by the vehicle speed sensor 33 is input, and the fuel injection valve 15 calculated by another routine is input.
, The basic fuel injection amount T P (= K · Q / Ne; K is a constant).

【0019】ステップ2では、前記機関回転速度Neと
基本燃料噴射量TP とに基づいて、当該運転領域に見合
った目標空燃比TGLMDを、マップからの検索等によ
り設定する。ステップ3では、前記吸入空気流量Qの単
位時間当りの変化量ΔQ、絞り弁開度TVOの単位時間
当りの変化量ΔTVO、空燃比A/Fの単位時間当りの
変化量ΔA/Fを算出する。
[0019] In step 2, the based on the engine rotational speed Ne and basic fuel injection quantity T P, the target air-fuel ratio TGLMD commensurate with the operating region, set by the retrieval or the like from the map. In step 3, a change amount ΔQ per unit time of the intake air flow rate Q, a change amount ΔTVO per unit time of the throttle valve opening TVO, and a change amount ΔA / F per unit time of the air-fuel ratio A / F are calculated. .

【0020】ステップ4では、前記空燃比センサ19の検
出値A/Fが目標空燃比TGLMD変化に対して変化し
はじめるまでの0次の遅れを、次式のように前記吸入空
気流量Qと、絞り弁開度TVOの単位時間当りの変化量
ΔTVOと、水温Tw及び吸入空気温度TAIR の関数と
して算出する。このステップ4の機能が0次遅れ算出手
段に相当する。
In step 4, the 0th-order delay until the detection value A / F of the air-fuel ratio sensor 19 starts to change with respect to the change in the target air-fuel ratio TGLMD is determined by the following equation. It is calculated as a function of the amount of change ΔTVO per unit time of the throttle valve opening TVO, the water temperature Tw, and the intake air temperature T AIR . The function of step 4 corresponds to the zero-order delay calculating means.

【0021】0次遅れ=K1 {f1 (Q) +f2 (ΔT
VO) +f3 (Tw,TAIR ) −e1 }+B1 ここで、e1 は燃料の壁流分等による誤差量、B1 は空
燃比センサ19の取付位置により決定される定数である。
この0次遅れの式について説明すると、0次遅れを決定
するための運転状態パラメータとして、吸入空気流量
Q,絞り弁開度TVOの単位時間当りの変化量ΔTV
O,水温Tw及び吸入空気温度TAIR 水温Tw、吸入空
気温度TAIR があり、f1 ,f2 ,f3 は、それぞれの
(0次遅れに対する寄与率) × (各パラメータの0次遅
れへの変換係数) で決定される。
Zero-order delay = K 1 {f 1 (Q) + f 2 (ΔT
VO) + f 3 (Tw, T AIR ) −e 1 } + B 1 where e 1 is an error due to fuel wall flow and the like, and B 1 is a constant determined by the mounting position of the air-fuel ratio sensor 19.
The equation of the zero-order delay will be described. The operating state parameters for determining the zero-order delay include the change amount ΔTV per unit time of the intake air flow rate Q and the throttle valve opening TVO.
O, water temperature Tw and intake air temperature T AIR There are water temperature Tw and intake air temperature T AIR , and f 1 , f 2 , and f 3 are
(Contribution rate to zero-order delay) × (conversion coefficient of each parameter to zero-order delay).

【0022】当然、Q、ΔTVO、Tw、TAIR の中に
は、排気が空燃比センサに到達する時間に影響する流速
や温度,圧力のファクターが入っている。次にB1 につ
いて説明すると、これは、図5に示すように、運転状態
と0次遅れとの間に一次の相関 (直線性) がある領域で
求めた、一次直線と0次遅れを表す縦軸との交点として
求められる値であり、前記したように空燃比センサの取
付け位置で略決定される値である。即ち、実際に運転し
ていない状態では、0次遅れは0となるのであるが、エ
ンド効果 (end effect) により、各運転パラメータの値
が小さいときは、相関性は満たされない。一般的に、流
れは、層流の時は粘性項の影響を受け、影響因子 (主に
ΔP) に対し、非直線性となるが、乱流の時は、流れエ
ネルギーが大きくなるため、直線性が高められる。内燃
機関の排気の流れについてみると、アイドル領域では既
に乱流領域である。
Of course, Q, ΔTVO, Tw, and T AIR include factors of flow velocity, temperature, and pressure that affect the time that exhaust gas reaches the air-fuel ratio sensor. Referring now to B 1, which, as shown in FIG. 5, the correlation of the primary between the operating state and the 0-order lag (linearity) is determined in a certain region, indicating a linear line and 0-order lag This is a value obtained as an intersection with the vertical axis, and is a value substantially determined by the mounting position of the air-fuel ratio sensor as described above. That is, in the state where the vehicle is not actually driving, the 0th-order lag is 0, but when the value of each operation parameter is small due to the end effect, the correlation is not satisfied. Generally, the flow is affected by the viscous term in the case of laminar flow, and becomes non-linear with respect to the influencing factor (mainly ΔP). Sex is enhanced. Looking at the flow of exhaust gas from the internal combustion engine, the idle region is already a turbulent region.

【0023】ステップ5では、前記空燃比センサ19の検
出値A/Fが目標空燃比TGLMD変化に対して変化後
の目標空燃比TGLMDになるまでの1次の遅れを、次
式のように前記吸入空気流量の変化量ΔQと、空燃比の
変化量ΔA/F、水温Tw、吸入空気温度TAIR 、車速
VSPの関数として算出する。このステップ5の機能が
0次遅れ算出手段に相当する。
In step 5, the primary delay until the detected value A / F of the air-fuel ratio sensor 19 becomes the target air-fuel ratio TGLMD after the change with respect to the change in the target air-fuel ratio TGLMD is expressed by the following equation. It is calculated as a function of the change amount ΔQ of the intake air flow rate, the change amount ΔA / F of the air-fuel ratio, the water temperature Tw, the intake air temperature T AIR , and the vehicle speed VSP. The function of step 5 corresponds to a zero-order delay calculating means.

【0024】1次遅れ=K2 {f4 (ΔQ) +f5
A/F) +f6 (Tw,TAIR )+f7 (VSP) −e
2 }+B2 ここで、e2 は誤差量、B2 は吸入空気流量Q等からマ
ップ等により検索される定数である。また、f7 (VS
P) は走行風より定まる車体の冷却量に相当する量であ
る。
First order delay = K 2 {f 4 (ΔQ) + f 5
A / F) + f 6 (Tw, T AIR ) + f 7 (VSP) -e
2 } + B 2 Here, e 2 is an error amount, and B 2 is a constant retrieved from a map or the like from the intake air flow rate Q or the like. F 7 (VS
P) is an amount corresponding to the cooling amount of the vehicle body determined by the traveling wind.

【0025】なお、上記1次遅れの式についても、0次
遅れと同様の考え方で、設定されている。ステップ6で
は、前記0次遅れの関数f (0次遅れ) 、例えば0次遅
れの定数倍の値によって比例分Pを次式のように補正し
て設定する。 P=P0 +f (0次遅れ) ここで、P0 は固定値であってもよいが、各運転領域毎
に定常運転状態に見合った定数として設定するようにし
てもよい。
The equation for the first-order lag is set in the same way as the zero-order lag. In step 6, the proportional component P is corrected and set by the function f of the zero-order delay (zero-order delay), for example, a constant multiple of the zero-order delay as in the following equation. P = P 0 + f (0th order delay) Here, P 0 may be a fixed value, but may be set as a constant corresponding to a steady operation state for each operation region.

【0026】ステップ7では、前記1次遅れの関数f
(1次遅れ) 、例えば1次遅れの定数倍の値によって積
分分Iを次式のように補正して設定する。 I=I0 +f (1次遅れ) ここで、I0 は固定値であってもよいが、各運転領域毎
に定常運転状態に見合った定数として設定するようにし
てもよい。
In step 7, the first order lag function f
(Primary delay) For example, the integral I is corrected and set according to a constant multiple of the primary delay as in the following equation. I = I 0 + f (first-order delay) Here, I 0 may be a fixed value, but may be set as a constant corresponding to a steady operation state for each operation region.

【0027】ステップ6,7の機能が、制御定数補正手
段に相当する。このように、空燃比センサ19の応答遅れ
を0次遅れと1次遅れとに分けて算出し、それらに基づ
いて制御定数である比例分と積分分とを補正するように
したので、応答遅れに対する空燃比のずれを良好に補正
して、過渡時にも良好な空燃比フィードバック制御を行
うことができる。
The functions of steps 6 and 7 correspond to control constant correction means. As described above, the response delay of the air-fuel ratio sensor 19 is calculated by dividing the response delay into the zero-order delay and the first-order delay, and the proportional component and the integral component, which are the control constants, are corrected based on them. , A good air-fuel ratio feedback control can be performed even during a transition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1及び請求項2に係る発明の構成・機能
を示すブロック図。
FIG. 1 is a block diagram showing the configuration and functions of the invention according to claims 1 and 2;

【図2】本発明に係る実施形態のシステム構成を示す
図。
FIG. 2 is a diagram showing a system configuration of an embodiment according to the present invention.

【図3】本発明に係る空燃比センサの応答遅れ算出と制
御定数補正のルーチンを示すフローチャート。
FIG. 3 is a flowchart showing a routine for calculating a response delay and correcting a control constant of the air-fuel ratio sensor according to the present invention.

【図4】空燃比センサの応答遅れを説明するためのタイ
ムチャート。
FIG. 4 is a time chart for explaining a response delay of the air-fuel ratio sensor.

【図5】運転状態と0次遅れとの関係を示す図。FIG. 5 is a diagram showing a relationship between an operating state and a zero-order delay.

【符号の説明】[Explanation of symbols]

11 内燃機関 13 エアフローメータ 15 燃料噴射弁 16 コントロールユニット 17 水温センサ 19 空燃比センサ 21 クランク角センサ 31 吸入空気温度センサ 32 スロットルセンサ 33 車速センサ 11 Internal combustion engine 13 Air flow meter 15 Fuel injection valve 16 Control unit 17 Water temperature sensor 19 Air-fuel ratio sensor 21 Crank angle sensor 31 Intake air temperature sensor 32 Throttle sensor 33 Vehicle speed sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排気通路に設けられ排気中成分から機関に
供給される混合気の空燃比を広範囲に検出する空燃比検
出手段と、 該空燃比検出手段による空燃比の検出値と目標空燃比と
を比較しつつ制御定数を用いて設定されるフィードバッ
ク補正係数により、空燃比を目標空燃比に近づけるよう
に制御する空燃比フィードバック制御手段と、 を含んでなる内燃機関の空燃比制御装置において、 目標空燃比の変化に対して、前記空燃比検出手段の検出
値が変化しはじめるまでの0次遅れを算出する0次遅れ
算出手段と、 目標空燃比の変化に対して、前記空燃比検出手段の検出
値が変化しはじめてから、変化後の目標空燃比を検出す
るまでの1次遅れを算出する1次遅れ算出手段と、 前記算出された空燃比検出手段の0次遅れ及び1次遅れ
に基づいて、前記空燃比フィードバック制御手段におけ
る制御定数を補正する制御定数補正手段と、 を含んで構成したことを特徴とする内燃機関の空燃比制
御装置。
1. An air-fuel ratio detecting means provided in an exhaust passage for detecting an air-fuel ratio of an air-fuel mixture supplied to an engine from a component in exhaust gas over a wide range, an air-fuel ratio detected value by the air-fuel ratio detecting means, and a target air-fuel ratio. An air-fuel ratio feedback control means for controlling the air-fuel ratio to be close to the target air-fuel ratio by a feedback correction coefficient set using a control constant while comparing A zero-order delay calculating means for calculating a zero-order delay until the detection value of the air-fuel ratio detecting means starts to change with respect to a change in the target air-fuel ratio; and the air-fuel ratio detecting means with respect to a change in the target air-fuel ratio. A first-order delay calculating means for calculating a first-order delay from when the detected value of は じ め starts to change until a target air-fuel ratio after the change is detected; and a zero-order lag and a first-order lag of the calculated air-fuel ratio detecting means. Based Te, the air-fuel ratio control apparatus for an internal combustion engine, characterized in that configured to include a control variable correcting means for correcting the control constant in the air-fuel ratio feedback control means.
【請求項2】機関の運転状態を検出する運転状態検出手
段と、 車速を検出する車速検出手段と、を備え、 前記0次遅れ算出手段は、前記検出された機関の運転状
態を含む条件に基づいて、前記0次遅れを算出し、 前記1次遅れ算出手段は、前記検出された機関の運転状
態と前記検出された車速とを含む条件に基づいて、前記
1次遅れを算出することを特徴とする請求項1に記載の
内燃機関の空燃比制御装置。
2. An operating state detecting means for detecting an operating state of the engine, and a vehicle speed detecting means for detecting a vehicle speed, wherein the zero-order lag calculating means is adapted to a condition including the detected operating state of the engine. Calculating the first order delay based on a condition including the detected operating state of the engine and the detected vehicle speed. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein
【請求項3】前記空燃比フィードバック制御手段は、制
御定数として比例分と積分分とを含んでフィードバック
補正係数を設定し、 前記制御定数補正手段は、前記0次遅れ算出手段によっ
て算出された0次遅れに応じて前記比例分を補正し、前
記1次遅れ算出手段によって算出された1次遅れに応じ
て前記積分分を補正することを特徴とする請求項1又は
請求項2に記載の内燃機関の空燃比制御装置。
3. The air-fuel ratio feedback control means sets a feedback correction coefficient including a proportional component and an integral component as control constants, and the control constant correction means sets a feedback correction coefficient calculated by the zero-order delay calculating means. 3. The internal combustion engine according to claim 1, wherein the proportional component is corrected according to a secondary delay, and the integral component is corrected according to a primary delay calculated by the primary delay calculating unit. 4. Engine air-fuel ratio control device.
JP18956196A 1996-07-18 1996-07-18 Air-fuel ratio controller of internal combustion engine Pending JPH1030479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18956196A JPH1030479A (en) 1996-07-18 1996-07-18 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18956196A JPH1030479A (en) 1996-07-18 1996-07-18 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1030479A true JPH1030479A (en) 1998-02-03

Family

ID=16243400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18956196A Pending JPH1030479A (en) 1996-07-18 1996-07-18 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1030479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748425A (en) * 2019-09-30 2020-02-04 同济大学 Natural gas engine transient air-fuel ratio control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748425A (en) * 2019-09-30 2020-02-04 同济大学 Natural gas engine transient air-fuel ratio control method

Similar Documents

Publication Publication Date Title
JP2819937B2 (en) Fuel injection amount calculation device for internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01244138A (en) Fuel injection control device for engine for automobile
JPH01125533A (en) Fuel injection controller for internal combustion engine
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPH04279742A (en) Fuel injection control device of internal combustion engine
KR0161699B1 (en) Air fuel ratio controller for internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0211840A (en) Air-fuel ratio controller for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JPH0523815Y2 (en)
JP2548612B2 (en) Fuel supply control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPH07208252A (en) Control device of internal combustion engine
JPH08128348A (en) Control device of engine
JPH04342844A (en) Air fuel ratio control device for internal combustion engine
JPS635128A (en) Fuel injection amount control device for internal combustion engine
JPH02181051A (en) Intake air pressure detecting device for internal combustion engine
JPH07158479A (en) Fuel injection control device for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPH0689685B2 (en) Fuel supply control device for internal combustion engine