JPS635128A - Fuel injection amount control device for internal combustion engine - Google Patents

Fuel injection amount control device for internal combustion engine

Info

Publication number
JPS635128A
JPS635128A JP14839186A JP14839186A JPS635128A JP S635128 A JPS635128 A JP S635128A JP 14839186 A JP14839186 A JP 14839186A JP 14839186 A JP14839186 A JP 14839186A JP S635128 A JPS635128 A JP S635128A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
injection amount
fuel
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14839186A
Other languages
Japanese (ja)
Inventor
Yasutoshi Namiyoshi
康利 南吉
Katsunori Oshiage
勝憲 押上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14839186A priority Critical patent/JPS635128A/en
Publication of JPS635128A publication Critical patent/JPS635128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of response delay during transient running, by a method wherein, based on an intake air amount and the number of revolutions, a fundamental injection amount is determined, and a method of computing an air-fuel ratio by means of a negative pressure sensor output and an injection amount is compared with an air-fuel ratio, detected by an O2 sensor during steady running, for correction. CONSTITUTION:A fundamental injection amount computing means 3 computes a fundamental injection amount from an intake air amount and the number of revolutions. Meanwhile, an air-fuel ratio computing means 7 computes an air-fuel ratio of air-fuel mixture, based on a suction negative pressure of a negative pressure sensor 6 and an injection amount control signal from an injection amount correcting means 8, when a steady and transient detecting means 5 detects a transient state from a change in a rotation. speed and a change in the opening of a throttle valve. Meanwhile, during steady running, an error compensating means 10 compares an air-fuel ratio, determined by the air-fuel ratio computing means 7, with that detected by an oxygen concentration detecting means 9 to correct the computing method of the air-fuel ratio computing means 7.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ガソリン機関等の内燃機関における燃料噴
射量制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an improvement of a fuel injection amount control device for an internal combustion engine such as a gasoline engine.

従来の技術 従来の燃料噴射量制御装置は、特公昭55−36814
号公報等に記載されているように、機関の吸気通路に介
装したエアフローメータによって検出される空気流量と
、クランク角センサによって検出される機関回転速度と
から基本噴射量を決定するとともに、これに各種増量補
正を加えて最終的な燃料噴射量を求め、これに応じて燃
料噴射弁の開時間を制御する構成となっている。このよ
うに、空気流量を検出して吸入行程1回当りの吸入空気
mを求める方式では、絞弁下流の吸入負圧を検出して吸
入空気量を求める方式に比較して、排気還流や慣性過給
の影響を受けることがないという利点を有してい名。
Conventional technology A conventional fuel injection amount control device was developed by Japanese Patent Publication No. 55-36814.
As stated in the publication, the basic injection amount is determined from the air flow rate detected by an air flow meter installed in the intake passage of the engine and the engine rotation speed detected by the crank angle sensor. The configuration is such that the final fuel injection amount is determined by adding various increase corrections to the amount, and the opening time of the fuel injection valve is controlled accordingly. In this way, the method of detecting the air flow rate to determine the intake air m per intake stroke is more effective than the method of determining the intake air amount by detecting the suction negative pressure downstream of the throttle valve, due to exhaust gas recirculation and inertia. It has the advantage of not being affected by supercharging.

発明が解決しようとする問題点 しかし、上記のように空気流量を検出するエアフローメ
ータは、−般に吸気通路の上流位置に設けられているた
め、機関の過渡時に空気流量が急激に変化すると、実際
に気筒に吸入される吸入空気量を応答性良く正確に検出
することができず、空燃比の変動ひいては機関の運転性
悪化を招く。
Problems to be Solved by the Invention However, since the air flow meter that detects the air flow rate as described above is generally installed upstream of the intake passage, if the air flow rate changes suddenly during engine transients, It is not possible to accurately detect the amount of intake air actually taken into the cylinder with good responsiveness, resulting in fluctuations in the air-fuel ratio and, in turn, deterioration in engine drivability.

−方、吸入負圧を検出する方式では、過渡時にも吸入空
気量を一層正確に求めることができる反面、上記のよう
に排気還流や慣性過給の影響を受けるほか、吸気温度の
変化や機関の経時的な特性変化の影響を受けるという不
具合がある。
- On the other hand, with the method of detecting suction negative pressure, it is possible to more accurately determine the amount of intake air even during transient conditions, but on the other hand, it is affected by exhaust gas recirculation and inertial supercharging as mentioned above, and is affected by changes in intake air temperature and engine There is a problem in that it is affected by changes in characteristics over time.

問題点を解決するための手段 第1図はこの発明の構成を示す機能ブロック図であって
、■は吸気通路の上流位置で空気流量を検出するエアフ
ローメータ等からなる空気流量検出手段、2は機関の回
転速度を検出するクランク角センサ等からなる回転速度
検出手段、3はこれらの空気流量と回転速度とから基本
噴射量を演算する基本噴射量演算手段、4はこの基本噴
射量に基づいて開閉制御される燃料噴射弁である。
Means for Solving the Problems FIG. 1 is a functional block diagram showing the configuration of the present invention, in which 2 is an air flow rate detection means consisting of an air flow meter or the like that detects the air flow rate at an upstream position of the intake passage; Rotational speed detection means consisting of a crank angle sensor etc. that detects the rotational speed of the engine; 3 is a basic injection amount calculation means that calculates a basic injection amount from these air flow rates and rotational speed; 4 is a basic injection amount calculation means that calculates a basic injection amount based on this basic injection amount. This is a fuel injection valve that is controlled to open and close.

5は、回転速度の変化や絞弁開度の変化などから機関が
定常状態にあるか過渡状態にあるかを検出する定常・過
渡検出手段、6は絞弁下流の吸入負圧を検出する負圧セ
ンサ、7はこの吸入負圧と燃料噴射量とから所定の演算
式に基づいて、気筒に吸入された混合気の空燃比を演算
する空燃比演算手段、8は機関の過渡時に上記空燃比演
算手段にて求めた空燃比に基づいて燃料噴射量の補正を
行う噴射量補正手段である。
Reference numeral 5 indicates a steady/transient detection means for detecting whether the engine is in a steady state or a transient state based on changes in rotational speed or throttle valve opening, and reference numeral 6 indicates a negative detection means for detecting suction negative pressure downstream of the throttle valve. a pressure sensor; 7 is an air-fuel ratio calculating means for calculating the air-fuel ratio of the air-fuel mixture taken into the cylinder based on this suction negative pressure and the fuel injection amount based on a predetermined calculation formula; 8 is an air-fuel ratio calculation means for calculating the air-fuel ratio during engine transients; This is an injection amount correction means that corrects the fuel injection amount based on the air-fuel ratio determined by the calculation means.

また9は、排気中の酸素濃度を検出する酸素濃度検出手
段、10は機関の定常時に、上記空燃比演算手段7にて
求めた空燃比と検出した酸素濃度とを比較して上記空燃
比の演算方法を補正する誤差補償手段である。
Reference numeral 9 denotes an oxygen concentration detection means for detecting the oxygen concentration in the exhaust gas; 10, when the engine is in steady state, compares the air-fuel ratio obtained by the air-fuel ratio calculation means 7 with the detected oxygen concentration to determine the air-fuel ratio; This is an error compensation means for correcting the calculation method.

作用 定常時には、基本噴射量演算手段3が決定した基本噴射
量に基づき、これに若干の補正増量を加えた形で燃料噴
射弁4の開時間か制御される。そして、空燃比演算手段
7では、実際の燃料噴射量と吸入負圧とから所定の演算
式によって気筒に吸入された混合気の空燃比が応答性良
く求められる。
When the operation is steady, the opening time of the fuel injection valve 4 is controlled based on the basic injection amount determined by the basic injection amount calculating means 3, with a slight correction increase added thereto. Then, the air-fuel ratio calculation means 7 calculates the air-fuel ratio of the air-fuel mixture taken into the cylinder with good responsiveness using a predetermined calculation formula from the actual fuel injection amount and the intake negative pressure.

加速、減速等の過渡時には、この空燃比演算手段7が求
めた空燃比に基づいて上記基本噴射量が補正される。
During transitions such as acceleration and deceleration, the basic injection amount is corrected based on the air-fuel ratio determined by the air-fuel ratio calculation means 7.

一方、酸素濃度検出手段9によって検出される排気中の
残存酸素濃度は、やはり空燃比を示す指標となるもので
あり、機関定常時に、空燃比演算手段7にて求まる空燃
比と比較すれば、経時的な特性変化による誤差の発生を
知ることができる。
On the other hand, the residual oxygen concentration in the exhaust gas detected by the oxygen concentration detection means 9 is an index indicating the air-fuel ratio, and when compared with the air-fuel ratio determined by the air-fuel ratio calculation means 7 when the engine is steady, It is possible to know the occurrence of errors due to changes in characteristics over time.

誤差補償手段10では、空燃比演算手段7における演算
方法を補正することによって、その誤差の補償を行って
いる。
The error compensation means 10 compensates for the error by correcting the calculation method in the air-fuel ratio calculation means 7.

実施例 第2図はこの発明に係る燃料噴射量制御装置の一実施例
を示す構成説明図であって、!lは吸気通路12の比較
的上流、具体的には絞弁13上流に設けられたフラップ
式らしくは熱線式等のエアフローメータ、14は内燃機
関15のクランク軸の一定回転角毎にパルス信号を発生
するクランク角センサ、16は吸気通路12の絞弁13
下流、具体的には吸気管コレクタ部12aに配設された
負圧センサ、17は排気通路18に設けられた酸素セン
サである。この酸素センサ17は、酸素濃度に応じて出
力が連続的に変化する特性のものが用いられている。ま
た19は絞弁13の開度変化を一定開度を境としたO 
N 、OFF的に、あるいはアナログ的に検出するスロ
ットル開度センサ、20は内燃機関15の冷却水温を検
出する水温センサ、21は各気筒の吸気ポートに向けて
配設された燃料噴射弁、22はこの燃料噴射弁21の開
閉制御を行うマイクロコンピュータを利用したコントロ
ールユニットであり、I10ボート22a、CP U’
22b。
Embodiment FIG. 2 is a configuration explanatory diagram showing an embodiment of the fuel injection amount control device according to the present invention. 1 is an air flow meter such as a flap type or hot wire type installed relatively upstream of the intake passage 12, specifically, upstream of the throttle valve 13; The crank angle sensor 16 is the throttle valve 13 of the intake passage 12.
A negative pressure sensor 17 is provided downstream, specifically in the intake pipe collector section 12a, and an oxygen sensor 17 is provided in the exhaust passage 18. This oxygen sensor 17 has a characteristic that its output changes continuously depending on the oxygen concentration. In addition, 19 shows the change in the opening of the throttle valve 13 at an O
N, a throttle opening sensor that detects in an OFF or analog manner; 20, a water temperature sensor that detects the cooling water temperature of the internal combustion engine 15; 21, a fuel injection valve disposed toward the intake port of each cylinder; 22; is a control unit using a microcomputer that controls the opening and closing of this fuel injection valve 21, and includes an I10 boat 22a, a CPU'
22b.

ROM 22c、 RA M 22d、 A /D変換
器22e等からなる。
It consists of a ROM 22c, a RAM 22d, an A/D converter 22e, etc.

第3図〜第6図は、上記コントロールユニット22によ
って行われる制御の内容を示すフローチャートであり、
以下これを説明する。
3 to 6 are flowcharts showing the details of the control performed by the control unit 22,
This will be explained below.

第3図は機関の定常状態、過渡状態を検出するためのプ
ログラムであって、これは、−定周期毎に繰り返し実行
される。ステップlでは、負圧センサ16が検出する吸
入負圧を前回の検出値と比較して、所定値以上の増減が
あったか否か判定する。
FIG. 3 shows a program for detecting the steady state and transient state of the engine, and this program is repeatedly executed at every regular cycle. In step 1, the suction negative pressure detected by the negative pressure sensor 16 is compared with the previous detected value to determine whether there has been an increase or decrease by a predetermined value or more.

ステップ2では絞弁13の開度を前回の開度と比較して
急激な増減があったか否か判定する。ステップ3ではク
ランク角センサ14から求められる回転速度について、
ステップ4ではエアフローメータ11が検出する空気流
量について、同様に所定値以上の増減かあったか否か判
定する。またステップ5では酸素センサ17の出力値に
ついて、またステップ6では水温センサ20が検出する
冷却水温について、夫々所定の範囲内にあるか否かを判
定する。そして、これらの判定結果から、ステップ7で
総合的に定常状態にあるか過渡状態にあるかを判定する
。この総合判定は、例えば総ての要因が安定状態にある
ときに「定常」とし、何れか1つでも急激に変化したと
きには「過渡」と判定する。勿論このような条件は他に
適宜に変更できる。
In step 2, the opening degree of the throttle valve 13 is compared with the previous opening degree to determine whether there has been a sudden increase or decrease. In step 3, regarding the rotational speed determined from the crank angle sensor 14,
In step 4, it is similarly determined whether the air flow rate detected by the air flow meter 11 has increased or decreased by a predetermined value or more. Further, in step 5, it is determined whether the output value of the oxygen sensor 17 and in step 6, the cooling water temperature detected by the water temperature sensor 20 are within predetermined ranges. Then, based on these determination results, it is comprehensively determined in step 7 whether the state is in a steady state or in a transient state. In this comprehensive determination, for example, when all factors are in a stable state, it is determined to be "steady", and when any one of the factors changes suddenly, it is determined to be "transient". Of course, these conditions can be changed as appropriate.

第4図は、気筒内に吸入された混合気の空燃比を求める
プログラムであって、ステップ8では、吸気弁が閉じる
直前のタイミングで負圧センサ16が検出した吸入負圧
を読み込み、ステップ9では、この吸入負圧に基づき気
筒に吸入される吸入空気量を演算する。これは例えば「
吸入空気Ji=AX吸入負圧+BJ(但し、A、Bは定
数)なる演算式で求められる。またステップ10では、
前回の吸入行程から今回の吸入行程までの間に送出され
た噴射弁駆動パルス信号のパルス幅から燃料供給量を演
算する。これは例えば、「燃料供給量=C×パルス幅−
DJ(但し、C,Dは定数)なる演算式で求められる。
FIG. 4 shows a program for determining the air-fuel ratio of the air-fuel mixture taken into the cylinder. In step 8, the intake negative pressure detected by the negative pressure sensor 16 at the timing immediately before the intake valve closes is read, and in step 9 Now, the amount of intake air taken into the cylinder is calculated based on this intake negative pressure. For example,
It is determined by the following formula: intake air Ji=AX intake negative pressure+BJ (where A and B are constants). Also, in step 10,
The amount of fuel supplied is calculated from the pulse width of the injector drive pulse signal sent out between the previous intake stroke and the current intake stroke. For example, "Fuel supply amount = C x pulse width -
It is determined by the arithmetic expression DJ (where C and D are constants).

そして、ステップ11で、両者の比として気筒内の実際
の空燃比を演算する。
Then, in step 11, the actual air-fuel ratio in the cylinder is calculated as a ratio between the two.

第5図は、燃料噴射量の補正プログラムである。FIG. 5 is a fuel injection amount correction program.

尚、フローチャートは図示してないが、エアフローメー
タ11が検出する空気流量と機関回転速度とから基本噴
射量が演算されるとともに、水温等に基づく各種補正増
量を加えて補正前の噴射量、詳しくは噴射弁駆動パルス
信号のパルス幅が決定されるようになっている。ステッ
プ12は、前述したプログラムに基づいて過渡状態であ
るか否かを判断するものであり、その過渡状態の間は、
第4図のプログラムで演算した空燃比が正常か否か、つ
まり一定の範囲内にあるか否かを判断し、(ステップ1
3)、正常でない場合は、噴射量の補正を行う(ステッ
プ14.15)。この補正は、例えば、空燃比の濃・薄
に対し一定量の減量・増量を行う方式、空燃比の偏差の
大きさによって増減量を変化させる方式など適宜に選択
で′きる。
Although the flowchart is not shown, the basic injection amount is calculated from the air flow rate detected by the air flow meter 11 and the engine rotation speed, and various correction increases based on water temperature etc. are added to calculate the injection amount before correction in detail. The pulse width of the injection valve drive pulse signal is determined. Step 12 is to judge whether or not there is a transient state based on the above-mentioned program, and during the transient state,
It is determined whether the air-fuel ratio calculated by the program in Figure 4 is normal or not, that is, whether it is within a certain range (Step 1
3) If it is not normal, the injection amount is corrected (step 14.15). This correction can be appropriately selected, for example, by reducing or increasing the amount by a certain amount depending on whether the air-fuel ratio is rich or lean, or by changing the amount of increase or decrease depending on the magnitude of the deviation in the air-fuel ratio.

第6図は、上記の負圧センサ16により演算した空燃比
が経時的変化などによって誤差を生じないように、空燃
比演算プログラム(第4図)における演算式を逐次校正
するプログラムである。ステップ16は、前述したプロ
グラムに基づいて機関が定常状態にあるか否かを判断す
るものであり、定常状態にあれば、酸素センサ17が検
出した排気中の残存酸素濃度(そのときの空燃比を示す
)と第4図のプログラムで求めた空燃比との間で誤差が
生じているか判断する(ステップ17)。そして、この
誤差が一定範囲以上ある場合には、前述したステップ9
の演算式における定数Bに補正量すを加えて、その誤差
を修正する。この補正は、その誤差のリッチ、リーンに
対応して一定値を加算パ減算する方式、その誤差の大き
さによって補正量すを変化させる方式などが可能である
FIG. 6 is a program that sequentially calibrates the calculation formula in the air-fuel ratio calculation program (FIG. 4) so that the air-fuel ratio calculated by the negative pressure sensor 16 does not produce errors due to changes over time. Step 16 is to judge whether or not the engine is in a steady state based on the program described above. If the engine is in a steady state, the residual oxygen concentration in the exhaust gas detected by the oxygen sensor 17 (the air-fuel ratio at that time) is determined. It is determined whether there is an error between the air-fuel ratio (shown in FIG. 4) and the air-fuel ratio determined by the program shown in FIG. 4 (step 17). If this error exceeds a certain range, step 9 described above
The error is corrected by adding the correction amount S to the constant B in the equation. This correction can be performed by adding or subtracting a fixed value depending on whether the error is rich or lean, or by changing the correction amount depending on the magnitude of the error.

従って、種々の要因で負圧センサ16による空燃比の検
出に影響が生じても、定常状態となる度に誤差の修正が
行われる結果、その後過渡状態となって燃料噴射量の補
正を行う際には、それらの影響を受けることなく高精度
な空燃比の検出ひいては極めて適切な噴射量の補正が行
える。
Therefore, even if various factors affect the detection of the air-fuel ratio by the negative pressure sensor 16, the error will be corrected each time a steady state is reached, and when the fuel injection amount is corrected in a subsequent transient state. Therefore, the air-fuel ratio can be detected with high accuracy and the injection amount can be corrected very appropriately without being influenced by these factors.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の燃料噴射量制御装置によれば、定常時には空気流量に
基づき排気還流や慣性過給の影響を受けずに空燃比制御
が行える一方、空気流量が急激に変化する過渡時におい
て、応答遅れによる空燃比の変動を防止でき、機関の運
転性悪化を生じることがない。そして、その過渡時のた
めの空燃比の演算が逐次酸素濃度に基づいて補正される
ので、経時的変化等に影響されることがない。
Effects of the Invention As is clear from the above explanation, according to the fuel injection amount control device for an internal combustion engine according to the present invention, the air-fuel ratio can be controlled based on the air flow rate during steady state without being affected by exhaust gas recirculation or inertial supercharging. On the other hand, it is possible to prevent the air-fuel ratio from fluctuating due to response delay during a transient period when the air flow rate changes rapidly, and the operability of the engine is not deteriorated. Since the calculation of the air-fuel ratio during the transient period is corrected sequentially based on the oxygen concentration, it is not affected by changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す機能ブロック図、第2図
はこの発明の一実施例を示す構成説明図、第3図、第4
図、第5図および第6図はこの実施例における制御の内
容を示すフローチャートである。 l・・・空気流量検出手段、2・・・回転速度検出手段
、3・・・基本噴射量演算手段、4・・・燃料噴射弁、
5・・・定常・過渡検出手段、7・・・空燃比演算手段
、8・・・噴射量補正手段、9・・・酸素濃度検出手段
、lO・・・誤差補償手段。 外2名 第3図     第4図 第5図 第6図
FIG. 1 is a functional block diagram showing the configuration of this invention, FIG. 2 is a configuration explanatory diagram showing one embodiment of this invention, FIGS.
5 and 6 are flowcharts showing the details of control in this embodiment. l...Air flow rate detection means, 2...Rotational speed detection means, 3...Basic injection amount calculation means, 4...Fuel injection valve,
5... Steady/transient detection means, 7... Air-fuel ratio calculation means, 8... Injection amount correction means, 9... Oxygen concentration detection means, lO... Error compensation means. 2 people Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路の上流位置で空気流量を検出する空気流
量検出手段と、機関の回転速度を検出する回転速度検出
手段と、空気流量と回転速度とから基本噴射量を演算す
る基本噴射量演算手段とを備え、この基本噴射量に基づ
いて燃料噴射弁の開時間を制御する内燃機関の燃料噴射
量制御装置において、機関が定常状態にあるか過渡状態
にあるかを検出する定常・過渡検出手段と、絞弁下流の
吸入負圧を検出する負圧センサと、この吸入負圧と燃料
噴射量とから所定の演算式に基づいて、気筒に吸入され
た混合気の空燃比を演算する空燃比演算手段と、機関の
過渡時に上記空燃比演算手段にて求めた空燃比に基づい
て燃料噴射量の補正を行う噴射量補正手段と、排気中の
酸素濃度を検出する酸素濃度検出手段と、機関の定常時
に、上記空燃比演算手段にて求めた空燃比と検出した酸
素濃度とを比較して上記空燃比の演算方法を補正する誤
差補償手段とを設けたことを特徴とする内燃機関の燃料
噴射量制御装置。
(1) Air flow rate detection means that detects the air flow rate at an upstream position of the intake passage, rotation speed detection means that detects the engine rotation speed, and basic injection amount calculation that calculates the basic injection amount from the air flow rate and rotation speed. In a fuel injection amount control device for an internal combustion engine that controls an opening time of a fuel injection valve based on the basic injection amount, the device includes a steady state/transient detection device that detects whether the engine is in a steady state or a transient state. a negative pressure sensor that detects the suction negative pressure downstream of the throttle valve; and an air-fuel ratio sensor that calculates the air-fuel ratio of the mixture taken into the cylinder based on the suction negative pressure and the fuel injection amount based on a predetermined calculation formula. a fuel ratio calculation means, an injection amount correction means for correcting the fuel injection amount based on the air-fuel ratio obtained by the air-fuel ratio calculation means during engine transient, and an oxygen concentration detection means for detecting the oxygen concentration in the exhaust gas; An internal combustion engine, characterized in that it is provided with an error compensating means for correcting the method of calculating the air-fuel ratio by comparing the air-fuel ratio obtained by the air-fuel ratio calculating means with the detected oxygen concentration during the steady state of the engine. Fuel injection amount control device.
JP14839186A 1986-06-25 1986-06-25 Fuel injection amount control device for internal combustion engine Pending JPS635128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14839186A JPS635128A (en) 1986-06-25 1986-06-25 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14839186A JPS635128A (en) 1986-06-25 1986-06-25 Fuel injection amount control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS635128A true JPS635128A (en) 1988-01-11

Family

ID=15451726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14839186A Pending JPS635128A (en) 1986-06-25 1986-06-25 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS635128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654594A2 (en) * 1993-11-22 1995-05-24 General Motors Corporation Method of determining transitions from steady state to transient conditions in an internal combustion engine
US7451036B2 (en) 2003-05-27 2008-11-11 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654594A2 (en) * 1993-11-22 1995-05-24 General Motors Corporation Method of determining transitions from steady state to transient conditions in an internal combustion engine
EP0654594B1 (en) * 1993-11-22 2002-09-11 General Motors Corporation Method of determining transitions from steady state to transient conditions in an internal combustion engine
US7451036B2 (en) 2003-05-27 2008-11-11 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
US5157920A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JPS6340268B2 (en)
JPH01244138A (en) Fuel injection control device for engine for automobile
JPS59136544A (en) Control apparatus for intenal-combustion engine
JP2663072B2 (en) Apparatus for detecting fuel concentration in blow-by gas
JPS635128A (en) Fuel injection amount control device for internal combustion engine
JP2015083778A (en) Internal combustion engine control device
JPS59136543A (en) Control apparatus for internal-combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP4385542B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04259639A (en) Air-fuel ratio control device for internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPH04294266A (en) Measuring apparatus for fuel property and controller for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JPS63140854A (en) Exhaust gas recirculation rate detector
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07133735A (en) Control device for internal combustion engine
JPH01294943A (en) Air amount detecting device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH04342850A (en) Controller of internal combustion engine
JPH08159995A (en) Exhaust heat quantity calculating apparatus
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07158479A (en) Fuel injection control device for internal combustion engine
JPH041182B2 (en)