JPS62139943A - Air-fuel ratio control method for internal combustion engine - Google Patents

Air-fuel ratio control method for internal combustion engine

Info

Publication number
JPS62139943A
JPS62139943A JP28236485A JP28236485A JPS62139943A JP S62139943 A JPS62139943 A JP S62139943A JP 28236485 A JP28236485 A JP 28236485A JP 28236485 A JP28236485 A JP 28236485A JP S62139943 A JPS62139943 A JP S62139943A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28236485A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kobayashi
伸行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28236485A priority Critical patent/JPS62139943A/en
Publication of JPS62139943A publication Critical patent/JPS62139943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To correct the tolerance of a lean sensor properly by changing an air-fuel ratio to a theoretical air-fuel ratio for keeping engine output unchanged in a steady running condition wherein said ratio is feedback controlled to a target ratio at lean side, and using the deviation of an operated ratio on the basis of a value obtainable therefrom. CONSTITUTION:An electronic control circuit 44 is inputted with values detected by an air flow meter 2, a rotary angle sensor 47, an O2 sensor 30, a lean sensor 52 and the like. The electronic control circuit 44, when an engine has been judged to be in a steady running condition, turns an air-fuel ratio from lean side to rich side, and keeps engine output at a constant level, delaying ignition timing. Also, said circuit 44 judges that the air-fuel ratio has reached a theoretical value, according to output from the O2 sensor and operates the ratio at the lean side of a predetermined value on the basis of a ratio then available, thereby controlling the ratio at a level so operated. And according to the deviation of output of the lean sensor 52 from the operated air-fuel ratio, correction is made on said sensor 52 for the air-fuel ratio feedback control.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の空燃比制御方法に係り、特に排ガス
中の残留酸素濃度に比例した空燃比信号を出力するリー
ンセンサを用いて空燃比を理論空燃比より希薄側の目標
空燃比に制御する内燃機関の空燃比制御方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an air-fuel ratio control method for an internal combustion engine, and in particular to an air-fuel ratio control method using a lean sensor that outputs an air-fuel ratio signal proportional to the residual oxygen concentration in exhaust gas. The present invention relates to an air-fuel ratio control method for an internal combustion engine that controls the air-fuel ratio to a target air-fuel ratio that is leaner than the stoichiometric air-fuel ratio.

[従来の技術] 従来より、排ガス中のHC,CO,NOxを同時に浄化
するために、機関負荷(例えば、機関1回転当りの吸入
空気量または吸気管圧力)と機関回転数とで基本燃料噴
射H1を定め、排ガス中の残留酸素濃度を検出する02
センサ出力によってノ1(本燃料噴射雀を補正して空燃
比を理論空燃比にフィードバック制御することが行なわ
れている。この02センサは、吸気空燃比が理論空燃比
のときの排ガス残留酸素濃度を境に反転した信号を出力
するため、空燃比を理論空燃比に正確に制御することが
できる。
[Prior Art] Conventionally, in order to simultaneously purify HC, CO, and NOx in exhaust gas, basic fuel injection has been performed depending on the engine load (for example, the amount of intake air per engine revolution or the intake pipe pressure) and the engine speed. Determine H1 and detect the residual oxygen concentration in exhaust gas02
Feedback control of the air-fuel ratio to the stoichiometric air-fuel ratio is carried out by correcting the main fuel injection ratio based on the sensor output. Since the signal is inverted at the boundary, the air-fuel ratio can be accurately controlled to the stoichiometric air-fuel ratio.

一方、近時、燃料消費賃を低減すると共に排ガス中のH
C,Coの排出量を低減することを目的として、リーン
センサを用い排ガス中の有害成分の排出量が比較的少な
くなる定常運転条件下でリーンセンサ出力に基づいて空
燃比を理論空燃比より希薄側の空燃比にフィードバック
制御することが行なわれている。このリーンセンサは理
論空燃比より希薄側の空燃比域において排ガス中の残留
酸素濃度に比例した信号を出力するため、空燃比を理論
空燃比より希薄側に制御することができる。しかしなが
ら、このリーンセンサは、理論空燃比近傍で出力が不安
定になり、また理論空燃比から充分希薄側で安定した信
号を出力するが、精度よく製造することが困難なため、
空燃比を正確に目標空燃比に制御することが困難であっ
た。
On the other hand, recently, as well as reducing fuel consumption costs, H
In order to reduce C and Co emissions, a lean sensor is used to make the air-fuel ratio leaner than the stoichiometric air-fuel ratio based on the lean sensor output under steady-state operating conditions where the emissions of harmful components in exhaust gas are relatively low. Feedback control is performed on the side air-fuel ratio. Since this lean sensor outputs a signal proportional to the residual oxygen concentration in the exhaust gas in an air-fuel ratio range on the leaner side than the stoichiometric air-fuel ratio, the air-fuel ratio can be controlled to be leaner than the stoichiometric air-fuel ratio. However, this lean sensor's output becomes unstable near the stoichiometric air-fuel ratio, and although it outputs a stable signal at a sufficiently lean side of the stoichiometric air-fuel ratio, it is difficult to manufacture with high precision.
It was difficult to accurately control the air-fuel ratio to the target air-fuel ratio.

このため、従来では特開昭58−198752号公報に
示されるように、空燃比を理論空燃比に制御したときの
リーンセンサ出力からリーンセンサの較正量を求めて空
燃比を制御することが行なわれている [発明が解決しようとする問題点] しかしながら、上述したようにリーンセンサ出力は理論
空燃比近傍で出力が不安定になるため、理論空燃比時で
出力信号を基準に較正量を定めても正確な較正ができな
い、という問題があった。
For this reason, conventionally, as shown in Japanese Unexamined Patent Publication No. 198752/1983, the air-fuel ratio is controlled by determining the calibration amount of the lean sensor from the lean sensor output when the air-fuel ratio is controlled to the stoichiometric air-fuel ratio. [Problem to be solved by the invention] However, as mentioned above, the lean sensor output becomes unstable near the stoichiometric air-fuel ratio, so the calibration amount is determined based on the output signal at the stoichiometric air-fuel ratio. However, there was a problem in that it was not possible to perform accurate calibration.

本発明は上記問題点を解決すべく成されたもので、リー
ンセンサが安定したときの出力信号を基準に較正M)を
定めることにより、空燃比を理論空燃比より希薄側に正
確に制御できる内燃機関の空燃比制御方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and by determining the calibration M) based on the output signal when the lean sensor is stable, the air-fuel ratio can be accurately controlled to the leaner side than the stoichiometric air-fuel ratio. An object of the present invention is to provide an air-fuel ratio control method for an internal combustion engine.

[問題点を解決するための手段] 上記目的を達成するために本発明は排ガス中の残留酸素
濃度に比例した第1の信号を理論空燃比より希薄側で出
力させると共に理論空燃比を境に反転した第2の信号を
出力させ、定常運転条件下で前記第1の信号に基づいて
空燃比を理論空燃比より希薄側の目標空燃比に制御する
内燃機関の空燃比制御方法において、定常運転条件下で
機関出力゛が変化しないようにしながら空燃比を変化さ
せて前記第2の信号が出力されるようにし、第2の信号
が出力されたときの空燃比を基準に所定値希薄側の空燃
比を演算すると共に空燃比を演算された空燃比に制御し
たときの実際の空燃比を前記第1の信号に基づいて計測
し、演算された空燃比と計測された空燃比との差と前記
第1の信号とに基づいて空燃比を前記目標空燃比に制御
することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention outputs a first signal proportional to the residual oxygen concentration in the exhaust gas at a leaner side than the stoichiometric air-fuel ratio, and outputs the first signal proportional to the residual oxygen concentration in the exhaust gas at a leaner side than the stoichiometric air-fuel ratio. In the air-fuel ratio control method for an internal combustion engine, which outputs an inverted second signal and controls the air-fuel ratio to a target air-fuel ratio on the lean side of the stoichiometric air-fuel ratio based on the first signal under steady-state operating conditions. Under such conditions, the air-fuel ratio is changed while keeping the engine output unchanged so that the second signal is output, and the air-fuel ratio is set to a predetermined value on the lean side based on the air-fuel ratio when the second signal is output. Calculating the air-fuel ratio and measuring the actual air-fuel ratio when controlling the air-fuel ratio to the calculated air-fuel ratio based on the first signal, and calculating the difference between the calculated air-fuel ratio and the measured air-fuel ratio. The air-fuel ratio is controlled to the target air-fuel ratio based on the first signal.

[作用] 本発明によれば、定常運転条件下すなわち空燃比を理論
空燃比より希薄側の目標空燃比に制御しているときに、
空燃比を変化させると共に機関出力を一定に保持したま
ま理論空燃比を境に反転した第2の信号が出力されるよ
うにされる。この第2の信号は、例えば02センサを用
いることにより得られ、理論空燃比に正確に対応させて
出力させることができる0次に、第2の信号が出力され
たときの空燃比を基準に所定値希薄側の空燃比が演算さ
れ、空燃比がこの演算された空燃比に制御される。続い
て、このとき出力される排ガス中の残留酸素濃度に比例
した第1の信号例えばり−ンセンサからの出力信号に基
づいて空燃比が計測される。この第1の信号は、空燃比
が理論空燃比より充分希薄側で出力されているため安定
している。そして、上記のように演算された空燃比と計
測された空燃比との偏差が演算され、この偏差と上記第
1の信号とによって空燃比が理論空燃比より希薄側に制
御される。上記の偏差はリーンセンサの公差に対応して
いるため、空燃比を目標空燃比に正確に制御することが
できる。
[Operation] According to the present invention, under steady operating conditions, that is, when the air-fuel ratio is controlled to a target air-fuel ratio on the leaner side than the stoichiometric air-fuel ratio,
A second signal that is inverted from the stoichiometric air-fuel ratio is output while changing the air-fuel ratio and keeping the engine output constant. This second signal is obtained by using, for example, an 02 sensor, and can be output in accordance with the stoichiometric air-fuel ratio.The second signal is based on the air-fuel ratio at the time the second signal is output. An air-fuel ratio on the lean side by a predetermined value is calculated, and the air-fuel ratio is controlled to this calculated air-fuel ratio. Subsequently, the air-fuel ratio is measured based on a first signal proportional to the residual oxygen concentration in the exhaust gas output at this time, such as the output signal from the air sensor. This first signal is stable because the air-fuel ratio is output at a sufficiently lean side than the stoichiometric air-fuel ratio. Then, a deviation between the air-fuel ratio calculated as described above and the measured air-fuel ratio is calculated, and the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio based on this deviation and the first signal. Since the above deviation corresponds to the tolerance of the lean sensor, the air-fuel ratio can be accurately controlled to the target air-fuel ratio.

[実施例] 以下図面を参照して本発明の実施例を詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明が適用iTf能な内燃機関(エンジン
)の概略を示すものである。
FIG. 2 schematically shows an internal combustion engine to which the present invention can be applied.

このエンジンは、マイクロコンピュータ等の電子制御回
路によって制御されるもので、エアクリーナ(図示せず
)の下流側に吸入空気1j二を検出するx7フローメー
タ2を備えている。エアフローメータ2は、ダンピング
チャン4内に回動可能に設けられたフンペンモーション
プレート2A、コンペンセーシヨンプレート2Aに連結
されたメジャリングプレー)2B及びメジャリングプレ
ート2Bの開度を検出するポテンショメータ4を備えて
いる。従って、吸入空気量は、電圧値としてポテンショ
メータから出力される吸入空気量信号から求められる。
This engine is controlled by an electronic control circuit such as a microcomputer, and is equipped with an x7 flow meter 2 downstream of an air cleaner (not shown) for detecting intake air 1j2. The air flow meter 2 includes a damping motion plate 2A rotatably provided in the damping chamber 4, a measuring plate 2B connected to the compensation plate 2A, and a potentiometer 4 that detects the opening degree of the measuring plate 2B. It is equipped with Therefore, the intake air amount is determined from the intake air amount signal output from the potentiometer as a voltage value.

エアフローメータ2の下流側には、スロットル弁8が配
置され、このスロットル弁8にスロットル弁全閉状態(
アイドル位置)でオンするアイドルスイッチ10が取付
けられ、スロットル弁8の下流側にサージタンク12が
設けられている。また、スロットル弁8を迂回しかつス
ロットル弁上流側とスロットル弁下流側のサージタンク
12とを連通ずるようにバイパス路14が設けられてい
る。このバイパス路14には4極の固定子を備えたパル
スモータ16Aによって開度が調節されるアイドルスピ
ードコントロール(ISO)バルブ16Bが取付けられ
ている。サージタンク12は、インテークマニホールド
18及び吸入ポート22を介してエンジン20の燃焼室
に連通されている。そして、このインテークマニホール
ド18内に突出するよう各気筒毎に、又は気筒グループ
毎に燃料噴射弁24が取付けられている。
A throttle valve 8 is arranged downstream of the air flow meter 2, and the throttle valve 8 is in a fully closed state (
An idle switch 10 that is turned on at idle position) is attached, and a surge tank 12 is provided downstream of the throttle valve 8. Further, a bypass passage 14 is provided so as to bypass the throttle valve 8 and communicate the upstream side of the throttle valve with the surge tank 12 on the downstream side of the throttle valve. An idle speed control (ISO) valve 16B whose opening degree is adjusted by a pulse motor 16A equipped with a four-pole stator is attached to this bypass path 14. The surge tank 12 communicates with the combustion chamber of the engine 20 via an intake manifold 18 and an intake port 22. A fuel injection valve 24 is attached to each cylinder or cylinder group so as to protrude into the intake manifold 18.

エンジン20の燃焼室は、排気ボート26及びエキゾー
ストマニホールド28を介して三元触媒を充填した触媒
コンバータ(図示せず)に連通されている。このエキシ
ーストマニホールド28には、理論空燃比を境に反転し
た信号を出力する02センサ30及び理論空燃比より希
薄域で排ガス中の残留酸素濃度に比例した電流としての
空燃比信号を出力するリーンセンサ52が取付けられて
いる。エンジンブロック32には、このブロック32を
貫通してウォータジャケット内に突出するよう冷却水温
センサ34が取付けられている。この冷却水温センサ3
4は、エンジン冷却水温を検出して水温信号を出力する
The combustion chamber of the engine 20 is communicated via an exhaust boat 26 and an exhaust manifold 28 to a catalytic converter (not shown) filled with a three-way catalyst. The extreme manifold 28 includes an 02 sensor 30 that outputs a signal inverted from the stoichiometric air-fuel ratio, and a lean sensor 30 that outputs an air-fuel ratio signal as a current proportional to the residual oxygen concentration in the exhaust gas in a region leaner than the stoichiometric air-fuel ratio. A sensor 52 is attached. A cooling water temperature sensor 34 is attached to the engine block 32 so as to penetrate through the block 32 and protrude into the water jacket. This cooling water temperature sensor 3
4 detects the engine cooling water temperature and outputs a water temperature signal.

エンジン20のシリンダヘッド36を貫通して燃焼室内
に突出するように各気筒毎に点火プラグ38が取付けら
れている。この点火プラグ38は、ディストリビュータ
40及びイグナイタ42ヲ介シテ、マイクロコンピュー
タ等で構成された電子制御回路44に接続されている。
A spark plug 38 is attached to each cylinder so as to penetrate the cylinder head 36 of the engine 20 and protrude into the combustion chamber. The spark plug 38 is connected to a distributor 40, an igniter 42, and an electronic control circuit 44 comprised of a microcomputer and the like.

このディストリビュータ40内には、ディストリビュー
タシャフトに固定されたシグナルロータとディストリビ
ュータハウジングに固定されたピックアップとで各々構
成された気筒判別センサ46及び回転角センナ48が取
付けられている。6気筒エンジンの場合、気筒判別セン
サ46は例えば720’CA毎に気筒判別信号を出力し
、回転角センサ48は例えば30’CA毎にエンジン回
転数信号を出力する。
A cylinder discrimination sensor 46 and a rotation angle sensor 48 are installed inside the distributor 40, each of which is composed of a signal rotor fixed to the distributor shaft and a pickup fixed to the distributor housing. In the case of a six-cylinder engine, the cylinder discrimination sensor 46 outputs a cylinder discrimination signal, for example, every 720'CA, and the rotation angle sensor 48 outputs an engine rotation speed signal, for example, every 30'CA.

電子制御回路44は第3図に示すように、中央処理9i
i!t (MPU) 60 、リード・オンリ・メモリ
(ROM)62 、ラムダム・アクセス・メモリ(RA
M)64.バックアップラム(BU−RAM)66、入
出カポ−トロ8.入力ポードア0゜出カポ−)72,7
4.76及びこれらを接続するデータバスやコントロー
ルバス等のバス78を含んで構成されている。入出カポ
−トロ8には、アナログ−ディジタル(A/D)変換器
78.マルチプレクサ80及びバッファ82.84を介
してエアフローメータ2及び水温センサ34が接続され
ている。入カポ−)70には、コンパレータ88及びバ
ッファ86を介して02センサ32が接続されると共に
波形整形回路90を介して気筒判別センサ46及び回転
角センサ48が接続され、また直接アイドルスイッチl
Oが接続されると共に電流値を電圧値に変換する電流電
圧変換器53および電流電圧変換器53出力をディジタ
ル信号に変換するA/D変換器55を介してリーンセン
サ52が接続されている。出力ポードア2は駆動回路9
2を介してイグナイタ42に接続され、出力ポードア4
は駆動回路94を介して燃料噴射弁24に接続され、そ
して出力ポードア6は駆動回路96を介してISOバル
ブのパルスモータ16Aに接続されている。なお、98
はクロック、100はタイマである。上記ROM62に
は、以下で説明す°る制御ルーチンのプログラム等が予
め記憶されている。
The electronic control circuit 44, as shown in FIG.
i! t (MPU) 60, read-only memory (ROM) 62, lambdam access memory (RA)
M)64. Backup RAM (BU-RAM) 66, input/output capotro 8. Input port door 0° output port) 72,7
4.76 and a bus 78 such as a data bus or a control bus that connects them. The input/output capotro 8 includes an analog-digital (A/D) converter 78 . The air flow meter 2 and water temperature sensor 34 are connected via a multiplexer 80 and buffers 82, 84. The 02 sensor 32 is connected to the input capo 70 via a comparator 88 and a buffer 86, and the cylinder discrimination sensor 46 and rotation angle sensor 48 are also connected via a waveform shaping circuit 90.
A lean sensor 52 is connected via a current-voltage converter 53 that converts a current value into a voltage value and an A/D converter 55 that converts the output of the current-voltage converter 53 into a digital signal. Output port door 2 is drive circuit 9
2 to the igniter 42, and the output port door 4
is connected to the fuel injection valve 24 via a drive circuit 94, and the output port door 6 is connected to the ISO valve pulse motor 16A via a drive circuit 96. In addition, 98
is a clock, and 100 is a timer. The ROM 62 stores in advance a control routine program, etc., which will be explained below.

次に上記エンジンに本発明を適用した実施例の制御ルー
チンを説明する。第1図は空燃比フイードパツク補正係
数FAF計算ルーチンを示すもので、まずステップ12
0において前回リーンセンサ出力を較正してから所定時
間経過したか否かを判断し所定時間経過しているときは
ステップ122においてエンジン1回転当りの吸入空気
量の変化を検出することにより定常走行状態か否かを判
断する。定常走行状態と判断されたとき、すなわち現在
リーンセンサ出力に基づいて空燃比を理論空燃比より希
薄側に制御しているときは、ステップ124〜ステツプ
128において燃料噴射弁及びイグナイタを制御するこ
とにより機関出力を一定に保持したままo2センサ30
出力が反転されるように制御する。すなわち、ステップ
124で燃料噴射量τを所定量Δτ増量させると共にス
テップ126で燃料噴射量の増量分によって機関出力が
変化しないように点火時期を遅角させ、ステップ128
で02センサ出力が反転されたか否かを判断し、02セ
ンサ出力が反転されるまでステップ124〜ステツプ1
28を繰返えす、なお、空燃比が理論空燃比より過濃に
制御されてしまった場合は、燃料噴射量を減量させると
共に点火時期を進角させて02センサからの信号が反転
されるように制御する。
Next, a control routine of an embodiment in which the present invention is applied to the above engine will be explained. FIG. 1 shows the air-fuel ratio feed pack correction coefficient FAF calculation routine.
0, it is determined whether a predetermined time has elapsed since the previous lean sensor output was calibrated, and if the predetermined time has elapsed, a steady running state is established by detecting a change in the amount of intake air per engine rotation in step 122. Determine whether or not. When it is determined that the vehicle is in a steady running state, that is, when the air-fuel ratio is currently controlled to be leaner than the stoichiometric air-fuel ratio based on the lean sensor output, the fuel injection valve and igniter are controlled in steps 124 to 128. O2 sensor 30 while keeping the engine output constant
Control the output to be inverted. That is, in step 124, the fuel injection amount τ is increased by a predetermined amount Δτ, and in step 126, the ignition timing is retarded so that the engine output does not change due to the increase in the fuel injection amount, and in step 128
It is determined whether the 02 sensor output is inverted or not, and steps 124 to 1 are performed until the 02 sensor output is inverted.
Repeat step 28. If the air-fuel ratio is controlled to be richer than the stoichiometric air-fuel ratio, reduce the fuel injection amount and advance the ignition timing so that the signal from the 02 sensor is reversed. to control.

次のステップ130では、02センサ出力が反転された
ときの燃料噴射量τを所定l K (例えば、30%)
減量させた較正用燃料噴射量を演算すると共に、この較
正用燃料噴射量τに相当する量の燃料を噴射し、ステッ
プ132で燃料噴射量の変化によって機関出力が変化し
ないように点火時期を戻す。次のステップ134では、
リーンセンサ52出力に基づいて空燃比を計測すると共
に、上記のようにして計算された較正用燃料噴射量τに
対応する空燃比を計算し、計算空燃比A/Fから計測空
燃、EtA/Fを減算して偏差eを算出する。そして、
ステップ136において定常走行状態か否かを判断して
、定常走行状態ならばステップ138で偏差eをBU−
RAMの所定エリアに記憶する。
In the next step 130, the fuel injection amount τ when the 02 sensor output is reversed is set to a predetermined value lK (for example, 30%).
The reduced calibration fuel injection amount is calculated, and an amount of fuel corresponding to this calibration fuel injection amount τ is injected, and in step 132, the ignition timing is returned so that the engine output does not change due to the change in the fuel injection amount. . In the next step 134,
The air-fuel ratio is measured based on the output of the lean sensor 52, and the air-fuel ratio corresponding to the calibration fuel injection amount τ calculated as described above is calculated, and the measured air-fuel ratio, EtA/ Calculate the deviation e by subtracting F. and,
In step 136, it is determined whether or not it is in a steady running state. If it is in a steady running state, in step 138, the deviation e is
It is stored in a predetermined area of RAM.

以上のように制御することにより、02センサ出力が正
確な理論空燃比で反転するため、正確な理論空燃比を基
準として計算された希薄側空燃比とこの計算空燃比に相
当する量の燃料を噴射してリーンセンサ出力より計測し
た空燃比との偏差eが記憶される。
By controlling as described above, the 02 sensor output is reversed at the accurate stoichiometric air-fuel ratio, so the lean side air-fuel ratio calculated based on the accurate stoichiometric air-fuel ratio and the amount of fuel corresponding to this calculated air-fuel ratio are The deviation e from the air-fuel ratio measured from the lean sensor output after injection is stored.

ステップ140では、目標空燃比A/Fと、計測空燃比
A/Fを偏差eで補正した較正空燃比とが比較され、目
標空燃比が較正空燃比以上であればステップ142で空
燃比フィードバック補正係数FAFを所定値α小さくシ
、目標空燃比が較正空燃比未満であればステップ144
で空燃比フィードバック補正係数FAFを所定値α大き
くする0以上の結果、空燃比フィードバック補正係数F
AFは第5図に示すように変化する。
In step 140, the target air-fuel ratio A/F is compared with the calibrated air-fuel ratio obtained by correcting the measured air-fuel ratio A/F by the deviation e, and if the target air-fuel ratio is equal to or higher than the calibrated air-fuel ratio, air-fuel ratio feedback correction is performed in step 142. The coefficient FAF is reduced by a predetermined value α, and if the target air-fuel ratio is less than the calibrated air-fuel ratio, step 144
As a result of increasing the air-fuel ratio feedback correction coefficient FAF by a predetermined value α, the air-fuel ratio feedback correction coefficient F
AF changes as shown in FIG.

第4図は未実施例のメインルーチンを示すもので、ステ
ップ150において単位時間当りの吸入空気量とエンジ
ン回転数とに基づいて基本燃料噴射量τBが計算され、
ステップ152において基本燃料噴射量τBに空燃比フ
ィードバック補正係数FAFが乗算されることにより、
空燃比を理論空燃比より希薄側の目標空燃比に制御する
ための燃料噴射量が演算され、ステップ154で点火時
期が計算され、これらの値に基づいて燃料噴射弁及びイ
グナイタが制御される。
FIG. 4 shows the main routine of an unimplemented example. In step 150, the basic fuel injection amount τB is calculated based on the intake air amount per unit time and the engine rotational speed.
By multiplying the basic fuel injection amount τB by the air-fuel ratio feedback correction coefficient FAF in step 152,
The fuel injection amount for controlling the air-fuel ratio to a target air-fuel ratio on the leaner side than the stoichiometric air-fuel ratio is calculated, the ignition timing is calculated in step 154, and the fuel injection valve and igniter are controlled based on these values.

左お、上記では燃料噴射量を制御してリーンセンサ出力
を較正するための空燃比を制御する例について説明した
が、ISOバルブを制御して吸入空気量を制御すること
によりリーンセンサ出力を較正する空燃比を制御するよ
うにしてもよい。また、上記では吸入空気量とエンジン
回転数とで基本燃料噴射量を定めるエンジンについて説
明したが、本発明は吸気管圧力とエンジン回転数とで基
本燃料噴射量を定めるエンジンにも適用することが可能
である。更に、上記では、02センサとリーンセンサと
の2つのセンサを用いる例について説明したが、酸素濃
度センサに電圧を印加することによりリーンセンサとし
て用いまた電圧の印加を停止することにより02センサ
として用いれば1つのセンサであってもよい。
Left, above we explained an example of controlling the air-fuel ratio to calibrate the lean sensor output by controlling the fuel injection amount, but it is also possible to calibrate the lean sensor output by controlling the ISO valve and controlling the intake air amount. The air-fuel ratio may be controlled. Further, although the above description has been made regarding an engine in which the basic fuel injection amount is determined based on the intake air amount and the engine speed, the present invention can also be applied to an engine in which the basic fuel injection amount is determined based on the intake pipe pressure and the engine speed. It is possible. Furthermore, in the above, an example was explained in which two sensors, the 02 sensor and the lean sensor, are used. However, by applying a voltage to the oxygen concentration sensor, it can be used as a lean sensor, and by stopping the application of voltage, it can be used as an 02 sensor. For example, it may be one sensor.

[発明の効果] 以上説明したように本発明によれば、リーンセンサの公
差が大きい場合でも正確に較正することができるため、
非常に精度のよいリーン匍域の空燃比フィードバック制
御ができると共に、リーンセンサを精度よ<y造する必
要がないのでコストを低減することができる、という効
果が得られる。
[Effects of the Invention] As explained above, according to the present invention, accurate calibration can be performed even when the tolerance of the lean sensor is large.
It is possible to perform air-fuel ratio feedback control in the lean range with very high accuracy, and there is no need to manufacture the lean sensor with high precision, resulting in the effect that costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空燃比フィードバック補正
係数FAF計算ルーチンを示す概略図、第2図は本発明
が適用可能なエンジンを示す概略図、第3図は第2図の
制御回路の詳細を示すブロック図、第4図は上記実施例
のメインルーチンの一部を示す流れ図、第5図は空燃比
フィードバック補正係数FAFの変化を示す線図である
。 24・・争・・ 燃料噴射弁、 3011・ 02センサ。 52・・・・・ リーンセンサ。 第4図 第5図
Fig. 1 is a schematic diagram showing an air-fuel ratio feedback correction coefficient FAF calculation routine according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing an engine to which the present invention is applicable, and Fig. 3 is a control circuit of Fig. 2. FIG. 4 is a flowchart showing part of the main routine of the above embodiment, and FIG. 5 is a diagram showing changes in the air-fuel ratio feedback correction coefficient FAF. 24...Conflict...Fuel injection valve, 3011/02 sensor. 52...Lean sensor. Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス中の残留酸素濃度に比例した第1の信号を
理論空燃比より希薄側で出力させると共に理論空燃比を
境に反転した第2の信号を出力させ、定常運転条件下で
前記第1の信号に基づいて空燃比を理論空燃比より希薄
側の目標空燃比に制御する内燃機関の空燃比制御方法に
おいて、定常運転条件下で機関出力が変化しないように
しながら空燃比を変化させて前記第2の信号が出力され
るようにし、第2の信号が出力されたときの空燃比を基
準に所定値希薄側の空燃比を演算すると共に空燃比を演
算された空燃比に制御したときの実際の空燃比を前記第
1の信号に基づいて計測し、演算された空燃比と計測さ
れた空燃比との差と前記第1の信号とに基づいて空燃比
を前記目標空燃比に制御することを特徴とする内燃機関
の空燃比制御方法。
(1) A first signal proportional to the residual oxygen concentration in the exhaust gas is output at a leaner side than the stoichiometric air-fuel ratio, and a second signal inverted at the stoichiometric air-fuel ratio is output, and the signal is output under normal operating conditions. In an air-fuel ratio control method for an internal combustion engine, which controls the air-fuel ratio to a target air-fuel ratio on the leaner side than the stoichiometric air-fuel ratio based on the signal No. 1, the air-fuel ratio is changed while the engine output does not change under steady operating conditions. When the second signal is outputted, an air-fuel ratio on the lean side by a predetermined value is calculated based on the air-fuel ratio when the second signal is output, and the air-fuel ratio is controlled to the calculated air-fuel ratio. the actual air-fuel ratio of the air-fuel ratio is measured based on the first signal, and the air-fuel ratio is controlled to the target air-fuel ratio based on the difference between the calculated air-fuel ratio and the measured air-fuel ratio and the first signal. An air-fuel ratio control method for an internal combustion engine, characterized in that:
JP28236485A 1985-12-16 1985-12-16 Air-fuel ratio control method for internal combustion engine Pending JPS62139943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28236485A JPS62139943A (en) 1985-12-16 1985-12-16 Air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28236485A JPS62139943A (en) 1985-12-16 1985-12-16 Air-fuel ratio control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62139943A true JPS62139943A (en) 1987-06-23

Family

ID=17651446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28236485A Pending JPS62139943A (en) 1985-12-16 1985-12-16 Air-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62139943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250828A (en) * 1988-03-31 1989-10-05 Teraoka Seiko Co Ltd Combination scale
US5251604A (en) * 1990-06-19 1993-10-12 Nissan Motor Company, Ltd. System and method for detecting deterioration of oxygen sensor used in feedback type air-fuel ratio control system of internal combustion engine
US20120174900A1 (en) * 2010-12-24 2012-07-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250828A (en) * 1988-03-31 1989-10-05 Teraoka Seiko Co Ltd Combination scale
US5251604A (en) * 1990-06-19 1993-10-12 Nissan Motor Company, Ltd. System and method for detecting deterioration of oxygen sensor used in feedback type air-fuel ratio control system of internal combustion engine
US20120174900A1 (en) * 2010-12-24 2012-07-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders

Similar Documents

Publication Publication Date Title
US4434768A (en) Air-fuel ratio control for internal combustion engine
JPS6335825B2 (en)
JPS627374B2 (en)
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JP2707674B2 (en) Air-fuel ratio control method
US4655179A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JPH04214946A (en) Torque fluctuation control device for internal combustion engine
JPH03944A (en) Air-fuel ratio controller for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JP2547380B2 (en) Air-fuel ratio feedback control method for internal combustion engine
JPH01285640A (en) Fuel injection quantity control method of internal combustion engine
JPS63186940A (en) Fuel injection control device for internal combustion engine
JP2590941B2 (en) Fuel injection amount learning control device for internal combustion engine
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JP2503391B2 (en) Air-fuel ratio control device
JP2705100B2 (en) Fuel injection amount control device for internal combustion engine
JPH0323330A (en) Fuel injection amount control device for internal combustion engine
JP2627826B2 (en) Fuel supply control device for internal combustion engine
JPH0248728B2 (en)
JP2586565B2 (en) Output fluctuation detecting device for internal combustion engine
JPS61226541A (en) Modifying device of corrective control functioning transiently in control of internal-combustion engine
JP3544765B2 (en) Engine catalyst activation state determination device
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine
JPH0267446A (en) Torque fluctuation quantity detecting device for internal combustion engine