JP4385542B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4385542B2
JP4385542B2 JP2001122060A JP2001122060A JP4385542B2 JP 4385542 B2 JP4385542 B2 JP 4385542B2 JP 2001122060 A JP2001122060 A JP 2001122060A JP 2001122060 A JP2001122060 A JP 2001122060A JP 4385542 B2 JP4385542 B2 JP 4385542B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
deviation
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122060A
Other languages
Japanese (ja)
Other versions
JP2002317675A (en
Inventor
公二郎 岡田
克則 上田
淳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001122060A priority Critical patent/JP4385542B2/en
Publication of JP2002317675A publication Critical patent/JP2002317675A/en
Application granted granted Critical
Publication of JP4385542B2 publication Critical patent/JP4385542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路の検出空燃比に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
一般に、内燃機関の空燃比制御装置は、複数の気筒に応じて設けられた各排気管の合流部に排気センサを設け、この排気センサの検出結果に基づいて燃料噴射量を制御し、空燃比が目標空燃比となるようにフィードバック制御している。ところが、各気筒ごとに排出される排気ガスは、吸気量や燃料量等のばらつきにより空燃比が異なることがあり、上述した空燃比制御装置では、高精度の空燃比制御が困難となってしまう。この場合、各気筒ごとに排気センサを設け、各排気センサの検出結果に基づいて気筒別に燃料噴射量を制御すればよいが、排気センサの数が増加してコスト高を招いてしまう。
【0003】
そこで、各気筒ごとに排気センサを設けずに、各気筒別の空燃比制御を可能としたものが、例えば、特公平4−8616号公報等に開示されている。
【0004】
特公平4−8616号公報には、気筒別に空燃比検出値を取り込み、全気筒の空燃比検出値のうちの最大値と全気筒の平均値の偏差が所定値以上のときは、最大値を持つ気筒に対する燃料噴射量を減少させるべく当該気筒の空燃比補正値を補正することにより、各気筒間のばらつきを減少させるようにした「内燃機関の気筒別空燃比制御装置」が開示されている。
【0005】
【発明が解決しようとする課題】
ところが、上述した従来の「内燃機関の気筒別空燃比制御装置」にあっては、各気筒の空燃比検出に当たって、エンジン回転数に応じた特定クランク角での空燃比検出値しか使用していため、特定クランク角のみの1回の検出値に頼って気筒別の検出を行うことになる。従って、気筒別の空燃比検出値が不正確になりやすく結果的に各気筒間のばらつきを十分に解消できない虞があり、改良の余地があった。
【0006】
本発明はこのような問題を解決するものであって、コストを増加させることなく気筒別の空燃比を高精度に検出して制御可能とした内燃機関の空燃比制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために本発明では、排気通路に設けられた空燃比検出手段を有し、この空燃比検出手段の検出出力に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置において、平均空燃比算出手段により、空燃比検出手段の検出出力に基づいて平均空燃比を算出し、気筒別タイミング判定手段により、空燃比検出手段の検出出力が各気筒の排気に対応する期間を判定し、気筒別偏差平均算出手段により、気筒別タイミング判定手段が判定した期間において空燃比検出手段の出力を複数回検出し気筒別に平均空燃比との偏差の平均を算出し、補正制御手段により、偏差の平均が最大の気筒に対して偏差が減少する方向に空燃比制御量を補正するようにしている。
【0008】
従って、気筒別空燃比検出手段が検出する気筒別の空燃比は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比との偏差を用い、偏差の平均が最大の気筒に対して空燃比を補正することで、排気状態の影響による空燃比の段差を比較的正確に検出した状態で、各気筒の空燃比制御量を適正に制御できる。
【0009】
そして、気筒別偏差平均算出手段は、期間において所定の演算周期毎に空燃比検出手段の出力と平均空燃比との偏差を積算して積算回数で除すことで気筒別偏差平均を算出するようにしている。
【0010】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
【0011】
図1に本発明の一実施例形態に係る内燃機関の空燃比制御装置を表す概略構成、図2に本実施形態の内燃機関の空燃比制御装置による制御のフローチャート、図3に各気筒の検出期間に対応する空燃比を表すグラフ、図4にリニアA/Fセンサの出力電圧と空燃比との関係を表すグラフを示す。
【0012】
本実施形態の内燃機関の空燃比制御装置は、図1に示すように、4気筒エンジンに適用したものであって、エンジン11には各気筒(燃焼室)に対応して吸気ポート及び排気ポートが設けられており、図示しない吸気バルブ及び排気バルブにより開閉自在となっている。上流部にエアクリーナ12が装着された吸気管13の下流側は、サージタンク14を介して吸気マニホールド15に連結され、この吸気マニホールド15に形成された4つのマニホールド部がエンジン11の各吸気ポートに連結されている。そして、この吸気管13の上流側にはエアフローセンサ16が装着されると共に、スロットルバルブ17及びスロットル開度センサ18が設けられている。また、吸気マニホールド15の各マニホールド部には、燃料を噴射するインジェクタ19がそれぞれ設けられている。
【0013】
一方、排気通路としての排気管20上流側には排気マニホールド21が連結され、この排気マニホールド21に形成された4つのマニホールド部がエンジン11の各排気ポートに連結されている。そして、この排気管20の上流部、つまり、排気マニホールド21のマニホールド部が合流した下流側には空燃比検出手段としてのリニアA/Fセンサ22が装着され、この排気管20の下流部には触媒23が装着されている。リニアA/Fセンサ22の装着位置としては、排気マニホールド21の合流部近傍もしくはその下流であればどこでもよい。また、エンジン11には各気筒のクランク位置を検出するクランク角センサ24が設けられている。
【0014】
また、車両には制御装置としての電子制御ユニット(ECU)25が設けられ、このECU25には、入出力装置、制御プログラムや制御マップ等の記憶を行う記憶装置、中央処理装置及びタイマやカウンタ類が具備されており、このECU25によってエンジン11の総合的な制御が実施される。即ち、前述した各種センサ類16,18,22,24の検出情報等がECU25に入力され、ECU25は各種センサ類の検出情報に基づいて、燃料噴射量や点火時期等を決定し、インジェクタ19等を駆動制御する。
【0015】
ところで、このように構成されたエンジン11における空燃比制御にて、ECU25はリニアA/Fセンサ22の検出出力に基づいて空燃比を目標空燃比にフィードバック制御するようにしている。ところが、エンジン11の各気筒(排気マニホールド21の各マニホールド部)ごとに排出される排気ガスは、吸気マニホールド15の各マニホールド部に流入する空気量やインジェクタ19からの燃料噴射量等のばらつきにより空燃比が異なる場合がある。そのため、排気マニホールド21より下流側の排気管20に設けられたリニアA/Fセンサ22によりここを流通する排気ガスの濃度を検出し、この検出結果に基づいて吸気マニホールド15の各マニホールド部に噴射される燃料量を単純に決定しても、高精度な空燃比制御は困難となる。
【0016】
そこで、本実施形態の内燃機関の空燃比制御装置にあっては、リニアA/Fセンサ22の検出出力に基づいて平均空燃比を算出(平均空燃比算出手段)すると共に、リニアA/Fセンサ22の検出出力が各気筒の排気に対応してその気筒の排気の影響が最も支配的と思われる期間を判定(気筒別タイミング判定手段)し、この期間におけるリニアA/Fセンサ22の検出出力に基づいて気筒別の空燃比を検出(気筒別空燃比検出手段)し、気筒別タイミング判定手段が判定した期間においてリニアA/Fセンサ22の検出出力を複数回検出し気筒別に平均空燃比との偏差の平均を算出し(気筒別偏差平均算出手段)、偏差の平均が最大の気筒に対して偏差が減少する方向に空燃比制御量を補正(補正制御手段)するようにしている。
【0017】
なお、各気筒の排気に対応する期間の判定は、図3に示すように、クランク角センサ24の検出信号SGTとカムの回転位置信号(図示略)に基づいて行う。即ち、#1気筒圧縮TDC位置を基準とし、#1気筒の偏差積算開始クランク角をRA、偏差積算クランク角幅をRWとすると、#1気筒の排気期間(積算範囲)R1が設定される。そして、この#1気筒の排気期間R1に、180°ずつ加えていくことで、#3、#4、#2気筒積算範囲R3,R4,R2が設定される。例えば、図中右端の#1気筒圧縮TDC位置を基準として、#1気筒の偏差積算開始クランク角RAが890°BTDC、偏差積算クランク角幅RWを150°であったとすると、
#1気筒の排気期間R1=890〜740°BTDC
#3気筒の排気期間R3=710〜560°BTDC
#4気筒の排気期間R4=530〜380°BTDC
#2気筒の排気期間R2=350〜200°BTDC
となる。
【0018】
ここで、本実施形態の内燃機関の空燃比制御装置による偏差の平均が最大の気筒に対しての空燃比制御(偏差最大気筒空燃比制御)について、図2のフローチャートに基づいて説明する。
【0019】
まず、ステップS0において、ECU25がリニアA/Fセンサ22のLAFS出力信号(電圧)を所定時間間隔でサンプリングする。この場合、サンプリング間隔は各気筒の積算範囲R1〜R4ごとに複数回のサンプリングが行われる間隔となっている。ステップS1で排気ガス圧力による補正を行い、ステップS2でリニアA/Fセンサ22のLAFS出力信号(電圧)を図4に示したマップに基づいて空燃比に相当する値に変換する(マップA/F変換)。これは、図4に示すように、リニアA/Fセンサ22のLAFS出力信号に対して空燃比は一定には変化せず、ストイキ近傍を挟んで傾きが変化する。このため、リニアA/Fセンサ22のLAFS出力信号を図4に示したマップに基づいて空燃比に相当する値に変換した後に、以降の制御に用いている。従って、以下に示した値は空燃比に相当して変換した値となっており、リニアA/Fセンサ22の検出出力と記載されているものは、図4に示したマップに基づいて変換された空燃比相当の値である。仮に、空燃比に変換しなかった場合は、図4に示すように、LAFS出力信号(電圧)と空燃比が線形でないことから、制御上発散するおそれがある。
【0020】
そして、ステップS3にて、偏差最大気筒空燃比補正制御の条件が成立しているかどうかを判定する。この偏差最大気筒空燃比補正制御の条件とは、ストイキフィードバック運転中であること、エンジン11の冷却水温が所定温度以上であること、加減速運転中ではなく定常運転中であることである。なお、このストイキフィードバック運転の判定は、所定運転領域(エンジン回転数と体積効率とのマップ)にあることを判定する。
【0021】
このステップS3にて、偏差最大気筒空燃比補正制御の条件が成立していれば、ステップS4において、平均値LAFSAVを下記数式により算出する。
平均値LAFSAV=K1×LAFSAV(n-1) +(1−K1)×LAFS
この場合、平均値LAFSAVは実際にはフィルタを通した値であり、K1はフィルタ定数であり、LAFSはリニアA/Fセンサ22の検出出力に排圧補正を実行した後の値である。なお、ステップS3で偏差最大気筒空燃比補正制御の条件が成立していなければ、前回の値を保持する。また、イグニッションキースイッチがオフのときは、バッテリでバックアップする。
【0022】
ステップS4にて、平均値LAFSAVが算出されたら、ステップS5にて、偏差LAFSDを下記数式により算出する。
偏差LAFSD=LAFS−LAFSAV
ここで、LAFSはA/Fセンサ22の検出出力に排圧補正を実行した後の瞬時値であり、求めた偏差LAFSDがプラスであれば空燃比がリーン側に変位し、マイナスであればリッチ側に変位していると判定できる。
【0023】
そして、ステップS5にて、偏差LAFSDが算出されたら、ステップS6にて、各気筒別に偏差積算平均値LAFSDAを算出する。つまり、前述した各気筒積算範囲R1,R3,R4,R2各々について偏差LAFSDを積算したものを積算回数で除算することで、各気筒別の偏差積算平均値LAFSDAを算出することができる。
【0024】
ステップS7乃至ステップS9では、各気筒別に算出された偏差積算平均値LAFSDAの比較を行う。即ち、ステップS7では、#1気筒と#2気筒の偏差積算平均値LAFSDAの絶対値を比較し、ステップS8では、#3気筒と#4気筒の偏差積算平均値LAFSDAの絶対値を比較する。そして、ステップS9では、ステップS7とステップS8の結果により#1気筒から#4気筒の偏差積算平均値LAFSDAの絶対値が最も大きい気筒を特定する。なお、ECU25の性能等により、#1気筒から#4気筒の偏差積算平均値LAFSDAの絶対値を一度に比較して偏差積算平均値LAFSDAの絶対値が最も大きい気筒を特定することも可能である。
【0025】
ステップS9で偏差積算平均値LAFSDAの絶対値が最も大きい気筒を特定した後、ステップS10では、特定された気筒の偏差積算平均値LAFSDAが正であるかどうか、つまり、偏差積算平均値LAFSDAが正であって空燃比がリーンであるためにリッチ側に補正する必要があるかどうかを判定する。ここで、偏差積算平均値LAFSDAが正であれば、ステップS11にて、偏差最大気筒空燃比補正係数kcylを下記数式によりリッチ側に更新する。
偏差最大気筒空燃比補正係数kcyl(n) =kcyl(n-1) +B2
一方、偏差積算平均値LAFSDAが負であって空燃比がリッチであるためにリーン側に補正する必要があれば、ステップS12にて、偏差最大気筒空燃比補正係数kcylを下記数式によりリーン側に更新する。
偏差最大気筒空燃比補正係数kcyl(n) =kcyl(n-1) −B2
なお、偏差最大気筒空燃比補正係数kcylの初期値は1.0とし、上限値及び下限値が設定されている。また、B2は予め設定された所定値である。
【0026】
このようにステップS11,12にて、偏差最大気筒空燃比補正係数kcyl(n) が更新されると、ステップS13にて、偏差最大気筒のインジェクタ19による燃料噴射量を補正する。つまり、偏差最大気筒空燃比補正係数kcyl(n) を偏差最大気筒のインジェクタ19の駆動パルス幅Tinjに下記数式により反映させる。
駆動パルス幅Tinj=Tb×Kelse×kcyl+加減速補正+Td
ここで、Tbは機関運転状態により定まる基本パルス幅、Kelseはその他の補正係数、Tdはデットタイム(インジェクタ駆動信号が発信されてから実際に燃料がインジェクタから噴射されるまでの遅れ時間)である。
【0027】
このようにしてステップS10,11,12,13の処理で偏差最大気筒空燃比補正係数kcyl(n) を更新して燃料噴射量を補正する。従って、A/Fセンサ22の出力が各気筒の排気に対応する期間において、気筒別の空燃比を複数回検出し平均空燃比との偏差の平均を算出しているので、気筒別の空燃比のずれを精度よく判定することができる。そして、偏差平均が最大の気筒に対して偏差が減少する方向に空燃比制御量を補正するので、精度よく空燃比のばらつきを解消することができる。また、偏差LAFSDを積算して積算回数で除算することで気筒別の偏差積算平均値LAFSDAを算出しているので、A/Fセンサ22の出力が各気筒の排気に対応する期間にわたって、気筒別に平均空燃比との偏差をモニタするため、より精度よく気筒別の空燃比のずれを判定でき、より精度よく空燃比のばらつきを解消できる。
【0028】
なお、最も大きい偏差積算平均値LAFSDAの絶対値の値が所定値B1以上の場合にのみ上記処理を行うようにすることも可能である。また、偏差最大気筒のインジェクタ19による燃料噴射量を補正している際に、他の気筒に対する空燃比の補正を積極的に禁止する制御を実施することも可能であり、これにより、補正制御の収束性が向上する。
【0029】
このように本実施形態の内燃機関の空燃比制御装置にあっては、リニアA/Fセンサ22のLAFS出力に基づいて空燃比の平均値LAFSAVを算出し、LAFS出力の瞬時値と平均値LAFSAVとの偏差LAFSDを算出し、各気筒ごとの排気期間として設定された積算範囲R1,R3,R4,R2における偏差積算平均値LAFSDAを求め、全ての気筒の平均空燃比と各気筒別の空燃比との偏差を求め、偏差積算平均値LAFSDAが最大の気筒に対して偏差最大気筒空燃比補正係数kcylを更新して燃料噴射量を補正するようにしている。
【0030】
従って、リニアA/Fセンサ22が検出する気筒別の空燃比(LAFS出力)は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比平均値LAFSAVとの偏差を用いることで、この気筒の排気状態の影響による空燃比の偏差(偏差積算平均値LAFSDA)を正確に検出でき、各気筒の偏差を適正に求めることができる。そして、各気筒について、その気筒の排気が空燃比(LAFS出力)に及ぼす影響が最も大きいと思われるクランク角範囲R1,R3,R4,R2について、全気筒の空燃比の平均値LAFSAVからの偏差積算平均値LAFSDAを求め、偏差積算平均値LAFSDAが最大となる気筒の空燃比の補正制御を行うようにしたので、複数の気筒の排気が入り混じった状態でも収束性よく正確に制御できる。
【0031】
なお、上述した実施形態では、空燃比検出手段としてリニアA/Fセンサ22を用いたが、通常のλ−O2 センサを用いてもよい。また、ステップS11,12での偏差最大気筒空燃比補正係数kcyl(n) の更新処理にて、所定値B2を加算あるいは減算したが、この所定値B2を偏差積算平均値LAFSDAの大きさに応じて変更してもよく、また、リッチ側とリーン側で異なる値としてもよく、更に、エンジン11の運転条件(エンジン回転数、負荷)に応じて変更してもよい。
【0032】
また、この偏差最大気筒空燃比補正係数kcylの更新処理を積分制御としたが、PI制御、PID制御、微分制御等としてもよい。例えば、PID制御の例として、
偏差最大気筒空燃比補正係数kcyl=1.0+kcylP+kcylI+kcylD
としてもよく、この場合、
比例係数kcylP=LASFDA×GP (GP:比例ゲイン)
積分係数kcylI=Σ(LASFDA×GI) (GI:積分ゲイン)
微分係数kcylD=(LASFDA(n) −LASFDA(n-1) (GD 比例ゲイン)
となる。
【0033】
更に、ステップS3で偏差最大気筒空燃比制御の条件が成立していなければ、その直前の偏差最大気筒に対して偏差最大気筒空燃比補正係数kcylを用いるようにしてもよい。また、ステップS6にて、偏差LAFSDを積算して積算回数で除算することで気筒別の偏差積算平均値LAFSDAを算出したが、制御の安定性を増すために、数サイクルについて偏差積算平均値LAFSDAを算出し、数サイクル(例えば、10サイクルから200サイクル程度)中に所定回数以上、ある気筒の偏差積算平均値LAFSDAの絶対値が所定値B1を上回ったとき、偏差最大気筒空燃比補正係数kcylを更新するようにしてもよい。また、所定値(しきい値)B1は、触媒の劣化度合い、特にO2 ストレージ能力に応じて変化させるようにしてもよい。例えば、走行距離が長くなるにしたがって所定値B1を小さくすればよい。
【0034】
【発明の効果】
本発明の内燃機関の空燃比制御装置によれば、各気筒の排気に対応する期間において空燃比検出手段の出力を複数回検出して気筒別に平均空燃比との偏差の平均を算出し、偏差の平均が最大の気筒に対して偏差が減少する方向に空燃比制御量を補正するようにしたので、気筒別空燃比検出手段が検出する気筒別の空燃比は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比との偏差を用い、偏差の平均が最大の気筒に対して空燃比を補正することで、排気状態の影響による空燃比の偏差を正確に検出した状態で、各気筒の空燃比制御量を適正に制御できる。この結果、気筒別の空燃比のずれの判定及び空燃比のばらつき解消が精度よく行えるようになる。
【図面の簡単な説明】
【図1】本発明の一実施例形態に係る内燃機関の空燃比制御装置を表す概略構成図である。
【図2】本実施形態の内燃機関の空燃比制御装置による制御のフローチャートである。
【図3】各気筒の検出期間に対応する空燃比を表すグラフである。
【図4】リニアA/Fセンサの出力電圧と空燃比との関係を表すグラフである。
【符号の説明】
11 エンジン
13 吸気管
15 吸気マニホールド
19 インジェクタ
20 排気管
21 排気マニホールド
22 リニアA/Fセンサ(空燃比検出手段)
24 クランク角センサ
25 電子制御ユニット(ECU)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that feedback-controls an air-fuel ratio to a target air-fuel ratio based on a detected air-fuel ratio in an exhaust passage.
[0002]
[Prior art]
In general, an air-fuel ratio control apparatus for an internal combustion engine is provided with an exhaust sensor at a junction of exhaust pipes provided in accordance with a plurality of cylinders, and controls a fuel injection amount based on a detection result of the exhaust sensor. Is feedback-controlled so that becomes the target air-fuel ratio. However, the exhaust gas discharged for each cylinder may have different air-fuel ratios due to variations in intake air amount, fuel amount, etc., and the above-described air-fuel ratio control device makes it difficult to perform highly accurate air-fuel ratio control. . In this case, an exhaust sensor may be provided for each cylinder, and the fuel injection amount may be controlled for each cylinder based on the detection result of each exhaust sensor. However, the number of exhaust sensors increases, resulting in high costs.
[0003]
For example, Japanese Patent Publication No. 4-8616 discloses an air-fuel ratio control for each cylinder without providing an exhaust sensor for each cylinder.
[0004]
Japanese Examined Patent Publication No. 4-8616 takes in air-fuel ratio detection values for each cylinder, and when the deviation between the maximum value of the air-fuel ratio detection values of all cylinders and the average value of all cylinders is equal to or greater than a predetermined value, the maximum value is set. A “cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine” is disclosed in which the variation between the cylinders is reduced by correcting the air-fuel ratio correction value of the cylinder in order to reduce the fuel injection amount for the cylinder having the cylinder. .
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional “cylinder-by-cylinder air-fuel ratio control device for internal combustion engine”, only the air-fuel ratio detection value at a specific crank angle corresponding to the engine speed is used to detect the air-fuel ratio of each cylinder. The detection for each cylinder is performed by relying on a single detection value of only a specific crank angle. Therefore, the air-fuel ratio detection value for each cylinder tends to be inaccurate, and as a result, there is a possibility that variations among the cylinders cannot be sufficiently eliminated, and there is room for improvement.
[0006]
An object of the present invention is to solve such a problem, and to provide an air-fuel ratio control device for an internal combustion engine that can detect and control the air-fuel ratio of each cylinder with high accuracy without increasing the cost. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has an air-fuel ratio detection means provided in an exhaust passage, and an internal combustion engine that feedback-controls the air-fuel ratio to a target air-fuel ratio based on the detection output of the air-fuel ratio detection means. In the air-fuel ratio control device, the average air-fuel ratio calculation means calculates the average air-fuel ratio based on the detection output of the air-fuel ratio detection means, and the cylinder-by-cylinder timing determination means outputs the detection output of the air-fuel ratio detection means to the exhaust of each cylinder. The corresponding period is determined, and the cylinder-by-cylinder deviation average calculation means detects the output of the air-fuel ratio detection means a plurality of times during the period determined by the cylinder-by-cylinder timing determination means, and calculates the average deviation from the average air-fuel ratio for each cylinder, The correction control means corrects the air-fuel ratio control amount in such a direction that the deviation decreases with respect to the cylinder having the largest deviation.
[0008]
Therefore, the cylinder-by-cylinder air-fuel ratio detected by the cylinder-by-cylinder air-fuel ratio detection means is an air-fuel ratio in a state in which exhaust from other cylinders is mixed, but uses a deviation from the average air-fuel ratio that the exhaust of all cylinders affects, By correcting the air-fuel ratio for the cylinder with the largest average deviation, the air-fuel ratio control amount of each cylinder can be properly controlled in a state where the air-fuel ratio step due to the influence of the exhaust state is detected relatively accurately.
[0009]
The cylinder-by-cylinder deviation average calculating means calculates the cylinder-by-cylinder deviation average by adding up the deviation between the output of the air-fuel ratio detecting means and the average air-fuel ratio and dividing by the number of integrations every predetermined calculation period in the period. I have to.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a schematic diagram showing an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention, FIG. 2 is a flowchart of control by the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, and FIG. A graph showing the air-fuel ratio corresponding to the period, and FIG. 4 shows a graph showing the relationship between the output voltage of the linear A / F sensor and the air-fuel ratio.
[0012]
As shown in FIG. 1, the air-fuel ratio control apparatus for an internal combustion engine according to this embodiment is applied to a four-cylinder engine. The engine 11 includes an intake port and an exhaust port corresponding to each cylinder (combustion chamber). Is provided and can be opened and closed by an intake valve and an exhaust valve (not shown). The downstream side of the intake pipe 13 with the air cleaner 12 attached to the upstream part is connected to an intake manifold 15 via a surge tank 14, and four manifold parts formed in the intake manifold 15 are connected to each intake port of the engine 11. It is connected. An air flow sensor 16 is mounted upstream of the intake pipe 13 and a throttle valve 17 and a throttle opening sensor 18 are provided. Each manifold portion of the intake manifold 15 is provided with an injector 19 for injecting fuel.
[0013]
On the other hand, an exhaust manifold 21 is connected to the upstream side of the exhaust pipe 20 as an exhaust passage, and four manifold portions formed in the exhaust manifold 21 are connected to each exhaust port of the engine 11. A linear A / F sensor 22 as an air-fuel ratio detecting means is mounted on the upstream portion of the exhaust pipe 20, that is, on the downstream side where the manifold portion of the exhaust manifold 21 joins. A catalyst 23 is mounted. The mounting position of the linear A / F sensor 22 may be anywhere near the merging portion of the exhaust manifold 21 or downstream thereof. The engine 11 is provided with a crank angle sensor 24 that detects the crank position of each cylinder.
[0014]
Further, the vehicle is provided with an electronic control unit (ECU) 25 as a control device. The ECU 25 includes a storage device for storing an input / output device, a control program, a control map and the like, a central processing unit, a timer and a counter. The ECU 25 performs overall control of the engine 11. That is, the detection information of the various sensors 16, 18, 22, and 24 described above is input to the ECU 25. The ECU 25 determines the fuel injection amount, the ignition timing, and the like based on the detection information of the various sensors, and the injector 19 and the like. Is controlled.
[0015]
By the way, in the air-fuel ratio control in the engine 11 configured as described above, the ECU 25 performs feedback control of the air-fuel ratio to the target air-fuel ratio based on the detection output of the linear A / F sensor 22. However, the exhaust gas discharged from each cylinder of the engine 11 (each manifold portion of the exhaust manifold 21) is emptied due to variations in the amount of air flowing into each manifold portion of the intake manifold 15, the fuel injection amount from the injector 19, and the like. The fuel ratio may be different. Therefore, the concentration of exhaust gas flowing through the linear A / F sensor 22 provided in the exhaust pipe 20 on the downstream side of the exhaust manifold 21 is detected, and injection is performed on each manifold portion of the intake manifold 15 based on the detection result. Even if the amount of fuel to be used is simply determined, highly accurate air-fuel ratio control becomes difficult.
[0016]
Therefore, in the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, the average air-fuel ratio is calculated (average air-fuel ratio calculating means) based on the detection output of the linear A / F sensor 22, and the linear A / F sensor is used. The detection output of 22 corresponds to the exhaust of each cylinder, and the period in which the influence of the exhaust of the cylinder seems to be dominant is determined (timing determination means for each cylinder), and the detection output of the linear A / F sensor 22 in this period The cylinder-by-cylinder air-fuel ratio is detected (cylinder-by-cylinder air-fuel ratio detection means), and the detection output of the linear A / F sensor 22 is detected a plurality of times during the period determined by the cylinder-by-cylinder timing determination means. Is calculated (cylinder-specific deviation average calculation means), and the air-fuel ratio control amount is corrected (correction control means) in a direction in which the deviation decreases with respect to the cylinder having the largest average deviation.
[0017]
The determination of the period corresponding to the exhaust of each cylinder is made based on the detection signal SGT of the crank angle sensor 24 and the cam rotation position signal (not shown), as shown in FIG. That is, with reference to the # 1 cylinder compression TDC position, assuming that the deviation integration start crank angle of the # 1 cylinder is RA and the deviation integration crank angle width is RW, the exhaust period (integration range) R1 of the # 1 cylinder is set. The # 3, # 4, and # 2 cylinder integration ranges R3, R4, and R2 are set by adding 180 ° to the exhaust period R1 of the # 1 cylinder. For example, assuming that the # 1 cylinder compression TDC position at the right end in the figure is the reference, the # 1 cylinder deviation integration start crank angle RA is 890 ° BTDC and the deviation integration crank angle width RW is 150 °.
# 1 cylinder exhaust period R1 = 890-740 ° BTDC
# 3 cylinder exhaust period R3 = 710-560 ° BTDC
# 4 cylinder exhaust period R4 = 530-380 ° BTDC
# 2-cylinder exhaust period R2 = 350-200 ° BTDC
It becomes.
[0018]
Here, the air-fuel ratio control (maximum deviation cylinder air-fuel ratio control) for the cylinder having the maximum deviation by the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment will be described based on the flowchart of FIG.
[0019]
First, in step S0, the ECU 25 samples the LAFS output signal (voltage) of the linear A / F sensor 22 at predetermined time intervals. In this case, the sampling interval is an interval at which sampling is performed a plurality of times for each integration range R1 to R4 of each cylinder. In step S1, correction based on the exhaust gas pressure is performed, and in step S2, the LAFS output signal (voltage) of the linear A / F sensor 22 is converted to a value corresponding to the air-fuel ratio based on the map shown in FIG. F conversion). As shown in FIG. 4, the air-fuel ratio does not change constantly with respect to the LAFS output signal of the linear A / F sensor 22, and the slope changes around the stoichiometric vicinity. For this reason, the LAFS output signal of the linear A / F sensor 22 is converted into a value corresponding to the air-fuel ratio based on the map shown in FIG. Therefore, the values shown below are converted values corresponding to the air-fuel ratio, and what is described as the detection output of the linear A / F sensor 22 is converted based on the map shown in FIG. This value is equivalent to the air / fuel ratio. If the air-fuel ratio is not converted, the LAFS output signal (voltage) and the air-fuel ratio are not linear as shown in FIG.
[0020]
Then, in step S3, it is determined whether or not a condition for deviation maximum cylinder air-fuel ratio correction control is satisfied. The conditions of this deviation maximum cylinder air-fuel ratio correction control are that the stoichiometric feedback operation is being performed, that the cooling water temperature of the engine 11 is equal to or higher than a predetermined temperature, and that it is not in acceleration / deceleration operation but in steady operation. The determination of the stoichiometric feedback operation is made to determine that it is in a predetermined operation region (a map of engine speed and volumetric efficiency).
[0021]
If the deviation maximum cylinder air-fuel ratio correction control condition is satisfied in step S3, the average value LAFSAV is calculated by the following equation in step S4.
Average value LAFSAV = K1 × LAFSAV (n−1) + (1−K1) × LAFS
In this case, the average value LAFSAV is actually a value that has passed through a filter, K1 is a filter constant, and LAFS is a value after exhaust pressure correction is performed on the detection output of the linear A / F sensor 22. Note that if the condition for deviation maximum cylinder air-fuel ratio correction control is not satisfied in step S3, the previous value is held. When the ignition key switch is off, the battery is backed up.
[0022]
When the average value LAFSAV is calculated in step S4, the deviation LAFSD is calculated by the following formula in step S5.
Deviation LAFSD = LAFS−LAFSAV
Here, LAFS is an instantaneous value after exhaust pressure correction is performed on the detection output of the A / F sensor 22. If the obtained deviation LAFSD is positive, the air-fuel ratio is displaced to the lean side, and if it is negative, it is rich. It can be determined that it is displaced to the side.
[0023]
When the deviation LAFSD is calculated in step S5, the deviation integrated average value LAFSDA is calculated for each cylinder in step S6. In other words, the deviation integrated average value LAFSDA for each cylinder can be calculated by dividing the result obtained by integrating the deviation LAFSD for each cylinder integrated range R1, R3, R4, R2 by the number of integrations.
[0024]
In steps S7 to S9, the deviation integrated average value LAFSDA calculated for each cylinder is compared. That is, in step S7, the absolute value of deviation integrated average value LAFSDA of # 1 cylinder and # 2 cylinder is compared, and in step S8, the absolute value of deviation integrated average value LAFSDA of # 3 cylinder and # 4 cylinder is compared. In step S9, the cylinder having the largest absolute value of the deviation integrated average value LAFSDA from the # 1 cylinder to the # 4 cylinder is specified based on the results of steps S7 and S8. Depending on the performance of the ECU 25 and the like, it is also possible to identify the cylinder having the largest absolute value of the deviation integrated average value LAFSDA by comparing the absolute values of the deviation integrated average value LAFSDA of the # 1 cylinder to the # 4 cylinder at a time. .
[0025]
After the cylinder having the largest absolute value of the deviation integrated average value LAFSDA is specified in step S9, in step S10, whether or not the deviation integrated average value LAFSDA of the specified cylinder is positive, that is, the deviation integrated average value LAFSDA is positive. Then, since the air-fuel ratio is lean, it is determined whether it is necessary to correct to the rich side. If the deviation integrated average value LAFSDA is positive, in step S11, the deviation maximum cylinder air-fuel ratio correction coefficient kcyl is updated to the rich side by the following equation.
Deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) = kcyl (n-1) + B2
On the other hand, if the deviation integrated average value LAFSDA is negative and the air-fuel ratio is rich, it is necessary to correct to the lean side. In step S12, the deviation maximum cylinder air-fuel ratio correction coefficient kcyl is set to the lean side according to the following equation. Update.
Deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) = kcyl (n-1) -B2
The initial value of the deviation maximum cylinder air-fuel ratio correction coefficient kcyl is 1.0, and an upper limit value and a lower limit value are set. B2 is a predetermined value set in advance.
[0026]
As described above, when the deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) is updated in steps S11 and S12, the fuel injection amount by the injector 19 of the cylinder with the largest deviation is corrected in step S13. That is, the deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) is reflected in the drive pulse width Tinj of the injector 19 of the maximum deviation cylinder by the following equation.
Drive pulse width Tinj = Tb x Kelse x kcyl + acceleration / deceleration correction + Td
Here, Tb is a basic pulse width determined by the engine operating state, Kelse is another correction factor, and Td is a dead time (a delay time from when the injector drive signal is transmitted until the fuel is actually injected from the injector). .
[0027]
In this manner, the deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) is updated in the processes of steps S10, 11, 12, and 13 to correct the fuel injection amount. Accordingly, during the period in which the output of the A / F sensor 22 corresponds to the exhaust of each cylinder, the air-fuel ratio for each cylinder is detected a plurality of times, and the average deviation from the average air-fuel ratio is calculated. Can be accurately determined. Since the air-fuel ratio control amount is corrected in the direction in which the deviation decreases with respect to the cylinder having the largest deviation average, the variation in the air-fuel ratio can be eliminated with high accuracy. Further, the deviation integrated average value LAFSDA is calculated for each cylinder by integrating the deviation LAFSD and dividing by the number of integrations, so that the output of the A / F sensor 22 corresponds to the exhaust of each cylinder for each cylinder. Since the deviation from the average air-fuel ratio is monitored, the deviation of the air-fuel ratio for each cylinder can be determined with higher accuracy, and variations in the air-fuel ratio can be eliminated with higher accuracy.
[0028]
It is possible to perform the above process only when the absolute value of the largest deviation integrated average value LAFSDA is equal to or greater than the predetermined value B1. Further, when correcting the fuel injection amount by the injector 19 of the cylinder with the largest deviation, it is also possible to carry out a control that positively prohibits the correction of the air-fuel ratio with respect to the other cylinders. Convergence is improved.
[0029]
As described above, in the air-fuel ratio control apparatus for an internal combustion engine of the present embodiment, the average value LAFSAV of the air-fuel ratio is calculated based on the LAFS output of the linear A / F sensor 22, and the instantaneous value and average value LAFSAV of the LAFS output are calculated. The deviation LAFSD is calculated and the deviation accumulated average value LAFSDA in the accumulated ranges R1, R3, R4, R2 set as the exhaust period for each cylinder is obtained, and the average air-fuel ratio of all the cylinders and the air-fuel ratio for each cylinder are calculated. The deviation maximum cylinder air-fuel ratio correction coefficient kcyl is updated for the cylinder having the maximum deviation integrated average value LAFSDA to correct the fuel injection amount.
[0030]
Therefore, the air-fuel ratio (LAFS output) for each cylinder detected by the linear A / F sensor 22 is an air-fuel ratio in a state where the exhaust of other cylinders is mixed, but the average air-fuel ratio average value affected by the exhaust of all cylinders. By using the deviation from LAFSAV, the deviation of the air-fuel ratio (deviation integrated average value LAFSDA) due to the influence of the exhaust state of the cylinder can be accurately detected, and the deviation of each cylinder can be obtained appropriately. For each cylinder, the deviation from the average value LAFSAV of the air-fuel ratio of all the cylinders in the crank angle ranges R1, R3, R4, and R2 that the exhaust of the cylinder seems to have the greatest influence on the air-fuel ratio (LAFS output). Since the integrated average value LAFSDA is obtained and the air-fuel ratio correction control of the cylinder having the maximum deviation integrated average value LAFSDA is performed, it is possible to accurately control with good convergence even in a state where exhaust of multiple cylinders is mixed.
[0031]
In the above-described embodiment, the linear A / F sensor 22 is used as the air-fuel ratio detection means, but a normal λ-O 2 sensor may be used. In addition, the predetermined value B2 is added or subtracted in the update process of the deviation maximum cylinder air-fuel ratio correction coefficient kcyl (n) in steps S11 and S12. The predetermined value B2 is determined according to the magnitude of the deviation integrated average value LAFSDA. Or may be different between the rich side and the lean side, and may be changed according to the operating conditions (engine speed, load) of the engine 11.
[0032]
In addition, although the update process of the deviation maximum cylinder air-fuel ratio correction coefficient kcyl is the integral control, it may be PI control, PID control, differential control, or the like. For example, as an example of PID control:
Deviation maximum cylinder air-fuel ratio correction coefficient kcyl = 1.0 + kcylP + kcylI + kcylD
In this case,
Proportional coefficient kcylP = LASFDA x GP (GP: Proportional gain)
Integration coefficient kcyl I = Σ (LASFDA x GI) (GI: integral gain)
Derivative kcylD = (LASFDA (n) -LASFDA (n-1) (G D proportional gain)
It becomes.
[0033]
Furthermore, if the maximum deviation cylinder air-fuel ratio control condition is not satisfied in step S3, the maximum deviation cylinder air-fuel ratio correction coefficient kcyl may be used for the maximum deviation cylinder immediately before that. In step S6, the deviation LAFSD is accumulated and divided by the number of accumulations to calculate the deviation accumulated average value LAFSDA for each cylinder. In order to increase the stability of the control, the deviation accumulated average value LAFSDA for several cycles is calculated. When the absolute value of the deviation integrated average value LAFSDA of a certain cylinder exceeds a predetermined value B1 for a predetermined number of times or more in several cycles (for example, about 10 to 200 cycles), the deviation maximum cylinder air-fuel ratio correction coefficient kcyl May be updated. Further, the predetermined value (threshold value) B1 may be changed according to the degree of deterioration of the catalyst, particularly the O 2 storage capacity. For example, the predetermined value B1 may be decreased as the travel distance increases.
[0034]
【The invention's effect】
According to the air-fuel ratio control apparatus for an internal combustion engine of the present invention, the output of the air-fuel ratio detection means is detected a plurality of times in a period corresponding to the exhaust of each cylinder, and the average of the deviation from the average air-fuel ratio is calculated for each cylinder. Since the air-fuel ratio control amount is corrected in a direction in which the deviation decreases with respect to the cylinder having the largest average, the air-fuel ratio for each cylinder detected by the cylinder-by-cylinder air-fuel ratio detection means includes exhaust from other cylinders. The air / fuel ratio in the state is the air / fuel ratio due to the influence of the exhaust state by using the deviation from the average air / fuel ratio affected by the exhaust of all cylinders and correcting the air / fuel ratio for the cylinder with the largest deviation. The air-fuel ratio control amount of each cylinder can be properly controlled in a state in which the deviation is accurately detected. As a result, it is possible to accurately determine the deviation of the air-fuel ratio for each cylinder and eliminate the variation in the air-fuel ratio.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart of control by an air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment.
FIG. 3 is a graph showing an air-fuel ratio corresponding to a detection period of each cylinder.
FIG. 4 is a graph showing the relationship between the output voltage of the linear A / F sensor and the air-fuel ratio.
[Explanation of symbols]
11 Engine 13 Intake pipe 15 Intake manifold 19 Injector 20 Exhaust pipe 21 Exhaust manifold 22 Linear A / F sensor (air-fuel ratio detection means)
24 Crank angle sensor 25 Electronic control unit (ECU)

Claims (2)

排気通路に設けられた空燃比検出手段を有し、該空燃比検出手段の検出出力に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置において、
前記空燃比検出手段の検出出力に基づいて平均空燃比を算出する平均空燃比算出手段と、
前記空燃比検出手段の検出出力が各気筒の排気に対応する期間を判定する気筒別タイミング判定手段と、
該気筒別タイミング判定手段が判定した前記期間において前記空燃比検出手段の出力を複数回検出し気筒別に前記平均空燃比との偏差の平均を算出する気筒別偏差平均算出手段と、
前記偏差の平均が最大の気筒に対して該偏差が減少する方向に空燃比制御量を補正する補正制御手段と
を備えたことを特徴とする内燃機関の空燃比制御装置。
In an air-fuel ratio control apparatus for an internal combustion engine, having an air-fuel ratio detection means provided in an exhaust passage, and performing feedback control of the air-fuel ratio to a target air-fuel ratio based on a detection output of the air-fuel ratio detection means,
Average air-fuel ratio calculating means for calculating an average air-fuel ratio based on the detection output of the air-fuel ratio detecting means;
A cylinder-by-cylinder timing determination unit that determines a period in which the detection output of the air-fuel ratio detection unit corresponds to the exhaust of each cylinder;
A deviation average calculating means for each cylinder for detecting an output of the air-fuel ratio detecting means a plurality of times in the period determined by the timing determining means for each cylinder and calculating an average of deviation from the average air-fuel ratio for each cylinder;
An air-fuel ratio control apparatus for an internal combustion engine, comprising: correction control means for correcting an air-fuel ratio control amount in a direction in which the deviation decreases with respect to a cylinder having the maximum deviation.
請求項1において、
前記気筒別偏差平均算出手段は、前記期間において所定の演算周期毎に前記空燃比検出手段の出力と前記平均空燃比との偏差を積算して積算回数で除すことで気筒別偏差平均を算出することを特徴とする内燃機関の空燃比制御装置。
In claim 1,
The cylinder-by-cylinder deviation average calculation means calculates the cylinder-by-cylinder deviation average by integrating the deviation between the output of the air-fuel ratio detection means and the average air-fuel ratio every predetermined calculation period in the period and dividing by the number of integrations. An air-fuel ratio control apparatus for an internal combustion engine, characterized in that:
JP2001122060A 2001-04-20 2001-04-20 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4385542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122060A JP4385542B2 (en) 2001-04-20 2001-04-20 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122060A JP4385542B2 (en) 2001-04-20 2001-04-20 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002317675A JP2002317675A (en) 2002-10-31
JP4385542B2 true JP4385542B2 (en) 2009-12-16

Family

ID=18971831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122060A Expired - Fee Related JP4385542B2 (en) 2001-04-20 2001-04-20 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4385542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018902B2 (en) 2010-01-18 2012-09-05 トヨタ自動車株式会社 Internal combustion engine device, internal combustion engine control method, and vehicle
JP5939119B2 (en) * 2012-10-03 2016-06-22 トヨタ自動車株式会社 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JP2002317675A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US7650225B2 (en) Engine controller
JP2884472B2 (en) Fuel property detection device for internal combustion engine
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
US8365587B2 (en) Method and device for detecting abnormality of engine
US5156128A (en) Apparatus for controlling variation in torque of internal combustion engine
JPS59136544A (en) Control apparatus for intenal-combustion engine
JP4385542B2 (en) Air-fuel ratio control device for internal combustion engine
JP3973390B2 (en) Intake pressure detection method for internal combustion engine
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JP4239361B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000170582A (en) Measuring device for intake air specific volume for internal combustion engine
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JP3337339B2 (en) Apparatus for estimating intake air amount of internal combustion engine
JP3793382B2 (en) Engine control device
JP3036351B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JPH07286546A (en) Rotational variation detecting method of internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JP2543762B2 (en) Fuel supply control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JPH077562Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3972925B2 (en) Catalyst deterioration detection device for internal combustion engine
JP4135279B2 (en) Air-fuel ratio control device for internal combustion engine
JP2586565B2 (en) Output fluctuation detecting device for internal combustion engine
JP3334453B2 (en) Catalyst deterioration detection device for internal combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R151 Written notification of patent or utility model registration

Ref document number: 4385542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees