JP4239361B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4239361B2
JP4239361B2 JP2000125502A JP2000125502A JP4239361B2 JP 4239361 B2 JP4239361 B2 JP 4239361B2 JP 2000125502 A JP2000125502 A JP 2000125502A JP 2000125502 A JP2000125502 A JP 2000125502A JP 4239361 B2 JP4239361 B2 JP 4239361B2
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
exhaust
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000125502A
Other languages
Japanese (ja)
Other versions
JP2001304019A (en
Inventor
公二郎 岡田
英夫 中井
司郎 熊谷
修 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000125502A priority Critical patent/JP4239361B2/en
Publication of JP2001304019A publication Critical patent/JP2001304019A/en
Application granted granted Critical
Publication of JP4239361B2 publication Critical patent/JP4239361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路の検出空燃比に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
一般に、内燃機関の空燃比制御装置は、複数の気筒に応じて設けられた各排気管の合流部に排気センサを設け、この排気センサの検出結果に基づいて燃料噴射量を制御し、空燃比が目標空燃比となるようにフィードバック制御している。ところが、各気筒ごとに排出される排気ガスは、吸気量や燃料量等のばらつきにより空燃比が異なることがあり、上述した空燃比制御装置では、高精度の空燃比制御が困難となってしまう。この場合、各気筒ごとに排気センサを設け、各排気センサの検出結果に基づいて気筒別に燃料噴射量を制御すればよいが、排気センサの数が増加してコスト高を招いてしまう。
【0003】
そこで、各気筒ごとに排気センサを設けずに、各気筒別の空燃比制御を可能としたものが、例えば、特公平4−77139号公報や特開平10−9023号公報等に開示されている。
【0004】
特公平4−77139号公報に開示された「多気筒エンジンの空燃比制御装置」では、排気多岐管の集合部の排気ガス濃度を排気センサにより検出し、エンジン運転状態に対応する排気センサによる排気ガス濃度検出の遅れ時間とエンジンの基準作動気筒行程との関係から各気筒に対応する排気センサの出力を求め、この排気センサの出力に基づいて各気筒に噴射する燃料を調整している。
【0005】
また、特開平10−9023号公報に開示された「内燃機関の空燃比制御装置」では、機関の運転状態に基づいて排気が各気筒の燃焼室から空燃比センサに到達するまでの時間を求め、現在検出されている空燃比の気筒判別を行って気筒別の空燃比検出を行うが、この場合、他の気筒との混合を考慮して各気筒の空燃比検出値に対して重みを付けて加重平均値を求め、気筒別の空燃比を推定している。
【0006】
【発明が解決しようとする課題】
ところが、上述した「多気筒エンジンの空燃比制御装置」にあっては、エンジン運転状態に対応する排気ガス濃度検出の遅れ時間を考慮した排気センサの出力が各気筒の排気ガス濃度であるとして噴射する燃料量を調整しているが、一つの気筒からの排気ガスと判断した中にも他の気筒の排気ガスが混在しており、遅れ時間を考慮しても排気センサの出力がその気筒の排気ガス濃度であるとは言えず、排気センサが検出した排気ガス濃度には検出誤差を含んでおり、信頼性が不十分である。その結果、制御が発散することがありえる。
【0007】
また、上述した「内燃機関の空燃比制御装置」にあっては、他の気筒との排気ガスの混合を考慮して気筒別の空燃比を推定しているものの、この場合、#1気筒を基準にしてこの空燃比検出値に対する他の気筒の空燃比段差を学習するようにしており、この基準となる#1気筒の空燃比段差を補正することができない。また、各気筒の空燃比検出値に対して重みを付けて加重平均することで気筒別空燃比を求めているが、加重平均を行うための数式の設定には多大な工数を必要とするため、制御系の開発コストが増大してしまう。
【0008】
本発明はこのような問題を解決するものであって、コストを増加させることなく気筒別の空燃比を高精度に検出して制御可能とした内燃機関の空燃比制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために本発明では、排気通路の合流部に設けられた空燃比検出手段を有し、この空燃比検出手段の検出出力に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置において、平均空燃比算出手段が空燃比検出手段の検出出力に基づいて平均空燃比を算出し、気筒別タイミング判定手段がこの空燃比検出手段の検出出力が各気筒の排気に対応する期間を判定し、気筒別空燃比検出手段がこの期間における気筒別の空燃比を検出し、空燃比制御量補正手段が平均空燃比とこの気筒別空燃比との偏差に基づいて対応する気筒の空燃比制御量を補正するようにしている。
【0010】
従って、気筒別空燃比検出手段が検出する気筒別の空燃比は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比との偏差を用いることで、この気筒の排気状態の影響による空燃比の段差を比較的正確に検出でき、各気筒の空燃比制御量を適正に制御できる。
【0011】
なお、気筒別タイミング判定手段が判定する各気筒の排気に対応する期間は、各気筒についてこの気筒の排気ガスの影響が最も支配的な所定のクランク角範囲として設定することが好ましい。一般に、排気ガスは複数の気筒の排気ガスが混在したものとなり、空燃比もそれと対応したものとなるが、気筒別タイミング判定手段によって各気筒についてこの気筒の排気ガスの影響が最も支配的な期間について偏差を求めるので、複数の気筒の排気ガスが混在した状態でもより正確に制御できる。また、気筒別の空燃比の検出はこの期間に複数回実行され、この偏差は平均空燃比と気筒別空燃比の各検出値との偏差の積算値を基に求めることが好ましい。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
【0013】
図1に本発明の一実施例形態に係る内燃機関の空燃比制御装置を表す概略構成、図2に本実施形態の内燃機関の空燃比制御装置による制御のフローチャート、図3に各気筒の検出期間に対応する空燃比を表すグラフを示す。
【0014】
本実施形態の内燃機関の空燃比制御装置は、図1に示すように、4気筒エンジンに適用したものであって、エンジン11には各気筒(燃焼室)に対応して吸気ポート及び排気ポートが設けられており、図示しない吸気バルブ及び排気バルブにより開閉自在となっている。上流部にエアクリーナ12が装着された吸気管13の下流側は、サージタンク14を介して吸気マニホールド15に連結され、この吸気マニホールド15に形成された4つのマニホールド部がエンジン11の各吸気ポートに連結されている。そして、この吸気管13の上流側にはエアフローセンサ16が装着されると共に、スロットルバルブ17及びスロットル開度センサ18が設けられている。また、吸気マニホールド15の各マニホールド部には、燃料を噴射するインジェクタ19がそれぞれ設けられている。
【0015】
一方、排気通路としての排気管20上流側には排気マニホールド21が連結され、この排気マニホールド21に形成された4つのマニホールド部がエンジン11の各排気ポートに連結されている。そして、この排気管20の上流部、つまり、排気マニホールド21のマニホールド部が合流した下流側には空燃比検出手段としてのリニアA/Fセンサ22が装着され、この排気管20の下流部には触媒23が装着されている。また、エンジン11には各気筒のクランク位置を検出するクランク角センサ24が設けられている。
【0016】
また、車両には制御装置としての電子制御ユニット(ECU)25が設けられ、このECU25には、入出力装置、制御プログラムや制御マップ等の記憶を行う記憶装置、中央処理装置及びタイマやカウンタ類が具備されており、このECU25によってエンジン11の総合的な制御が実施される。即ち、前述した各種センサ類16,18,22,24の検出情報等がECU25に入力され、ECU25は各種センサ類の検出情報に基づいて、燃料噴射量や点火時期等を決定し、インジェクタ19等を駆動制御する。
【0017】
ところで、このように構成されたエンジン11における空燃比制御にて、ECU25はリニアA/Fセンサ22の検出出力に基づいて空燃比を目標空燃比にフィードバック制御するようにしている。ところが、エンジン11の各気筒(排気マニホールド21の各マニホールド部)ごとに排出される排気ガスは、吸気マニホールド15の各マニホールド部に流入する空気量やインジェクタ19からの燃料噴射量等のばらつきにより空燃比が異なる場合がある。そのため、排気マニホールド21より下流側の排気管20に設けられたリニアA/Fセンサ22によりここを流通する排気ガスの濃度を検出し、この検出結果に基づいて吸気マニホールド15の各マニホールド部に噴射される燃料量を決定しても、高精度な空燃比制御は困難となる。
【0018】
そこで、本実施形態の内燃機関の空燃比制御装置にあっては、リニアA/Fセンサ22の検出出力に基づいて平均空燃比を算出(平均空燃比算出手段)すると共に、リニアA/Fセンサ22の検出出力が各気筒の排気に対応してその気筒の排気の影響が最も支配的と思われる期間を判定(気筒別タイミング判定手段)し、この期間におけるリニアA/Fセンサ22の検出出力に基づいて気筒別の空燃比を検出(気筒別空燃比検出手段)し、平均空燃比とこの気筒別空燃比との偏差に基づいて対応する気筒の空燃比制御量を補正(空燃比制御量補正手段)するようにしている。
【0019】
なお、各気筒の排気に対応する期間の判定は、図3に示すように、クランク角センサ24の検出信号SGTとカムの回転位置信号(図示略)に基づいて行う。即ち、#1気筒圧縮TDC位置を基準とし、#1気筒の偏差積算開始クランク角をRA、偏差積算クランク角幅をRWとすると、#1気筒の排気期間(積算範囲)R1が設定される。そして、この#1気筒の排気期間R1に、180°ずつ加えていくことで、#3、#4、#2気筒積算範囲R3,R4,R2が設定される。例えば、図中右端の#1気筒圧縮TDC位置を基準として、#1気筒の偏差積算開始クランク角RAが890°BTDC、偏差積算クランク角幅RWを150°であったとすると、
#1気筒の排気期間R1=890〜740°BTDC
#3気筒の排気期間R3=710〜560°BTDC
#4気筒の排気期間R4=530〜380°BTDC
#2気筒の排気期間R2=350〜200°BTDC
となる。
【0020】
ここで、本実施形態の内燃機関の空燃比制御装置による各気筒別の空燃比制御について、図2のフローチャートに基づいて説明する。
【0021】
まず、ステップS1において、ECU25がリニアA/Fセンサ22のLAFS出力信号(電圧)を所定時間間隔でサンプリングする。この場合、サンプリング間隔は各気筒の積算範囲R1〜R4ごとに複数回のサンプリングが行われる間隔となっている。ステップS2で排気ガス圧力による補正を行う。そして、ステップS3にて、気筒別の空燃比制御の条件が成立しているかどうかを判定する。この気筒別の空燃比制御の条件とは、ストイキフィードバック運転中であること、エンジン11の冷却水温が所定温度以上であること、加減速運転中ではなく定常運転中であることである。なお、このストイキフィードバック運転の判定は、所定運転領域(エンジン回転数と体積効率とのマップ)にあることを判定する。
【0022】
このステップS3にて、気筒別の空燃比制御の条件が成立していれば、ステップS4において、平均値LAFSAVを下記数式により算出する。
平均値LAFSAV=K1×LAFSAV(n-1) +(1−K1)×LAFS
この場合、平均値LAFSAVは実際にはフィルタを通した値であり、K1はフィルタ定数であり、LAFSはリニアA/Fセンサ22の検出出力に排圧補正を実行した後の値である。なお、ステップS3で気筒別の空燃比制御の条件が成立していなければ、前回の値を保持する。また、イグニッションキースイッチがオフのときは、バッテリでバックアップする。
【0023】
ステップS4にて、平均値LAFSAVが算出されたら、ステップS5にて、偏差LAFSDを下記数式により算出する。
偏差LAFSD=LAFS−LAFSAV
ここで、LAFSはA/Fセンサ22の検出出力に排圧補正を実行した後の瞬時値であり、求めた偏差LAFSDがプラスであれば空燃比がリーン側に変位し、マイナスであればリッチ側に変位していると判定できる。
【0024】
そして、ステップS5にて、偏差LAFSDが算出されたら、ステップS6にて、各気筒別に偏差積算平均値LAFSDAを算出する。つまり、前述した各気筒積算範囲R1,R3,R4,R2各々について偏差LAFSDを積算したものを積算回数で除算することで、各気筒別の偏差積算平均値LAFSDAを算出することができる。
【0025】
ステップS7では、ある気筒について、偏差積算平均値LAFSDAの絶対値が所定値B1(エンジン回転数と体積効率とのマップ)以上かどうか、つまり、この気筒の空燃比が全ての気筒の平均空燃比と所定量以上相違して補正すべきかどうかを判定する。ここで、偏差積算平均値LAFSDAの絶対値が所定値B1以上であれば、ステップS8にて、空燃比を補正するための補正係数を同じ方向(リーン側あるいはリッチ側)に連続して所定回数B3以上更新したかどうかを判定する。
【0026】
そして、ステップS8にて、補正係数を同じ方向に連続して所定回数B3以上更新していなければ、ステップS9にて、偏差積算平均値LAFSDAが正であるかどうか、つまり、偏差積算平均値LAFSDAが正であって空燃比がリーンであるためにリッチ側に補正する必要があるかどうかを判定する。ここで、偏差積算平均値LAFSDAが正であれば、ステップS10にて、気筒別空燃比補正係数kcylを下記数式によりリッチ側に更新する。
気筒別空燃比補正係数kcyl(n) =kcyl(n-1) +B2
一方、偏差積算平均値LAFSDAが負であって空燃比がリッチであるためにリーン側に補正する必要があれば、ステップS11にて、気筒別空燃比補正係数kcylを下記数式によりリーン側に更新する。
気筒別空燃比補正係数kcyl(n) =kcyl(n-1) −B2
なお、気筒別空燃比補正係数kcylの初期値は1.0とし、上限値及び下限値が設定されている。また、B2は予め設定された所定値である。
【0027】
このようにステップS10,11にて、気筒別空燃比補正係数kcyl(n) が更新されると、ステップS12にて、対応する気筒のインジェクタ19による燃料噴射量を補正する。つまり、気筒別空燃比補正係数kcyl(n) を対応する気筒のインジェクタ19の駆動パルス幅Tinjを下記数式により反映させる。
駆動パルス幅Tinj=Tb×Kelse×kcyl+加減速補正+Td
ここで、Tbは機関運転状態により定まる基本パルス幅、Kelseはその他の補正係数、Tdはデットタイム(インジェクタ駆動信号が発信されてから実際に燃料がインジェクタから噴射されるまでの遅れ時間)である。
【0028】
このようにしてステップS7の判定の処理にて、ある気筒について、空燃比が全ての気筒の平均空燃比と所定量以上相違して補正すべきであれば、ステップS9,10,11,12の処理で気筒別空燃比補正係数kcyl(n) を更新して燃料噴射量を補正する。この場合、4つの気筒に対してそれぞれこの処理を行う。
【0029】
一方、ステップS8にて、補正係数を同じ方向に連続して所定回数B3以上更新していれば、つまり、空燃比をリッチ側あるいはリーン側に所定回数B3以上更新しても、まだ偏差積算平均値LAFSDAの絶対値が所定値B1以上であれば、ステップS13にて、偏差積算平均値LAFSDAの絶対値が所定値B1より大きい所定値B4以上あるかどうかを判定する。このステップS13にて、偏差積算平均値LAFSDAの絶対値が所定値B4以上あるということは、空燃比をリッチ側あるいはリーン側に所定回数B3以上更新しても、この気筒の空燃比と全ての気筒の平均空燃比との差が減少しないということであり、ステップS14にて、気筒別空燃比補正係数kcyl(n) の更新をやめて、前回の気筒別空燃比補正係数kcyl(n-1) を保持する。即ち、この気筒については、空燃比を更新して補正しても平均空燃比との差が減少しないことから、この気筒の偏差LAFSDには他の気筒からの排気ガスの影響が大きい等の要因が想定される。そのため、このまま空燃比の更新による補正を続けると、制御が発散する可能性があるため、一旦この気筒については更新を止めて空燃比補正係数を保持し、まずは他の気筒の空燃比を先に収束させようとするものである。
【0030】
そして、ステップS15にて、ステップS14で気筒別空燃比補正係数kcyl(n-1) を保持してからのエンジン11の行程数が所定行程数B5以上となることで所定期間を経過し、且つ、ステップS14にて気筒別空燃比補正係数kcyl(n-1) を保持した気筒以外の、その他の更新中の気筒全てについて偏差積算平均値LAFSDAの絶対値が所定値B6以下であれば、その他の全ての気筒の空燃比と全ての気筒の平均空燃比との差が収束したということであり、ステップS16にて、気筒別空燃比補正係数kcyl(n-1) を保持した気筒の保持を解除する。これによって収束させやすい気筒についてまず収束させる。これにより、この気筒の空燃比は正確な目標値に制御されることから、他の気筒の偏差積算範囲に混入する排気ガスについても、この気筒からの排気ガスの空燃比は正確に目標値になっていることになる。そのため、保持されていた当初収束させにくいと判断された気筒についても収束させやすくなる。
【0031】
一方、ステップS15にて、エンジン11の行程数が所定行程数B5以上となってもその他の更新中の気筒全てについて偏差積算平均値LAFSDAの絶対値が所定値B6以下にならなければ、ステップS17にて、全ての気筒で気筒別空燃比補正係数kcylが保持されているかどうかを判定し、そうであれば、ステップS18にてその保持を解除する。そして、ステップS19にて、この気筒別空燃比補正係数kcylの保持解除回数が所定回数B7以上であれば、制御が発散している可能性があり、制御が固着状態にあるとも考えられ、このまま続けても収束しないと考えられるので、各係数を初期化して制御をやり直す。
【0032】
このように本実施形態の内燃機関の空燃比制御装置にあっては、リニアA/Fセンサ22のLAFS出力に基づいて空燃比の平均値LAFSAVを算出し、LAFS出力の瞬時値と平均値LAFSAVとの偏差LAFSDを算出し、各気筒ごとの排気期間として設定された積算範囲R1,R3,R4,R2における偏差積算平均値LAFSDAを求めることで、全ての気筒の平均空燃比と各気筒別の空燃比との偏差を求め、この偏差積算平均値LAFSDAが所定値B1以上のときには、気筒別空燃比補正係数kcylを更新して燃料噴射量を補正するようにしている。
【0033】
従って、リニアA/Fセンサ22が検出する気筒別の空燃比(LAFS出力)は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比平均値LAFSAVとの偏差を用いることで、この気筒の排気状態の影響による空燃比の段差(偏差積算平均値LAFSDA)を比較的正確に検出でき、各気筒の空燃比制御量を適正に制御できる。また、各気筒について、その気筒の排気が空燃比(LAFS出力)に及ぼす影響が最も大きいと思われるクランク角範囲R1,R3,R4,R2について、全気筒の空燃比の平均値LAFSAVからの偏差積算平均値LAFSDAを求めて制御を行うので、複数の気筒の排気が入り混じった状態でも正確に制御できる。
【0034】
なお、上述した実施形態では、空燃比検出手段としてリニアA/Fセンサ22を用いたが、通常のλ−O2 センサを用いてもよい。また、ステップB11,12での気筒別空燃比補正係数kcyl(n) の更新処理にて、所定値B2を加算あるいは減算したが、この所定値B2を偏差積算平均値LAFSDAの大きさに応じて変更してもよく、また、リッチ側とリーン側で異なる値としてもよく、更に、エンジン11の運転条件(エンジン回転数、負荷)に応じて変更してもよい。
【0035】
また、この気筒別空燃比補正係数kcylの更新処理を積分制御としたが、PI制御、PID制御、微分制御等としてもよい。例えば、PID制御の例として、
気筒別空燃比補正係数kcyl=1.0+kcylP+kcylI+kcylD
としてもよく、この場合、
比例係数kcylP=LASFDA×GP (GP:比例ゲイン)
積分係数kcylI=Σ(LASFDA×GI) (GI:積分ゲイン)
微分係数kcylD=(LASFDA(n) −LASFDA(n-1) (GD 比例ゲイン)
となる。
【0036】
更に、ステップS3で気筒別の空燃比制御の条件が成立していなければ、その直前の気筒別空燃比補正係数kcylを用いるようにしてもよい。また、ステップS6にて、偏差LAFSDを積算して積算回数で除算することで気筒別の偏差積算平均値LAFSDAを算出したが、制御の安定性を増すために、数サイクルについて偏差積算平均値LAFSDAを算出してもよい。同様に、ステップS7の判定処理にて、偏差LAFSDが数サイクル(例えば、10〜200サイクル程度)中に所定回数以上所定値B1を上回ったとき、気筒別空燃比補正係数kcylを更新するようにしてもよい。この判定の閾値としての所定値B1を触媒の劣化度合、特に酸素ストレージ能力に応じて変化させるようにしてもよく、例えば、走行距離が長くなるに伴って所定値B1を小さくする。更に、各気筒別の排気管20の長さに応じて所定値B1,B2等を気筒ごとに変更して設定してもよい。
【0037】
また、取り敢えず、特定の気筒の気筒別空燃比補正係数kcylを変化させ、その結果に基づいて制御してもよい。例えば、ステップS7の処理の前に、ある気筒の気筒別空燃比補正係数kcylを故意に多めにリッチ化あるいはリーン化し、その後の偏差LAFSDの変化の反応を見てステップS7の処理を行うようにすればよい。これにより各気筒の偏差傾向が今ひとつはっきりしない場合でも、偏差が大きくなって傾向がはっきり認識でき、制御しやすくなる。また、ステップS20にて、制御が固着状態となって初期化した場合、同様に、故意に気筒別空燃比補正係数kcylを変化させる制御を行ってもよい。
【0038】
更には、まず初めに、各気筒について、故意にリッチ化あるいはリーン化し、そのときの各気筒の偏差LAFSDの変化パターンを記憶して、以後は、まず偏差LAFSDのその変化パターンと照合してから制御を開始するようにしてもよい。即ち、例えば、#1気筒の気筒別空燃比補正係数kcylを故意に多めにリッチ化し、そのときの各気筒について偏差LAFSDがリッチ側に変化したか、リーン側に変化したかを記憶する。次に、#1気筒の気筒別空燃比補正係数kcylを故意に多めにリーン化し、同様に、偏差LAFSDの変化パターンを記憶する。これを全気筒について行い、気筒別空燃比補正係数kcylと偏差LAFSDの変化パターンを記憶する。そして、記憶した各気筒の偏差LAFSDの変化パターンと現在の偏差LAFSDの変化パターンとを照合し、一致した場合には、その変化パターンの記憶時に故意に気筒別空燃比補正係数kcylを変化させた気筒別空燃比補正係数kcylを逆方向に補正する。この方法によりまず最初に偏差の変化傾向のあたりをつけることができ、制御が発散状態あるいは固着状態になったために初期化せざるを得なかった場合にも本方法を適用できる。なお、以上の発明を適用する場合の目標空燃比はストイキでもよいし、リッチあるいはリーンでもよい。
【0039】
【発明の効果】
以上、実施形態において詳細に説明したように本発明の内燃機関の空燃比制御装置によれば、各気筒の排気に対応する期間における気筒別の空燃比を検出し、平均空燃比とこの気筒別空燃比との偏差に基づいて対応する気筒の空燃比制御量を補正するようにしたので、気筒別空燃比検出手段が検出する気筒別の空燃比は他の気筒の排気が混在した状態の空燃比であるが、全ての気筒の排気が影響する平均空燃比との偏差を用いることで、この気筒の排気状態の影響による空燃比の段差を比較的正確に検出することができ、コストを増加させることなく気筒別の空燃比を高精度に検出してその制御量を適正に制御することができる。
【図面の簡単な説明】
【図1】本発明の一実施例形態に係る内燃機関の空燃比制御装置を表す概略構成図である。
【図2】本実施形態の内燃機関の空燃比制御装置による制御のフローチャートである。
【図3】各気筒の検出期間に対応する空燃比を表すグラフである。
【符号の説明】
11 エンジン
13 吸気管
15 吸気マニホールド
19 インジェクタ
20 排気管
21 排気マニホールド
22 リニアA/Fセンサ(空燃比検出手段)
24 クランク角センサ
25 電子制御ユニット(ECU、平均空燃比算出手段、気筒別タイミング判定手段、気筒別空燃比検出手段、空燃比制御量補正手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that feedback-controls an air-fuel ratio to a target air-fuel ratio based on a detected air-fuel ratio in an exhaust passage.
[0002]
[Prior art]
In general, an air-fuel ratio control apparatus for an internal combustion engine is provided with an exhaust sensor at a junction of exhaust pipes provided in accordance with a plurality of cylinders, and controls a fuel injection amount based on a detection result of the exhaust sensor. Is feedback-controlled so that becomes the target air-fuel ratio. However, the exhaust gas discharged for each cylinder may have different air-fuel ratios due to variations in intake air amount, fuel amount, etc., and the above-described air-fuel ratio control device makes it difficult to perform highly accurate air-fuel ratio control. . In this case, an exhaust sensor may be provided for each cylinder, and the fuel injection amount may be controlled for each cylinder based on the detection result of each exhaust sensor. However, the number of exhaust sensors increases, resulting in high costs.
[0003]
In view of this, what enables air-fuel ratio control for each cylinder without providing an exhaust sensor for each cylinder is disclosed in, for example, Japanese Patent Publication No. 4-77139 and Japanese Patent Application Laid-Open No. 10-9023. .
[0004]
In the "multi-cylinder engine air-fuel ratio control apparatus" disclosed in Japanese Patent Publication No. 4-77139, the exhaust gas concentration at the collecting portion of the exhaust manifold is detected by an exhaust sensor, and the exhaust by the exhaust sensor corresponding to the engine operating state is detected. The output of the exhaust sensor corresponding to each cylinder is obtained from the relationship between the delay time of the gas concentration detection and the reference working cylinder stroke of the engine, and the fuel injected into each cylinder is adjusted based on the output of the exhaust sensor.
[0005]
Further, in the “air-fuel ratio control device for an internal combustion engine” disclosed in Japanese Patent Laid-Open No. 10-9023, the time until the exhaust reaches the air-fuel ratio sensor from the combustion chamber of each cylinder is obtained based on the operating state of the engine. In this case, the air-fuel ratio is detected for each cylinder by determining the cylinder of the currently detected air-fuel ratio. In this case, the air-fuel ratio detection value of each cylinder is weighted in consideration of mixing with other cylinders. Thus, the weighted average value is obtained, and the air-fuel ratio for each cylinder is estimated.
[0006]
[Problems to be solved by the invention]
However, in the above-described “multi-cylinder engine air-fuel ratio control device”, the output of the exhaust sensor considering the delay time of exhaust gas concentration detection corresponding to the engine operating state is injected as the exhaust gas concentration of each cylinder. Although the amount of fuel to be adjusted is adjusted, the exhaust gas from one cylinder is mixed even when it is judged as the exhaust gas from one cylinder. The exhaust gas concentration cannot be said to be an exhaust gas concentration, and the exhaust gas concentration detected by the exhaust sensor includes a detection error, and the reliability is insufficient. As a result, control can diverge.
[0007]
In the above-mentioned “air-fuel ratio control apparatus for an internal combustion engine”, the air-fuel ratio for each cylinder is estimated in consideration of the mixture of exhaust gas with other cylinders. The air-fuel ratio step of the other cylinder with respect to this air-fuel ratio detection value is learned as a reference, and the air-fuel ratio step of the # 1 cylinder serving as the reference cannot be corrected. In addition, the air-fuel ratio for each cylinder is obtained by weighting and averaging the air-fuel ratio detection value of each cylinder. However, setting a mathematical formula for performing the weighted average requires a large amount of man-hours. The development cost of the control system will increase.
[0008]
An object of the present invention is to solve such a problem, and to provide an air-fuel ratio control device for an internal combustion engine that can detect and control the air-fuel ratio of each cylinder with high accuracy without increasing the cost. And
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention has air-fuel ratio detection means provided at the junction of the exhaust passage, and feedback-controls the air-fuel ratio to the target air-fuel ratio based on the detection output of the air-fuel ratio detection means. In the air-fuel ratio control device for an internal combustion engine, the average air-fuel ratio calculating means calculates the average air-fuel ratio based on the detection output of the air-fuel ratio detection means, and the cylinder-by-cylinder timing determination means detects the detection output of the air-fuel ratio detection means for each cylinder. The period corresponding to the exhaust gas is determined, the cylinder-by-cylinder air-fuel ratio detection means detects the cylinder-by-cylinder air-fuel ratio during this period, and the air-fuel ratio control amount correction means is based on the deviation between the average air-fuel ratio and the cylinder-by-cylinder air-fuel ratio. The air-fuel ratio control amount of the corresponding cylinder is corrected.
[0010]
Therefore, the air-fuel ratio for each cylinder detected by the cylinder-by-cylinder air-fuel ratio detecting means is an air-fuel ratio in a state where exhaust from other cylinders is mixed, but use a deviation from the average air-fuel ratio affected by the exhaust of all cylinders. Thus, the air-fuel ratio step due to the influence of the exhaust state of the cylinder can be detected relatively accurately, and the air-fuel ratio control amount of each cylinder can be appropriately controlled.
[0011]
The period corresponding to the exhaust of each cylinder determined by the cylinder timing determination means is preferably set as a predetermined crank angle range in which the influence of the exhaust gas of this cylinder is most dominant for each cylinder. Generally, the exhaust gas is a mixture of exhaust gases from a plurality of cylinders, and the air-fuel ratio also corresponds to the exhaust gas, but the period in which the influence of the exhaust gas of each cylinder is the most dominant for each cylinder by the cylinder timing determination means. Since the deviation is obtained with respect to, control can be performed more accurately even in a state where exhaust gases of a plurality of cylinders are mixed. Further, the detection of the air-fuel ratio for each cylinder is executed a plurality of times during this period, and this deviation is preferably obtained based on the integrated value of the deviation between the average air-fuel ratio and each detected value of the air-fuel ratio for each cylinder.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a schematic diagram showing an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention, FIG. 2 is a flowchart of control by the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, and FIG. The graph showing the air fuel ratio corresponding to a period is shown.
[0014]
As shown in FIG. 1, the air-fuel ratio control apparatus for an internal combustion engine according to this embodiment is applied to a four-cylinder engine. The engine 11 includes an intake port and an exhaust port corresponding to each cylinder (combustion chamber). Is provided and can be opened and closed by an intake valve and an exhaust valve (not shown). The downstream side of the intake pipe 13 with the air cleaner 12 attached to the upstream part is connected to an intake manifold 15 via a surge tank 14, and four manifold parts formed in the intake manifold 15 are connected to each intake port of the engine 11. It is connected. An air flow sensor 16 is mounted upstream of the intake pipe 13 and a throttle valve 17 and a throttle opening sensor 18 are provided. Each manifold portion of the intake manifold 15 is provided with an injector 19 for injecting fuel.
[0015]
On the other hand, an exhaust manifold 21 is connected to the upstream side of the exhaust pipe 20 as an exhaust passage, and four manifold portions formed in the exhaust manifold 21 are connected to each exhaust port of the engine 11. A linear A / F sensor 22 as an air-fuel ratio detecting means is mounted on the upstream portion of the exhaust pipe 20, that is, on the downstream side where the manifold portion of the exhaust manifold 21 joins. A catalyst 23 is mounted. The engine 11 is provided with a crank angle sensor 24 that detects the crank position of each cylinder.
[0016]
Further, the vehicle is provided with an electronic control unit (ECU) 25 as a control device. The ECU 25 includes a storage device for storing an input / output device, a control program, a control map and the like, a central processing unit, a timer and a counter. The ECU 25 performs overall control of the engine 11. That is, the detection information of the various sensors 16, 18, 22, and 24 described above is input to the ECU 25. The ECU 25 determines the fuel injection amount, the ignition timing, and the like based on the detection information of the various sensors, and the injector 19 and the like. Is controlled.
[0017]
By the way, in the air-fuel ratio control in the engine 11 configured as described above, the ECU 25 performs feedback control of the air-fuel ratio to the target air-fuel ratio based on the detection output of the linear A / F sensor 22. However, the exhaust gas discharged from each cylinder of the engine 11 (each manifold portion of the exhaust manifold 21) is emptied due to variations in the amount of air flowing into each manifold portion of the intake manifold 15, the fuel injection amount from the injector 19, and the like. The fuel ratio may be different. Therefore, the concentration of exhaust gas flowing through the linear A / F sensor 22 provided in the exhaust pipe 20 on the downstream side of the exhaust manifold 21 is detected, and injection is performed on each manifold portion of the intake manifold 15 based on the detection result. Even if the amount of fuel to be determined is determined, highly accurate air-fuel ratio control becomes difficult.
[0018]
Therefore, in the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, the average air-fuel ratio is calculated (average air-fuel ratio calculating means) based on the detection output of the linear A / F sensor 22, and the linear A / F sensor is used. The detection output of 22 corresponds to the exhaust of each cylinder, and the period in which the influence of the exhaust of the cylinder seems to be dominant is determined (timing determination means for each cylinder), and the detection output of the linear A / F sensor 22 in this period The air-fuel ratio for each cylinder is detected based on the cylinder (air-fuel ratio detecting means for each cylinder), and the air-fuel ratio control amount for the corresponding cylinder is corrected based on the deviation between the average air-fuel ratio and the air-fuel ratio for each cylinder (air-fuel ratio control amount). Correction means).
[0019]
The determination of the period corresponding to the exhaust of each cylinder is made based on the detection signal SGT of the crank angle sensor 24 and the cam rotation position signal (not shown), as shown in FIG. That is, with reference to the # 1 cylinder compression TDC position, assuming that the deviation integration start crank angle of the # 1 cylinder is RA and the deviation integration crank angle width is RW, the exhaust period (integration range) R1 of the # 1 cylinder is set. The # 3, # 4, and # 2 cylinder integration ranges R3, R4, and R2 are set by adding 180 ° to the exhaust period R1 of the # 1 cylinder. For example, assuming that the # 1 cylinder compression TDC position at the right end in the figure is the reference, the # 1 cylinder deviation integration start crank angle RA is 890 ° BTDC and the deviation integration crank angle width RW is 150 °.
# 1 cylinder exhaust period R1 = 890-740 ° BTDC
# 3 cylinder exhaust period R3 = 710-560 ° BTDC
# 4 cylinder exhaust period R4 = 530-380 ° BTDC
# 2-cylinder exhaust period R2 = 350-200 ° BTDC
It becomes.
[0020]
Here, the air-fuel ratio control for each cylinder by the air-fuel ratio control apparatus of the internal combustion engine of the present embodiment will be described based on the flowchart of FIG.
[0021]
First, in step S1, the ECU 25 samples the LAFS output signal (voltage) of the linear A / F sensor 22 at predetermined time intervals. In this case, the sampling interval is an interval at which sampling is performed a plurality of times for each integration range R1 to R4 of each cylinder. In step S2, correction based on the exhaust gas pressure is performed. In step S3, it is determined whether or not the conditions for air-fuel ratio control for each cylinder are satisfied. The conditions of the air-fuel ratio control for each cylinder are that the stoichiometric feedback operation is being performed, that the coolant temperature of the engine 11 is equal to or higher than a predetermined temperature, and that the operation is not in the acceleration / deceleration operation but in the steady operation. The determination of the stoichiometric feedback operation is made to determine that it is in a predetermined operation region (a map of engine speed and volumetric efficiency).
[0022]
If the conditions for cylinder-by-cylinder air-fuel ratio control are satisfied in step S3, the average value LAFSAV is calculated by the following equation in step S4.
Average value LAFSAV = K1 × LAFSAV (n−1) + (1−K1) × LAFS
In this case, the average value LAFSAV is actually a value that has passed through a filter, K1 is a filter constant, and LAFS is a value after exhaust pressure correction is performed on the detection output of the linear A / F sensor 22. If the condition for air-fuel ratio control for each cylinder is not satisfied in step S3, the previous value is held. When the ignition key switch is off, the battery is backed up.
[0023]
When the average value LAFSAV is calculated in step S4, the deviation LAFSD is calculated by the following formula in step S5.
Deviation LAFSD = LAFS−LAFSAV
Here, LAFS is an instantaneous value after exhaust pressure correction is performed on the detection output of the A / F sensor 22. If the obtained deviation LAFSD is positive, the air-fuel ratio is displaced to the lean side, and if it is negative, it is rich. It can be determined that it is displaced to the side.
[0024]
When the deviation LAFSD is calculated in step S5, the deviation integrated average value LAFSDA is calculated for each cylinder in step S6. In other words, the deviation integrated average value LAFSDA for each cylinder can be calculated by dividing the result obtained by integrating the deviation LAFSD for each cylinder integrated range R1, R3, R4, R2 by the number of integrations.
[0025]
In step S7, whether or not the absolute value of the deviation integrated average value LAFSDA is greater than or equal to a predetermined value B1 (map of engine speed and volumetric efficiency) for a cylinder, that is, the air-fuel ratio of this cylinder is the average air-fuel ratio of all cylinders. It is determined whether or not the difference should be corrected by a predetermined amount or more. Here, if the absolute value of the deviation integrated average value LAFSDA is greater than or equal to the predetermined value B1, the correction coefficient for correcting the air-fuel ratio is continuously set in the same direction (lean side or rich side) a predetermined number of times in step S8. It is determined whether B3 or more have been updated.
[0026]
In step S8, if the correction coefficient has not been continuously updated in the same direction for a predetermined number of times B3 or more, in step S9, whether or not the deviation integrated average value LAFSDA is positive, that is, the deviation integrated average value LAFSDA. Is positive and the air-fuel ratio is lean, so it is determined whether correction to the rich side is necessary. If the deviation integrated average value LAFSDA is positive, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is updated to the rich side according to the following formula in step S10.
Air-fuel ratio correction coefficient for each cylinder kcyl (n) = kcyl (n-1) + B2
On the other hand, if the deviation integrated average value LAFSDA is negative and the air-fuel ratio is rich, it is necessary to correct to the lean side. In step S11, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is updated to the lean side by the following formula. To do.
Air-fuel ratio correction coefficient for each cylinder kcyl (n) = kcyl (n-1) -B2
Note that the initial value of the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is 1.0, and an upper limit value and a lower limit value are set. B2 is a predetermined value set in advance.
[0027]
As described above, when the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n) is updated in steps S10 and S11, the fuel injection amount by the injector 19 of the corresponding cylinder is corrected in step S12. In other words, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n) reflects the drive pulse width Tinj of the injector 19 of the corresponding cylinder by the following equation.
Drive pulse width Tinj = Tb x Kelse x kcyl + acceleration / deceleration correction + Td
Here, Tb is a basic pulse width determined by the engine operating state, Kelse is another correction factor, and Td is a dead time (a delay time from when the injector drive signal is transmitted until the fuel is actually injected from the injector). .
[0028]
In this way, in the determination processing of step S7, if the air-fuel ratio for a certain cylinder should be corrected different from the average air-fuel ratio of all the cylinders by a predetermined amount or more, the processing of steps S9, 10, 11, 12 is performed. By processing, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n) is updated to correct the fuel injection amount. In this case, this process is performed for each of the four cylinders.
[0029]
On the other hand, if the correction coefficient has been continuously updated in the same direction for the predetermined number of times B3 or more in step S8, that is, even if the air-fuel ratio is updated to the rich side or the lean side for the predetermined number of times B3 or more, the deviation integrated average still remains. If the absolute value of the value LAFSDA is greater than or equal to the predetermined value B1, it is determined in step S13 whether or not the absolute value of the deviation integrated average value LAFSDA is greater than or equal to the predetermined value B4 greater than the predetermined value B1. In step S13, the absolute value of the deviation integrated average value LAFSDA is equal to or greater than the predetermined value B4. This means that even if the air-fuel ratio is updated to the rich side or lean side a predetermined number of times B3 or more, the air-fuel ratio of this cylinder and all This means that the difference from the average air-fuel ratio of the cylinder does not decrease. In step S14, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n) is not updated, and the previous cylinder-specific air-fuel ratio correction coefficient kcyl (n-1). Hold. That is, for this cylinder, even if the air-fuel ratio is updated and corrected, the difference from the average air-fuel ratio does not decrease.Therefore, the deviation LAFSD of this cylinder is greatly influenced by exhaust gases from other cylinders. Is assumed. Therefore, if the correction by updating the air-fuel ratio is continued as it is, the control may diverge, so once this cylinder is stopped, the update is stopped and the air-fuel ratio correction coefficient is held. It is intended to converge.
[0030]
In step S15, a predetermined period of time elapses when the number of strokes of the engine 11 after holding the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n-1) in step S14 is equal to or greater than the predetermined stroke number B5, and If the absolute value of the deviation integrated average value LAFSDA is less than or equal to the predetermined value B6 for all other cylinders that are being updated other than the cylinder that has retained the cylinder-by - cylinder air-fuel ratio correction coefficient kcyl (n-1) in step S14, the other This means that the difference between the air-fuel ratios of all the cylinders and the average air-fuel ratio of all the cylinders has converged. In step S16, the cylinder holding the cylinder-by - cylinder air-fuel ratio correction coefficient kcyl (n-1) is held. To release. Thus, the cylinders that are easy to converge are first converged. As a result, the air-fuel ratio of this cylinder is controlled to an accurate target value. Therefore, even for exhaust gas mixed in the deviation integration range of other cylinders, the air-fuel ratio of the exhaust gas from this cylinder is accurately set to the target value. It will be. Therefore, it is easy to converge the cylinders that are initially determined to be difficult to converge.
[0031]
On the other hand, in step S15, even if the number of strokes of the engine 11 becomes equal to or greater than the predetermined stroke number B5, if the absolute value of the deviation integrated average value LAFSDA does not become the predetermined value B6 or less for all the other cylinders being updated, step S17 is performed. In step S18, it is determined whether or not the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is held in all the cylinders. In step S19, if the number of times the cylinder air-fuel ratio correction coefficient kcyl is released is greater than or equal to the predetermined number B7, the control may be diverged and the control may be considered to be in a fixed state. Even if it continues, it is thought that it does not converge, so each coefficient is initialized and control is performed again.
[0032]
As described above, in the air-fuel ratio control apparatus for an internal combustion engine of the present embodiment, the average value LAFSAV of the air-fuel ratio is calculated based on the LAFS output of the linear A / F sensor 22, and the instantaneous value and average value LAFSAV of the LAFS output are calculated. And calculating the deviation integrated average value LAFSDA in the integrated ranges R1, R3, R4, R2 set as the exhaust period for each cylinder, the average air-fuel ratio of all the cylinders and each cylinder The deviation from the air-fuel ratio is obtained, and when the deviation integrated average value LAFSDA is equal to or greater than the predetermined value B1, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is updated to correct the fuel injection amount.
[0033]
Therefore, the air-fuel ratio (LAFS output) for each cylinder detected by the linear A / F sensor 22 is an air-fuel ratio in a state where the exhaust of other cylinders is mixed, but the average air-fuel ratio average value affected by the exhaust of all cylinders. By using the deviation from LAFSAV, the air-fuel ratio step (deviation integrated average value LAFSDA) due to the influence of the exhaust state of the cylinder can be detected relatively accurately, and the air-fuel ratio control amount of each cylinder can be controlled appropriately. Further, for each cylinder, a deviation from the average value LAFSAV of the air-fuel ratio of all the cylinders in the crank angle ranges R1, R3, R4, and R2 that the exhaust of the cylinder seems to have the greatest influence on the air-fuel ratio (LAFS output). Since the control is performed by obtaining the integrated average value LAFSDA, it is possible to accurately control even in a state where exhausts of a plurality of cylinders are mixed.
[0034]
In the above-described embodiment, the linear A / F sensor 22 is used as the air-fuel ratio detection means, but a normal λ-O 2 sensor may be used. In addition, the predetermined value B2 is added or subtracted in the process of updating the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl (n) in steps B11 and B12. The predetermined value B2 is added according to the magnitude of the deviation integrated average value LAFSDA. It may be changed, may be a value different between the rich side and the lean side, and may be further changed according to the operating conditions (engine speed, load) of the engine 11.
[0035]
In addition, although the update process of the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is integrated control, it may be PI control, PID control, differential control, or the like. For example, as an example of PID control:
Air-fuel ratio correction coefficient for each cylinder kcyl = 1.0 + kcylP + kcylI + kcylD
In this case,
Proportional coefficient kcylP = LASFDA x GP (GP: Proportional gain)
Integration coefficient kcyl I = Σ (LASFDA x GI) (GI: integral gain)
Derivative kcylD = (LASFDA (n) -LASFDA (n-1) (G D proportional gain)
It becomes.
[0036]
Furthermore, if the conditions for cylinder-by-cylinder air-fuel ratio control are not satisfied in step S3, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl immediately before that may be used. In step S6, the deviation LAFSD is accumulated and divided by the number of accumulations to calculate the deviation accumulated average value LAFSDA for each cylinder. In order to increase the stability of the control, the deviation accumulated average value LAFSDA for several cycles is calculated. May be calculated. Similarly, when the deviation LAFSD exceeds the predetermined value B1 a predetermined number of times or more in several cycles (for example, about 10 to 200 cycles) in the determination processing in step S7, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl is updated. May be. The predetermined value B1 as the determination threshold may be changed according to the degree of deterioration of the catalyst, particularly the oxygen storage capacity. For example, the predetermined value B1 is decreased as the travel distance becomes longer. Furthermore, the predetermined values B1, B2, etc. may be changed and set for each cylinder according to the length of the exhaust pipe 20 for each cylinder.
[0037]
For the time being, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl of a specific cylinder may be changed and controlled based on the result. For example, before the process of step S7, the cylinder specific air-fuel ratio correction coefficient kcyl is intentionally enriched or leaned, and the process of step S7 is performed by observing the reaction of the change in the deviation LAFSD thereafter. do it. As a result, even if the deviation tendency of each cylinder is not clear yet, the deviation becomes large and the tendency can be clearly recognized and it becomes easy to control. Further, when the control is fixed and initialized in step S20, similarly, the control for intentionally changing the cylinder specific air-fuel ratio correction coefficient kcyl may be performed.
[0038]
Furthermore, first, each cylinder is intentionally enriched or leaned, the change pattern of the deviation LAFSD of each cylinder at that time is memorized, and after that, the change pattern of the deviation LAFSD is first verified. Control may be started. That is, for example, the cylinder-specific air-fuel ratio correction coefficient kcyl of the # 1 cylinder is intentionally made rich to a large extent, and it is stored whether the deviation LAFSD has changed to the rich side or the lean side for each cylinder at that time. Next, the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl of the # 1 cylinder is intentionally made lean, and similarly, the change pattern of the deviation LAFSD is stored. This is performed for all cylinders, and the change patterns of the cylinder-by-cylinder air-fuel ratio correction coefficient kcyl and deviation LAFSD are stored. Then, the stored variation pattern of deviation LAFSD of each cylinder and the current variation pattern of deviation LAFSD are collated, and if they match, the cylinder-specific air-fuel ratio correction coefficient kcyl is intentionally changed when the variation pattern is stored. The cylinder specific air-fuel ratio correction coefficient kcyl is corrected in the reverse direction. By this method, the change tendency of the deviation can be determined first, and this method can be applied even when the control has to be initialized because it is in a divergent state or a fixed state. Note that the target air-fuel ratio when applying the above invention may be stoichiometric, rich or lean.
[0039]
【The invention's effect】
As described above in detail in the embodiment, according to the air-fuel ratio control apparatus for an internal combustion engine of the present invention, the air-fuel ratio for each cylinder in the period corresponding to the exhaust of each cylinder is detected, and the average air-fuel ratio and each cylinder Since the air-fuel ratio control amount of the corresponding cylinder is corrected based on the deviation from the air-fuel ratio, the air-fuel ratio for each cylinder detected by the cylinder-by-cylinder air-fuel ratio detection means is the air in the state where exhaust from other cylinders is mixed. By using the deviation from the average air-fuel ratio, which is the fuel ratio but affected by the exhaust of all cylinders, the difference in air-fuel ratio due to the influence of the exhaust state of this cylinder can be detected relatively accurately, increasing costs. Without this, it is possible to accurately detect the air-fuel ratio for each cylinder and control the control amount appropriately.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart of control by an air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment.
FIG. 3 is a graph showing an air-fuel ratio corresponding to a detection period of each cylinder.
[Explanation of symbols]
11 Engine 13 Intake pipe 15 Intake manifold 19 Injector 20 Exhaust pipe 21 Exhaust manifold 22 Linear A / F sensor (air-fuel ratio detection means)
24 Crank angle sensor 25 Electronic control unit (ECU, average air-fuel ratio calculating means, cylinder-specific timing determining means, cylinder-specific air-fuel ratio detecting means, air-fuel ratio control amount correcting means)

Claims (1)

排気通路の合流部に設けられた空燃比検出手段を有し、
該空燃比検出手段の検出出力に基づいて空燃比を目標空燃比にフィードバック制御する内燃機関の空燃比制御装置において、
前記空燃比検出手段の検出出力に基づいて平均空燃比を算出する平均空燃比算出手段と、
前記空燃比検出手段の検出出力が各気筒の排気に対応する期間を判定する気筒別タイミング判定手段と、
該気筒別タイミング判定手段が判定した期間における前記空燃比検出手段の検出出力に基づいて気筒別の空燃比を検出する気筒別空燃比検出手段と、
前記平均空燃比算出手段が算出した平均空燃比と前記気筒別空燃比検出手段が検出した気筒別空燃比との偏差が所定値以上の時には対応する気筒の空燃比制御量を補正する空燃比制御量補正手段とを具え、
前記気筒別タイミング判定手段が判定する各気筒の排気に対応する期間は、各気筒について各気筒の排気ガスの影響が最も支配的な所定のクランク角の範囲とし、
前記空燃比制御量補正手段は、同一気筒について同じ方向に連続して所定回数以上の補正を行っても前記偏差が減少しない場合は当該気筒に対する補正を一旦保持して他の全ての気筒における前記偏差が収束してから上記保持を解除する
ことを特徴とする内燃機関の空燃比制御装置。
Having air-fuel ratio detection means provided at the confluence of the exhaust passage,
In an air-fuel ratio control apparatus for an internal combustion engine that performs feedback control of an air-fuel ratio to a target air-fuel ratio based on a detection output of the air-fuel ratio detection means,
Average air-fuel ratio calculating means for calculating an average air-fuel ratio based on the detection output of the air-fuel ratio detecting means;
A cylinder-by-cylinder timing determination unit that determines a period in which the detection output of the air-fuel ratio detection unit corresponds to the exhaust of each cylinder;
A cylinder-by-cylinder air-fuel ratio detection unit that detects a cylinder-by-cylinder air-fuel ratio based on a detection output of the air-fuel ratio detection unit in a period determined by the cylinder-by-cylinder timing determination unit;
When the deviation between the average air-fuel ratio calculated by the average air-fuel ratio calculating means and the cylinder-by-cylinder air-fuel ratio detecting means is greater than or equal to a predetermined value , the air-fuel ratio control corrects the air-fuel ratio control amount of the corresponding cylinder. A quantity correction means,
The period corresponding to the exhaust of each cylinder determined by the cylinder timing determination means is a predetermined crank angle range in which the influence of the exhaust gas of each cylinder is most dominant for each cylinder,
The air-fuel ratio control amount correction means holds the correction for the cylinder once when the deviation does not decrease even when the correction is continuously performed a predetermined number of times or more in the same direction for the same cylinder, and the correction in the other cylinders is performed. The air-fuel ratio control apparatus for an internal combustion engine, wherein the holding is released after the deviation has converged .
JP2000125502A 2000-04-26 2000-04-26 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4239361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125502A JP4239361B2 (en) 2000-04-26 2000-04-26 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125502A JP4239361B2 (en) 2000-04-26 2000-04-26 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001304019A JP2001304019A (en) 2001-10-31
JP4239361B2 true JP4239361B2 (en) 2009-03-18

Family

ID=18635450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125502A Expired - Fee Related JP4239361B2 (en) 2000-04-26 2000-04-26 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4239361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487035B2 (en) 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine

Also Published As

Publication number Publication date
JP2001304019A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
US7650225B2 (en) Engine controller
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP4700079B2 (en) Device for determining an air-fuel ratio imbalance between cylinders
US7742870B2 (en) Air-fuel ratio control device of internal combustion engine
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
JP4239361B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001123879A (en) Combustion state detecting device for internal combustion engine
JP4385542B2 (en) Air-fuel ratio control device for internal combustion engine
JP2947065B2 (en) Lean burn control device for internal combustion engine
JPH07279732A (en) Combustion control method and device for internal combustion engine
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JP2841806B2 (en) Air-fuel ratio control device for engine
JPH07301140A (en) Air-fuel ratio control device for internal combustion engine
JP3031164B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JP3793382B2 (en) Engine control device
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JP3036351B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JPH07180595A (en) Combustion condition judging method and combustion control method of internal combustion engine and combustion condition controller
JPH09324691A (en) Fuel control unit for combustion engine
JP2001193548A (en) Combustion condition detecting device for internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPH077562Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH077563Y2 (en) Electronically controlled fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees