JPH02271041A - Intake-air temperature detecting device of internal combustion engine - Google Patents

Intake-air temperature detecting device of internal combustion engine

Info

Publication number
JPH02271041A
JPH02271041A JP8974589A JP8974589A JPH02271041A JP H02271041 A JPH02271041 A JP H02271041A JP 8974589 A JP8974589 A JP 8974589A JP 8974589 A JP8974589 A JP 8974589A JP H02271041 A JPH02271041 A JP H02271041A
Authority
JP
Japan
Prior art keywords
intake
air temperature
engine
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8974589A
Other languages
Japanese (ja)
Other versions
JP2678789B2 (en
Inventor
Shinpei Nakaniwa
伸平 中庭
Masuo Kashiwabara
柏原 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP8974589A priority Critical patent/JP2678789B2/en
Publication of JPH02271041A publication Critical patent/JPH02271041A/en
Application granted granted Critical
Publication of JP2678789B2 publication Critical patent/JP2678789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve air-fuel ratio control ability at the transient time of engine driving and at the time of hotly start by providing an outside air temperature detecting means, an engine temperature detecting means, a driving state detecting means, and an intake-air temperature estimation setting means. CONSTITUTION:A control unit 11 also works as an intake-air temperature estimation setting means in an intake-air temperature detecting device. Using a compensation coefficient set according to the intake air flow estimated and set from intake pressure and from engine rotational speed, as well as a compensation coefficient set according to the temperature of cooling water, outside air temperature detected by an outside air temperature sensor 6 is compensated, so as to estimate and set the intake-air temperature. The estimated and set intake-air temperature has sufficient responsibility required even when an engine 1 is driven transiently, and is not to be erroneously set being affected by engine temperature during the starting of the engine or during the idle-driving when the intake air flow is low, and if air density of the fuel supply amount is compensated using the intake-air temperature, air-fuel ratio control ability can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の吸気温度検出装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an intake air temperature detection device for an internal combustion engine.

〈従来の技術〉 内燃機関の燃料供給量を電子制御する装置では、吸気圧
力と吸入空気流量とのいずれか一方と機関回転速度との
組み合わせによって基本燃料供給量を設定したり、可変
制御される吸気系の開口面積と機関回転速度との組み合
わせから基本燃料供給量を設定するものなどがあるが、
熱線式流量計等によって吸入空気の質量流量を直接検出
して基本燃料供給量を設定するもの以外では、吸入空気
の質量流量を求める必要があるために、吸入空気温度(
以下、吸気温度と略す。)を検出するセンサを設け、こ
の吸気温度に基づく空気密度補正を燃料供給量に施すよ
うにしている(実開昭60−120239号公報等参照
)。
<Prior art> Devices that electronically control the amount of fuel supplied to an internal combustion engine set the basic amount of fuel supplied or perform variable control based on a combination of either intake pressure or intake air flow rate and engine rotation speed. There are some that set the basic fuel supply amount based on a combination of the opening area of the intake system and the engine rotation speed.
Unless the basic fuel supply amount is set by directly detecting the mass flow rate of the intake air using a hot-wire flowmeter, etc., the intake air temperature (
Hereinafter, it will be abbreviated as intake air temperature. ), and the fuel supply amount is corrected for the air density based on this intake air temperature (see Japanese Utility Model Application No. 60-120239, etc.).

〈発明が解決しようとする課題〉 ところで、前述のように吸気温度を検出して燃料供給量
の空気密度補正する場合、吸気温度を検出する温度セン
サを吸気マニホールドの集合部等に配置しているが、過
渡運転時のように吸気温度の変化が急激なときには第4
図に示すようにセンサの応答性が悪いため、良好な空気
密度補正を施すことができず空燃比制御性が悪化すると
いう問題があった。
<Problems to be Solved by the Invention> By the way, when detecting the intake air temperature and correcting the air density of the fuel supply amount as described above, a temperature sensor for detecting the intake air temperature is placed at a gathering part of the intake manifold, etc. However, when there is a sudden change in intake air temperature such as during transient operation, the fourth
As shown in the figure, due to the poor responsiveness of the sensor, there was a problem in that good air density correction could not be performed and the air-fuel ratio controllability deteriorated.

また、機関が充分に暖められている状態での始動時(ホ
ットリスフート)では、吸気マニホールドの熱を吸気温
度センサが拾ってしまい、第5図に示すように、センサ
の検出信鯨性が悪化するという問題もあった。
Additionally, when starting the engine when it is sufficiently warmed up (hot exhaust), the intake air temperature sensor picks up the heat from the intake manifold, causing the sensor's detection accuracy to deteriorate, as shown in Figure 5. There was also the problem of getting worse.

本発明は上記問題点に鑑みなされたものであり、吸気温
度を応答性良く、かつ、正確に検出できる検出装置を提
供して、吸入空気の質量流量を直接検出するセンサを備
えない機関の燃料供給制御において、機関過渡運転時や
ホットリスタート時の空燃比制御性を向上させることを
目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a detection device capable of responsively and accurately detecting intake air temperature. In supply control, the purpose is to improve air-fuel ratio controllability during engine transient operation and hot restart.

〈課題を解決するための手段〉 そのため本発明では、第1図に示すように、外気温度を
検出する外気温度検出手段と、機関温度を検出する機関
温度検出手段と、機関の吸入空気流量に関与する運転状
態量を検出する運転状態検出手段と、検出された外気温
度を前記機関温度及び運転状態量に基づいて補正して吸
入空気温度を予測設定する吸気温度予測設定手段と、を
含んで内燃機関の吸気温度検出装置を構成した。
<Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. The engine includes an operating state detection means for detecting a related operating state quantity, and an intake air temperature prediction setting means for predicting and setting an intake air temperature by correcting the detected outside air temperature based on the engine temperature and the operating state quantity. An intake air temperature detection device for an internal combustion engine was constructed.

〈作用〉 かかる構成によれば、外気温度検出手段は、機関温度に
影響され難い外気温度を検出するものであるから、かか
る検出手段で検出される外気温度に関しては、応答遅れ
や機関温度に影響されての誤検出は回避し得る。
<Function> According to this configuration, the outside air temperature detection means detects the outside air temperature that is not easily influenced by the engine temperature, so the outside air temperature detected by the detection means does not have a response delay or may affect the engine temperature. false positive detections can be avoided.

また、機関の吸入空気は、外気から取り込まれて吸気通
路を通過する際に、機関との間で熱交換がなされるが、
ここでの熱交換は、吸入空気流量と機関温度(特に吸気
マニホールドの壁面温度)とで略決定されるため、機関
温度検出手段で機関温度を検出すると共に、運転状態検
出手段で吸入空気流量に関与する運転状態量を検出し、
吸気温度予測設定手段はこれらの検出結果から前記熱交
換の状態を予測することにより外気温度から吸気温度を
予測設定する。
In addition, when the intake air of the engine is taken in from the outside air and passes through the intake passage, heat is exchanged with the engine.
The heat exchange here is approximately determined by the intake air flow rate and the engine temperature (especially the intake manifold wall temperature), so the engine temperature is detected by the engine temperature detection means, and the operating state detection means is used to adjust the intake air flow rate. Detects related operating state quantities,
The intake air temperature prediction setting means predicts and sets the intake air temperature from the outside air temperature by predicting the state of the heat exchange from these detection results.

〈実施例〉 以下に本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

一実施例のシステム構成を示す第2図において、内燃機
関1には、エアクリーナ2.吸気ダクト3゜スロットル
チャンバ4及び吸気マニホールド5を介して空気が吸入
される。エアクリーナ2には、機関1の外気温度TA□
を検出する外気温度検出手段としての外気温度センサ6
が設けられている。
In FIG. 2 showing the system configuration of one embodiment, an internal combustion engine 1 includes an air cleaner 2. Air is taken in through the intake duct 3, the throttle chamber 4, and the intake manifold 5. The air cleaner 2 has the outside air temperature TA□ of the engine 1.
Outside air temperature sensor 6 as an outside air temperature detection means for detecting
is provided.

スロットルチャンバ4には、図示しないアクセルペダル
と連動するスロットル弁7が設けられていて、吸入空気
流量Qを制御する。前記スロットル弁7には、その開度
TVOを検出するポテンショメータと共に、そのアイド
ル位置でONとなるアイドルスイッチ8Aを含むスロッ
トルセンサ8が付設されている。
The throttle chamber 4 is provided with a throttle valve 7 that operates in conjunction with an accelerator pedal (not shown) to control the intake air flow rate Q. The throttle valve 7 is attached with a potentiometer for detecting its opening degree TVO, and a throttle sensor 8 including an idle switch 8A that is turned on at its idle position.

スロットル弁7下流の吸気マニホールド5には、吸気圧
力PBを検出する吸気圧センサ9が設けられると共に、
各気筒毎に電磁式の燃料噴射弁1oが設けられている。
The intake manifold 5 downstream of the throttle valve 7 is provided with an intake pressure sensor 9 that detects the intake pressure PB.
An electromagnetic fuel injection valve 1o is provided for each cylinder.

前記燃料噴射弁10は、後述するマイクロコンピュータ
を内蔵したコントロールユニット11がら例えば点火タ
イミングに同期して出力される噴射パルス信号によって
所定時間だけ開弁駆動し、図示しない燃料ポンプからプ
レッシャレギュレータにより所定圧力に制御された燃料
を吸気マニホールド5内に噴射供給する。
The fuel injection valve 10 is driven to open for a predetermined time by an injection pulse signal output from a control unit 11 containing a microcomputer, which will be described later, in synchronization with the ignition timing, and is driven to a predetermined pressure by a pressure regulator from a fuel pump (not shown). The controlled fuel is injected and supplied into the intake manifold 5.

更に、機関1の冷却ジャケット内の冷却水温度Twを検
出する水温センサ12が設けられている。
Further, a water temperature sensor 12 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 1.

前記冷却水温度Twは機関温度を代表するから、前記水
温センサ12が本実施例における機関温度検出手段に相
当する。
Since the cooling water temperature Tw represents the engine temperature, the water temperature sensor 12 corresponds to the engine temperature detection means in this embodiment.

コントロールユニット1工は、クランク角センサ15か
ら、機関回転に同期して出力されるクランク単位角度信
号PO3を一定時間カウントして又は所定クランク角位
置毎に出力されるクランク基準角度信号REF (4気
筒の場合180°毎)の周期を計測して機関回転速度N
を算出する。
The control unit 1 counts the crank unit angle signal PO3 output from the crank angle sensor 15 in synchronization with engine rotation for a certain period of time or outputs a crank reference angle signal REF (4 cylinders) at each predetermined crank angle position. In the case of
Calculate.

また、コントロールユニット11は、前記吸気圧センサ
9で検出される吸気圧力PBと、クランク角センサ15
からの検出信号に基づいて算出した機関回転速度Nと、
吸気温度TSAに基づく空気田度補正係数KTSAとに
基づいて基本燃料噴射量(基本燃料供給量)Tpを設定
すると共に、この基本燃料噴射1tTpを各種運転状態
に基づいて補正して最終的な燃料噴射量Tiを演算し、
この燃料噴射量Tiに相当するパルス巾の噴射パルス信
号を所定のタイミングで燃料噴射弁10に出力して、機
関1に間欠的に燃料供給する。
The control unit 11 also controls the intake pressure PB detected by the intake pressure sensor 9 and the crank angle sensor 15.
The engine rotation speed N calculated based on the detection signal from
The basic fuel injection amount (basic fuel supply amount) Tp is set based on the air temperature correction coefficient KTSA based on the intake air temperature TSA, and this basic fuel injection 1tTp is corrected based on various operating conditions to determine the final fuel. Calculate the injection amount Ti,
An injection pulse signal with a pulse width corresponding to this fuel injection amount Ti is outputted to the fuel injection valve 10 at a predetermined timing to intermittently supply fuel to the engine 1.

更に、コントロールユニット11は、本発明にかかる吸
気温度検出装置における吸気温度予測設定手段を兼ねる
ものであり、外気温度センサ6によって検出される外気
温度TAIアを、吸気圧力PBと機関回転速度Nとから
予測設定される吸入空気流量Qに応じて設定される補正
係数に9と、冷却水温度Twに応じて設定される補正係
数KTwとにより補正して、吸気温度TSAを予測設定
する。
Furthermore, the control unit 11 also serves as an intake air temperature prediction setting means in the intake air temperature detecting device according to the present invention, and adjusts the outside air temperature TAIa detected by the outside air temperature sensor 6 to the intake air pressure PB and the engine rotation speed N. The intake air temperature TSA is predictively set by correcting it by a correction coefficient of 9, which is set according to the intake air flow rate Q that is predicted and set, and a correction coefficient KTw, which is set according to the cooling water temperature Tw.

尚、本実施例では、前述のように吸気圧センサ9とクラ
ンク角センサ15が運転状態検出手段に相当する。
In this embodiment, as described above, the intake pressure sensor 9 and the crank angle sensor 15 correspond to the driving state detection means.

かかる吸気温度TSAを予測設定を第3図のフローチャ
ートに従って説明する。
The prediction setting of the intake air temperature TSA will be explained according to the flowchart of FIG.

まず、ステップ1(図中ではSlとしである。First, step 1 (indicated as Sl in the figure).

以下同様)では、外気温度センサ6から外気温度TAI
えに応じて出力されるアナログ信号をディジタル信号に
変換して外気温度TA11の瞬時値を読み込む。
), the outside air temperature TAI is detected from the outside air temperature sensor 6.
The analog signal output according to the temperature is converted into a digital signal, and the instantaneous value of the outside air temperature TA11 is read.

次のステップ2では、冷却水温度Twに応じて予め設定
されている水温補正係数KTwOROM上のマツプから
、水温センサ12の検出値に基づいて現状の冷却水温度
Twに対応する水温補正係数KTwを検索して求める。
In the next step 2, the water temperature correction coefficient KTw corresponding to the current cooling water temperature Tw is calculated based on the detected value of the water temperature sensor 12 from the map on the water temperature correction coefficient KTwOROM that is preset according to the cooling water temperature Tw. Search and ask.

また、ステップ3では、吸気圧力PBと機関回転速度N
とによって複数に分割される運転状態毎に予め設定され
ている空気量補正係数に0のROM上のマツプから、現
状の吸入空気流11Q(!=iPBXN)に対応する空
気量補正係数に0を検索して求める。
In addition, in step 3, the intake pressure PB and the engine rotation speed N
From the map in the ROM where the air amount correction coefficient is set to 0 in advance for each operating state that is divided into multiple states according to the Search and ask.

上記の補正係数K T w 、  K oは、予め実験
によってマツチング設定されたものであり、補正係数K
Twは、同じ機関であっても例えば吸気マニホールド5
の熱伝達係数や体積・形状等に変化があったり、水温セ
ンサ12の位置に変更があると最適値が変化する。
The above correction coefficients K T w and K o are set in advance by matching through experiments, and the correction coefficient K
For example, Tw may be the intake manifold 5 even if the engine is the same.
If there is a change in the heat transfer coefficient, volume, shape, etc. of the water temperature sensor 12, or if there is a change in the position of the water temperature sensor 12, the optimum value will change.

そして、ステップ4では、外気温度TA11にステップ
2.3で検索して求めた補正係数K T w 。
Then, in step 4, the correction coefficient K T w obtained by searching in step 2.3 is applied to the outside air temperature TA11.

Koを乗算して吸気温度TSA (←T□* xKTw
 x K’ o )を設定する。
Multiply Ko to obtain intake air temperature TSA (←T□* xKTw
x K' o ).

機関に吸入される空気は、エアクリーナ2を介して外気
から取り込まれた後、スロットルチャンバ4や吸気マニ
ホールド5を通過するときに熱交換されてからシンリダ
、内に吸入される。従って、吸気マニホールド5等が高
温であれば、吸気温度TSAは高くなり、また、流れる
空気量が少ないと高くなる。
Air taken into the engine is taken in from outside air via an air cleaner 2, and then heat exchanged when passing through a throttle chamber 4 and an intake manifold 5 before being taken into the cylinder. Therefore, if the temperature of the intake manifold 5 or the like is high, the intake air temperature TSA will be high, and if the amount of air flowing is small, the intake air temperature TSA will be high.

ここで、吸気マニホールド5等の温度は冷却水温度Tw
から推定でき、空気流量Qは吸気圧力PBと機関回転速
度Nとから推定できるため、外気温度TAIllを冷却
水温度Twから求めた補正係数KTwと吸気圧力PB及
び機関回転速度Nから求めた補正係数に0とで補正する
ことで吸気温度TSAが予測設定できるものである。
Here, the temperature of the intake manifold 5 etc. is the cooling water temperature Tw
Since the air flow rate Q can be estimated from the intake pressure PB and the engine rotation speed N, the correction coefficient KTw obtained from the outside air temperature TAIll from the cooling water temperature Tw and the correction coefficient obtained from the intake pressure PB and the engine rotation speed N. The intake air temperature TSA can be predicted and set by correcting it with 0.

外気温度センサ6は機関1の発熱部から遠い位置に配置
されるために、機関1の発熱に影響され難くく、また、
外気温度T a I*は温度変動が緩やかであるから検
出応答性が問題となることもない。
Since the outside air temperature sensor 6 is located far from the heat generating part of the engine 1, it is not easily affected by the heat generated by the engine 1, and
Since the outside air temperature T a I* has a gentle temperature fluctuation, the detection response does not pose a problem.

また、水温センサ12で検出される冷却水温度Twもセ
ンサの応答遅れが発生する程急激な温度変動を示すこと
はなく、更に、吸気圧センサ9による検出も温度センサ
のレベルからすると、殆ど応答遅れはないと言っていい
In addition, the coolant temperature Tw detected by the water temperature sensor 12 does not show a sudden temperature fluctuation that would cause a delay in response of the sensor, and furthermore, the detection by the intake pressure sensor 9 has almost no response considering the level of the temperature sensor. I can say there will be no delays.

従って、本実施例で予測設定される吸気温度TSAは、
機関1が過渡運転されるときであっても必要充分な応答
性を有し、然も、機関始動時や吸入空気流量Qの少ない
アイドル運転時に機関温度に影響されて誤設定されるこ
とも無く、この吸気温度TSAを用いて燃料供給量の空
気密度補正を施せば、空燃比制御性が向上する。
Therefore, the intake air temperature TSA predicted and set in this example is:
It has the necessary and sufficient responsiveness even when the engine 1 is operated transiently, and is not erroneously set due to the influence of the engine temperature when the engine is started or during idling operation with a low intake air flow rate Q. If the air density correction of the fuel supply amount is performed using this intake air temperature TSA, the air-fuel ratio controllability will be improved.

上記のように吸気温度TSAが外気温度’T”AINか
ら予測設定されると、この吸気温度TSAに基づいて空
気密度補正係数KTSAがマツプからの検索等によって
求められ、基本燃料噴射ITpがこの空気密度補正係数
KTSAで補正されて、質量空気量に沿った燃料供給量
の設定が行われる。
When the intake air temperature TSA is predicted and set from the outside air temperature 'T''AIN as described above, the air density correction coefficient KTSA is obtained by searching from a map etc. based on this intake air temperature TSA, and the basic fuel injection ITp is set based on this air temperature 'T''AIN. The fuel supply amount is corrected using the density correction coefficient KTSA, and the fuel supply amount is set in accordance with the mass air amount.

吸気圧力PBと機関回転速度Nとに基づく基本燃料噴射
量Tpの設定は、例えば以下のようにして行われる。
Setting of the basic fuel injection amount Tp based on the intake pressure PB and the engine rotational speed N is performed, for example, as follows.

まず、吸気圧力PBに基づいて基本体積効率補正係数K
PBを設定すると共に、機関回転速度Nと吸気圧力FB
とから微小修正係数KFLATを設定し、これらを乗算
して体積効率補正係数KQCYL (←KPBXKFL
AT)を演算する。そして、この体積効率補正係数KQ
CYLと、吸気圧力PBと、燃料噴射弁10の噴射特性
に基づく定数KCONDと、前記空気密度補正係数KT
SAと、により基本燃料噴射tT p (−KCOND
X P B x KQCYLxKTSA)が演算サレル
First, based on the intake pressure PB, the basic volumetric efficiency correction coefficient K
In addition to setting PB, engine rotation speed N and intake pressure FB
Set the minute correction coefficient KFLAT from and multiply these to obtain the volumetric efficiency correction coefficient KQCYL (←KPBXKFL
AT) is calculated. And this volumetric efficiency correction coefficient KQ
CYL, the intake pressure PB, a constant KCOND based on the injection characteristics of the fuel injection valve 10, and the air density correction coefficient KT.
SA and basic fuel injection tT p (-KCOND
X P B x KQCYLxKTSA) is the operation saler.

尚、本実施例では、吸気圧力PBと機関回転速度Nとか
ら予測される吸入空気流量Qに基づいて外気温度’I”
AIRを補正するよう構成したが、吸気圧力PBと機関
回転速度Nとの組み合わせの代わりに、スロットル弁開
度TVOと機関回転速度Nとに基づく予測吸入空気流i
IQに基づいて補正を加えるようにしても良い。
In this embodiment, the outside air temperature 'I' is determined based on the intake air flow rate Q predicted from the intake pressure PB and the engine rotational speed N.
Although the configuration is configured to correct AIR, the predicted intake air flow i based on the throttle valve opening TVO and the engine rotation speed N is used instead of the combination of the intake pressure PB and the engine rotation speed N.
Correction may be made based on IQ.

また、エアフローメータがフラップ式のように質量流量
を検出するタイプでないときには、その検出値をそのま
ま用いて補正するようにしても良い。この場合には、運
転状態検出手段は、スロットルセンサ8.クランク角セ
ンサ15.更には別途設けたエアフローメータが運転状
態検出手段に相当することになる。
Furthermore, if the air flow meter is not of a type that detects mass flow rate, such as a flap type, the detected value may be used as is for correction. In this case, the operating state detection means is the throttle sensor 8. Crank angle sensor 15. Furthermore, a separately provided air flow meter corresponds to the operating state detection means.

〈発明の効果〉 以上説明したように、本発明によると、機関の吸気温度
を応答性良く検出−でき、然も、機関温度に影響されて
誤検出することもないため、吸入空気の質量流量を直接
検出するセンサを備えない機関では、検出された吸気温
度に基づいて燃料供給量の空気密度補正を施すことによ
り、過渡運転性を改善できると共に、始動性、アイドル
安定性が向上するという効果がある。
<Effects of the Invention> As explained above, according to the present invention, the intake air temperature of the engine can be detected with good responsiveness, and there is no possibility of false detection due to the influence of the engine temperature. For engines that are not equipped with a sensor that directly detects intake air temperature, by correcting the air density of the fuel supply amount based on the detected intake air temperature, it is possible to improve transient drivability, as well as startability and idle stability. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示すシステム概略図、第3図は同上実施
例における制御内容を示すフローチャート、第4図及び
第5図はそれぞれ従来装置の問題点を説明するための線
図である。 1・・・機関  6・・・外気温度センサ  8・・・
スロットルセンサ  9・・・吸気圧センサ  11・
・・コントロールユニット12・・・水温センサ  1
5・・・クランク角センサ 特許出願人  日本電子機器株式会社 代理人  弁理士  笹 島 富二雄 第2図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a system schematic diagram showing an embodiment of the present invention, FIG. 3 is a flowchart showing control details in the same embodiment, and FIGS. 4 and 5 are diagrams for explaining the problems of the conventional device, respectively. 1... Engine 6... Outside temperature sensor 8...
Throttle sensor 9... Intake pressure sensor 11.
...Control unit 12...Water temperature sensor 1
5... Crank angle sensor patent applicant Fujio Sasashima, agent of Japan Electronics Co., Ltd., patent attorney Figure 2

Claims (1)

【特許請求の範囲】  外気温度を検出する外気温度検出手段と、機関温度を
検出する機関温度検出手段と、 機関の吸入空気流量に関与する運転状態量を検出する運
転状態検出手段と、 検出された外気温度を前記機関温度及び運転状態量に基
づいて補正して吸入空気温度を予測設定する吸気温度予
測設定手段と、 を含んで構成したことを特徴とする内燃機関の吸気温度
検出装置。
[Scope of Claims] Outside air temperature detection means for detecting outside air temperature; engine temperature detection means for detecting engine temperature; operating state detection means for detecting an operating state quantity related to the intake air flow rate of the engine; An intake air temperature detection device for an internal combustion engine, comprising: an intake air temperature prediction setting means for predicting and setting an intake air temperature by correcting the outside air temperature based on the engine temperature and the operating state quantity.
JP8974589A 1989-04-11 1989-04-11 Intake air temperature detector for internal combustion engine Expired - Lifetime JP2678789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974589A JP2678789B2 (en) 1989-04-11 1989-04-11 Intake air temperature detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974589A JP2678789B2 (en) 1989-04-11 1989-04-11 Intake air temperature detector for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH02271041A true JPH02271041A (en) 1990-11-06
JP2678789B2 JP2678789B2 (en) 1997-11-17

Family

ID=13979297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974589A Expired - Lifetime JP2678789B2 (en) 1989-04-11 1989-04-11 Intake air temperature detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2678789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405684B1 (en) * 2000-12-30 2003-11-14 현대자동차주식회사 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle
JP2013241924A (en) * 2012-05-23 2013-12-05 Suzuki Motor Corp Fuel injection controller of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107642424B (en) * 2016-07-20 2020-01-14 联合汽车电子有限公司 Air inlet temperature output device of electronic injection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405684B1 (en) * 2000-12-30 2003-11-14 현대자동차주식회사 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle
JP2013241924A (en) * 2012-05-23 2013-12-05 Suzuki Motor Corp Fuel injection controller of internal combustion engine

Also Published As

Publication number Publication date
JP2678789B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JPH09287507A (en) Throttle valve controller for internal combustion engine
JP2737426B2 (en) Fuel injection control device for internal combustion engine
JP2709080B2 (en) Engine intake air amount calculation device and intake air amount calculation method
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP3551706B2 (en) Engine intake control device
JPS63189651A (en) Control device for internal combustion engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JPH10339191A (en) Intake air control system of engine
JPH1130149A (en) Fuel injection control device for direct-injection spark-ignition type internal combustion engine
JP3303614B2 (en) Idle speed control device for internal combustion engine
JPH034768Y2 (en)
JPH025734A (en) Method for controlling auxiliary air feeding device of internal combustion engine
JPH02185647A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH08189407A (en) Intake temperature estimating device for internal combustion engine
JPH05340291A (en) Calculation method for intake air amount information
JPH09287506A (en) Throttle valve controller for internal combustion engine
JP2709081B2 (en) Engine intake air amount calculation device and intake air amount calculation method
JP2540185Y2 (en) Fuel injection control device for internal combustion engine
KR0174018B1 (en) Idle speed control apparatus and method using pi control of internal combustion engine
JPH0833120B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH08128348A (en) Control device of engine
JPH1182077A (en) Intake control system of internal combustion engine