KR100405684B1 - Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle - Google Patents

Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle Download PDF

Info

Publication number
KR100405684B1
KR100405684B1 KR10-2000-0086879A KR20000086879A KR100405684B1 KR 100405684 B1 KR100405684 B1 KR 100405684B1 KR 20000086879 A KR20000086879 A KR 20000086879A KR 100405684 B1 KR100405684 B1 KR 100405684B1
Authority
KR
South Korea
Prior art keywords
intake
air
temperature
manifold pressure
sensor
Prior art date
Application number
KR10-2000-0086879A
Other languages
Korean (ko)
Other versions
KR20020058749A (en
Inventor
한광진
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2000-0086879A priority Critical patent/KR100405684B1/en
Publication of KR20020058749A publication Critical patent/KR20020058749A/en
Application granted granted Critical
Publication of KR100405684B1 publication Critical patent/KR100405684B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0223Cooling water temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0225Intake air or mixture temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices

Abstract

본 발명의 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법은, 전자제어수단이 장착된 엔진에서 상기 전자제어수단이 수온 센서와 흡기 매니폴드 압력 센서 및 흡기 유량 센서에 의해 각각 검출되는 냉각수온과 엔진 흡기 매니폴드 압력과 흡기 유량을 각각 산출하는 단계와; 상기 산출된 흡기 유량과 엔진 흡기 매니폴드 압력에 따라 흡기 온도를 모델링하고, 상기 엔진 흡기 매니폴드 압력과 수온에 따른 연료량을 이용하여 수온 보정치를 산출하며, 상기 산출된 흡기온도 추정치와 수온 보정치를 이용하여 실제 공기량에 따른 흡기온을 산정하는 단계를 포함하여 이루어져, 흡기온 센서의 고장시에도 정확한 값으로 흡기온을 보정하여 운전성을 향상시킬 수 있고 공연비 제어를 위한 흡기온 센서의 삭제가 가능하게 된다.The air-fuel ratio control method by modeling the intake temperature sensor for automobiles of the present invention includes a cooling water temperature detected by the water temperature sensor, the intake manifold pressure sensor, and the intake flow rate sensor in an engine equipped with the electronic control means. Calculating engine intake manifold pressure and intake flow rate, respectively; Intake temperature is modeled according to the calculated intake flow rate and engine intake manifold pressure, and a water temperature correction value is calculated using the engine intake manifold pressure and the fuel amount according to the water temperature, and the calculated intake temperature estimate value and the water temperature correction value are used. Comprising the step of calculating the intake air temperature according to the actual amount of air, even when the intake air temperature sensor failure to correct the intake air temperature to the correct value to improve the operability and to remove the intake air temperature sensor for air-fuel ratio control do.

Description

자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법 {METHOD FOR CONTROLLING AIR/FUEL RATE BY USING MODELING OF AIR TEMPERATURE SENSOR FOR A VEHICLE}Air-fuel ratio control method by modeling intake temperature sensor for automobile {METHOD FOR CONTROLLING AIR / FUEL RATE BY USING MODELING OF AIR TEMPERATURE SENSOR FOR A VEHICLE}

본 발명은 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법에 관한 것으로, 보다 상세하게는 차량의 공연비 제어 수행시 흡기온 센서를 삭제하고 흡기 매니폴드 압력센서만으로 공연비 제어가 가능하도록 하기 위한 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법에 관한 것이다.The present invention relates to an air-fuel ratio control method by modeling an intake air temperature sensor for a vehicle, and more particularly, to remove the intake air temperature sensor and perform an air-fuel ratio control only by an intake manifold pressure sensor when performing the air-fuel ratio control of a vehicle. It relates to an air-fuel ratio control method by modeling the intake air temperature sensor.

일반적으로 차량의 공연비 제어는 ECU(Electronic Control Unit)와 같은 전자제어수단에 의해 수행되는 것으로, ECU는 차량내 감지수단에 의해 감지되는 신호에 따라 엔진 운전 조건을 검출하여 공연비 제어를 수행한다.In general, the air-fuel ratio control of the vehicle is performed by an electronic control means such as an ECU (Electronic Control Unit), the ECU detects the engine operating conditions in accordance with the signal sensed by the in-vehicle sensing means to perform the air-fuel ratio control.

도1에는 공연비 제어를 위해 엔진의 흡기 계통에 장착되는 감지수단이 도시되어 있다.1 shows a sensing means mounted to an intake system of an engine for air-fuel ratio control.

도1에 따르면, 흡기 매니폴드에서 유입되는 공기 유량을 측정하는 공기 유량 센서(11)와, 서지탱크내의 흡기 온도를 측정하는 흡기온 센서(12)와, 서지탱크내의 공기 압력을 측정하는 흡기 매니폴드 압력센서(13)를 포함한다.According to Fig. 1, an air flow rate sensor 11 for measuring the air flow rate flowing from the intake manifold, an intake temperature sensor 12 for measuring the intake temperature in the surge tank, and an intake manifold for measuring the air pressure in the surge tank And a fold pressure sensor 13.

그래서 차량에서 흡기온 센서(12) 및 흡기 매니폴드 압력센서(13)의 감지신호에 따라 공연비를 제어하게 된다.Therefore, the air-fuel ratio is controlled according to the detection signals of the intake air temperature sensor 12 and the intake manifold pressure sensor 13 in the vehicle.

도2에는 종래의 공연비 제어방법의 순서도가 도시되어 있다.2 is a flow chart of a conventional air-fuel ratio control method.

도2에 따르면, ECU(도시되지 않음)는 냉각수온(WTS), 흡기 매니폴드 압력(MDP), 흡기온(ATS), 흡기 유량(AFS) 등을 측정하게 된다(ST11).According to FIG. 2, the ECU (not shown) measures the cooling water temperature WTS, the intake manifold pressure MDP, the intake air temperature ATS, the intake air flow rate AFS, and the like (ST11).

이어서 수온에 따른 보정값(TCO)을 상기 각 센서출력(MDP/ATS/AFS)의 실제값을 이용하여 산출하게 된다(ST12).Subsequently, the correction value TCO according to the water temperature is calculated using the actual values of the respective sensor outputs MDP / ATS / AFS (ST12).

이때 흡기온 센서(12)의 페일시에는 수온에 따른 보정값(TCO)은 일정값으로 보정이 불가능한 상태가 된다(ST13).At this time, when the intake air temperature sensor 12 fails, the correction value TCO according to the water temperature is in a state in which correction is impossible (ST13).

그런데, 북미 사양의 차량의 경우 흡기온 센서(ATS) 및 엔진 흡기 매니폴드 압력센서 (MDP)를 적용하고 있다. 이에 따라 차량이 주행되어지는 동안에 흡기온 센서(ATS)가 고장날 경우에 흡기온 값이 일정 값으로 고정되어 흡기온 보정의 의미가 없어지게 되는 문제점이 있다.However, in North American vehicles, intake air temperature sensors (ATS) and engine intake manifold pressure sensors (MDP) are used. Accordingly, when the intake air temperature sensor ATS breaks down while the vehicle is running, the intake air temperature value is fixed to a predetermined value, thereby losing the meaning of the intake air temperature correction.

본 발명은 상기와 같은 종래의 문제점을 해소하기 위해 창출된 것으로, 본 발명의 목적은 차량의 공연비 제어 수행시 흡기온 센서를 삭제하고 흡기 매니폴드 압력센서만으로 공연비 제어가 가능하도록 하기 위한 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법을 제공하는 데 있다.The present invention was created to solve the above-mentioned conventional problems, an object of the present invention is to remove the intake air temperature sensor when performing the air-fuel ratio control of the vehicle and to enable the air-fuel ratio control only by the intake manifold pressure sensor The present invention provides a method for controlling air-fuel ratio by modeling on sensors.

도1은 일반적인 엔진의 흡배기 시스템의 개략적인 구성도.1 is a schematic configuration diagram of an intake and exhaust system of a general engine.

도2는 종래의 공연비 제어방법의 순서도.2 is a flow chart of a conventional air-fuel ratio control method.

도3은 본 발명의 실시예에 의한 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법의 순서도.Figure 3 is a flow chart of the air-fuel ratio control method by modeling the intake temperature sensor for automobiles according to an embodiment of the present invention.

도4a는 흡기 매니폴드 압력과 흡기온간의 관계 그래프.4A is a graph of the relationship between intake manifold pressure and intake temperature.

도4b는 흡기 유량과 흡기 매니폴드 압력간의 관계 그래프.4B is a graph of the relationship between the intake air flow rate and the intake manifold pressure.

도4c는 흡기 매니폴드 압력과 수온 보정치간의 관계 그래프.4C is a graph of the relationship between the intake manifold pressure and the water temperature correction value.

도4d는 흡기 유량 모델링 결과에 따른 흡기 매니폴드 압력 출력의 필터 처리 관계도.4D is a filter processing relationship diagram of the intake manifold pressure output according to the intake flow modeling result;

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11 : 흡기 유량 센서 12 : 흡기온 센서11: intake air flow sensor 12: intake air temperature sensor

13 : 흡기 매니폴드 압력센서13: intake manifold pressure sensor

상기 목적을 달성하기 위한 본 발명의 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법은, 전자제어수단이 장착된 엔진에서 상기 전자제어수단이 수온 센서와 흡기 매니폴드 압력센서 및 흡기 유량 센서에 의해 각각 검출되는 냉각수온과 엔진 흡기 매니폴드 압력과 흡기 유량을 각각 산출하는 단계와; 상기 산출된 흡기 유량과 엔진 흡기 매니폴드 압력에 따라 흡기온도 추정치를 결정하기 위한 모델링을 하고, 상기 엔진 흡기 매니폴드 압력과 수온에 따른 수온 보정치를 산출하며, 상기 모델링된 흡기온도 추정치와 수온 보정치를 이용하여 실제 흡입 공기량에 따른 흡기온을 산정하는 단계를 포함하는 것을 그 특징으로 한다.The air-fuel ratio control method by modeling the intake temperature sensor for automobiles of the present invention for achieving the above object, the electronic control means in the engine equipped with the electronic control means by the water temperature sensor, the intake manifold pressure sensor and the intake flow rate sensor Calculating cooling water temperature, engine intake manifold pressure, and intake air flow rate respectively detected; Modeling for determining an intake temperature estimate value according to the calculated intake flow rate and engine intake manifold pressure, calculating a water temperature correction value according to the engine intake manifold pressure and water temperature, and calculating the modeled intake temperature estimate value and the water temperature correction value It is characterized in that it comprises the step of calculating the intake air temperature in accordance with the actual intake air amount.

이하, 첨부도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도3은 본 발명의 실시예에 의한 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법의 순서도이고, 도4a는 흡기 매니폴드 압력과 흡기온간의 관계 그래프이며, 도4b는 흡기 유량과 흡기 매니폴드 압력간의 관계 그래프이고, 도4c는 흡기 매니폴드 압력과 수온 보정치간의 관계 그래프이며, 도4d는 흡기 유량 모델링 결과에 따른 흡기 매니폴드 압력 출력의 필터 처리 관계도이다.Figure 3 is a flow chart of the air-fuel ratio control method by modeling the intake temperature sensor for automobiles according to an embodiment of the present invention, Figure 4a is a graph of the relationship between the intake manifold pressure and the intake temperature, Figure 4b is an intake flow rate and intake manifold Fig. 4C is a relationship graph between the intake manifold pressure and the water temperature correction value, and Fig. 4D is a filter processing relationship diagram of the intake manifold pressure output according to the intake flow modeling result.

도3에 따르면, 공연비 제어를 위해 흡기온 센서(12, 도1 참조) 및 엔진 흡기 매니폴드 압력센서(MDP)(13, 도1 참조)를 이용하는 시스템 중에서 흡기온 센서(12)를 삭제하고, 흡기 매니폴드 압력센서(13)만으로 공연비 제어를 수행하게 된다.According to FIG. 3, the intake air temperature sensor 12 is deleted from the system using the intake air temperature sensor 12 (see FIG. 1) and the engine intake manifold pressure sensor (MDP) (see FIG. 1) for the air-fuel ratio control. Only the intake manifold pressure sensor 13 performs air-fuel ratio control.

이에 따라 ECU(도시되지 않음)는 수온 센서(도시되지 않음)와 흡기 매니폴드 압력센서(13) 및 흡기 유량 센서(11)에 의해 각각 검출되는 냉각수온(WTS)과 엔진 흡기 매니폴드 압력(MDP)과 흡기 유량(AFS)을 산출하게 된다(ST21).Accordingly, the ECU (not shown) includes the coolant temperature (WTS) and the engine intake manifold pressure (MDP) detected by the water temperature sensor (not shown), the intake manifold pressure sensor 13, and the intake flow rate sensor 11, respectively. ) And the intake air flow rate AFS are calculated (ST21).

이때 다음과 같은 기체 상태 방정식이 성립한다.,At this time, the following gas state equation is established.

PV=m*R*TPV = m * R * T

여기서, m : 흡기 유량 센서에 의해 검출되는 공기량Where m is the amount of air detected by the intake air flow sensor.

P : 서지탱크내의 압력P: Pressure in the surge tank

V : 서지탱크의 체적V: Volume of surge tank

T : 흡기온 센서에 의해 검출되는 흡기온도(ATS)T: Intake air temperature (ATS) detected by the intake air temperature sensor

R : 기체상수R: Gas constant

상기 기체 상태 방정식을 다시 쓰면,If we rewrite the gas state equation,

T = PV / m RT = PV / m R

이 된다.Becomes

이때 V, m은 일정하고 T의 변화에 따라 P가 달라지게 되므로 이를 인자(FACTOR)로써 규정하면,At this time, V, m is constant and P changes according to the change of T, so if it is defined as a factor (FACTOR),

m = FACTOR * Pm = FACTOR * P

와 같다. 그리고 실제 공기량에 따른 흡기온을 Tm이라 하고, 0°C 1기압의 표준상태에서의 공기량에 따른 흡기온을 Tr이라 하면,Same as If the intake air temperature according to the actual air volume is Tm, and the intake air temperature according to the air volume at a standard state of 0 ° C and 1 atm is Tr,

FACTOR = (실제 공기량)/(표준상태 공기량)=Tm/TrFACTOR = (actual air volume) / (standard air volume) = Tm / Tr

이 된다.Becomes

그러므로 Tm/Tr = m/P 가 된다.Therefore, Tm / Tr = m / P.

도4a에는 이러한 Tr, P, 및 m간의 관계가 도시되어 있다.4A shows the relationship between these Tr, P, and m.

그래서 흡기 매니폴드 압력센서(13)는 압력을 측정하고 북미사양의 흡기 유량 센서(11)의 경우에는 공기량을 정량적으로 측정하므로, 흡기온 센서(12)의 검출온도(ATS)가 상승하면 같은 공기량에도 흡기 매니폴드 압력센서의 검출압력(MDP)은 증가하게 된다.Therefore, since the intake manifold pressure sensor 13 measures the pressure and in the case of the intake flow rate sensor 11 of North America specifications, the air amount is quantitatively measured. Therefore, if the detected temperature ATS of the intake temperature sensor 12 rises, the same amount of air In addition, the detection pressure (MDP) of the intake manifold pressure sensor is increased.

따라서 흡기온 센서(12)의 측정치를 이용하여 흡기온(ATS) 모델링을 수행하고 모델링된 추정값을 시험으로 설정하여 흡기온(ATS)을 추정한다.Therefore, intake air temperature (ATS) modeling is performed using the measured values of the intake air temperature sensor 12, and the modeled estimated value is set as a test to estimate the intake air temperature (ATS).

도4b에는 흡기 유량(AFS)과 흡기 매니폴드 압력(MDP)과 모델링 값(MODELINGf)간의 관계가 도시되어 있다.4B shows the relationship between the intake air flow rate AFS, the intake manifold pressure MDP, and the modeling value MODELINGf.

도4b에 도시된 바와 같이, 흡기 유량(AFS)을 흡기 매니폴드 압력센서(13)와 흡기 유량 센서(11)간의 관계를 이용하여 흡기온도(ATS) 추정치를 설정한다. 이때 설정되는 흡기온도(ATS) 추정치(MODELINGf)는, (MODELINGf=f(MDP, AFS))과 같이 설정된다(ST22).그리고 표준상태의 흡기온(Tr)은 실제 공기량에 따른 흡기온(Tm)과, 흡기온도 추정치(MODELINGf)와 수온 보정치(TCOf)에 따라 설정되는 것으로, (Tr(흡기온) = Tm*MODELINGf*TCOf)와 같이 연산된다.As shown in Fig. 4B, the intake air flow rate AFS is set using the relationship between the intake manifold pressure sensor 13 and the intake air flow sensor 11 to set the intake air temperature ATS estimate. At this time, the estimated intake air temperature ATS is set as (MODELINGf = f (MDP, AFS)) (ST22) .The intake air temperature Tr in the standard state is the intake air temperature Tm according to the actual amount of air. ) And the intake air temperature estimation value MODELINGf and the water temperature correction value TCOf, are calculated as (Tr (intake air temperature) = Tm * MODELINGf * TCOf).

이러한 흡기온도(ATS) 추정치(MODELINGf)에 대하여 도4c에 도시된 바와 같이, 수온에 따른 보정을 수행한다(ST23).As shown in FIG. 4C, the intake temperature ATS estimated value MODELINGf is corrected according to the water temperature (ST23).

바람직하게는 흡기온도(ATS) 추정치(MODELINGf)에 대하여 수온에 따른 보정치(TCOf)는, (TCOf=f(TCO, MDP))과 같이 연산된다.Preferably, the correction value TCOf according to the water temperature with respect to the intake air temperature ATS estimated value MODELINGf is calculated as (TCOf = f (TCO, MDP)).

더불어 흡기온도 추정치에 대하여 흡기 매니폴드 압력 출력은 필터 처리한다. 상기 필터 처리는 흡기 매니폴드 압력센서(13)의 출력이 과도적인 구간에서 피크가 발생되면, 이러한 피크를 방지하는 것이다.In addition, the intake manifold pressure output is filtered for the intake temperature estimate. The filter process prevents such peaks when a peak occurs in a section in which the output of the intake manifold pressure sensor 13 is excessive.

그러면 흡기 매니폴드 압력(MDP)은, (MDP=MDP 센서 출력 * FILTERM)과 같이 연산된다(ST24).The intake manifold pressure MDP is then calculated as (MDP = MDP sensor output * FILTERM) (ST24).

도4d에는 이러한 흡기 매니폴드 압력(MDP)과 흡기 유량(AFS)과 FILTERM간의 관계 그래프가 도시되어 있다.4D shows a graph of the relationship between the intake manifold pressure MDP, the intake flow rate AFS, and the FILTERM.

이처럼 흡기온도(ATS) 추정치(MODELINGf)와 수온 보정치(TCOf)가 산출되면, 실제 공기량에 따른 흡기온인 Tr은, (Tr=Tm*MODELINGf*TCOf)과 같이 연산될 수 있다(ST25).As such, when the estimated intake air temperature ATS MODELINGf and the water temperature correction value TCOf are calculated, the intake air temperature Tr according to the actual air amount can be calculated as (Tr = Tm * MODELINGf * TCOf) (ST25).

단계 ST25에서 실제 공기량에 따른 흡기온인 Tr이 산출되면, 단계 ST21로 복귀한다.When Tr, which is the intake air temperature in accordance with the actual air amount, is calculated in step ST25, the flow returns to step ST21.

본 발명의 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법에 따르면, 흡기온 센서의 고장시 보다 정확한 값으로 흡기온을 보정하여 운전성을 향상시킬 수 있는 효과가 있다.According to the air-fuel ratio control method by modeling the intake temperature sensor for automobiles of the present invention, there is an effect that can improve the driving performance by correcting the intake temperature to a more accurate value when the intake temperature sensor failure.

또한, 본 발명에 따르면, 현재 흡기온도 센서와 흡기 매니폴드 압력센서가 장착된 차량에서와 같은 공연비 제어를 수행하면서도 흡기온도 센서를 삭제할 수 있게 되어 구조 단순화 및 제작원가를 저감시키는 효과가 있다.In addition, according to the present invention, it is possible to delete the intake air temperature sensor while performing the air-fuel ratio control as in a vehicle equipped with the intake air temperature sensor and the intake manifold pressure sensor, thereby simplifying the structure and reducing the manufacturing cost.

이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위를 한정하는 것이 아니다.Although the preferred embodiment of the present invention has been described above, the present invention may use various changes, modifications, and equivalents. It is clear that the present invention can be applied in the same manner by appropriately modifying the above embodiments. Therefore, the above description does not limit the scope of the following claims.

Claims (2)

(a) 전자제어수단이 장착된 엔진에서 상기 전자제어수단이 수온 센서와 흡기 매니폴드 압력센서 및 흡기 유량 센서에 의해 각각 검출되는 냉각수온과 엔진 흡기 매니폴드 압력과 흡기 유량을 각각 산출하는 단계와;(a) calculating, by the electronic control means in the engine equipped with the electronic control means, the cooling water temperature, the engine intake manifold pressure and the intake flow rate respectively detected by the water temperature sensor, the intake manifold pressure sensor, and the intake flow rate sensor; ; (b) 상기 산출된 흡기 유량과 엔진 흡기 매니폴드 압력에 따라 흡기온도 추정치를 결정하기 위한 모델링을 하고, 상기 엔진 흡기 매니폴드 압력과 수온에 따른 수온 보정치를 산출하며, 상기 모델링된 흡기온도 추정치와 수온 보정치를 이용하여 실제 흡입 공기량에 따른 흡기온을 산정하는 단계를 포함하는 것을 특징으로 하는 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법.(b) modeling to determine an intake temperature estimate according to the calculated intake flow rate and engine intake manifold pressure, calculating a water temperature correction value according to the engine intake manifold pressure and water temperature, and calculating the modeled intake temperature estimate and Comprising a step of calculating the intake air temperature according to the actual intake air amount using the water temperature correction value. 제 1항에 있어서, 상기 단계 (b)에서 상기 흡기온도 추정치는,The method of claim 1, wherein the intake air temperature estimate in step (b) is 실제 공기량에 따른 흡기온도를 대신하도록, 표준상태의 흡입 공기량에 따른 흡기온과, 수온 보정치(TCOf)에 따라 설정되는 것을 특징으로 하는 자동차용 흡기온 센서의 모델링에 의한 공연비 제어방법.The air-fuel ratio control method by modeling the intake air temperature sensor for a vehicle, characterized in that it is set in accordance with the intake air temperature according to the intake air amount in the standard state, and the water temperature correction value (TCOf) to replace the intake air temperature according to the actual air amount.
KR10-2000-0086879A 2000-12-30 2000-12-30 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle KR100405684B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0086879A KR100405684B1 (en) 2000-12-30 2000-12-30 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0086879A KR100405684B1 (en) 2000-12-30 2000-12-30 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle

Publications (2)

Publication Number Publication Date
KR20020058749A KR20020058749A (en) 2002-07-12
KR100405684B1 true KR100405684B1 (en) 2003-11-14

Family

ID=27689831

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0086879A KR100405684B1 (en) 2000-12-30 2000-12-30 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle

Country Status (1)

Country Link
KR (1) KR100405684B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006141A (en) 2015-07-07 2017-01-17 주식회사 현대케피코 Apparatus and method for modeling intake air temperature

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816639B1 (en) * 2007-01-29 2008-03-25 지멘스 오토모티브 주식회사 Method and apparatus for diagnosing throttle position sensor of car

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271041A (en) * 1989-04-11 1990-11-06 Japan Electron Control Syst Co Ltd Intake-air temperature detecting device of internal combustion engine
JPH0357861A (en) * 1989-07-24 1991-03-13 Japan Electron Control Syst Co Ltd Intake air temperature detecting device for internal combustion engine
JPH04171248A (en) * 1990-11-05 1992-06-18 Aisan Ind Co Ltd Fuel injection valve controller
JPH09189256A (en) * 1996-01-10 1997-07-22 Unisia Jecs Corp Intake temperature estimating device of internal combustion engine and outside temperature estimating device
KR19980058911A (en) * 1996-12-30 1998-10-07 박병재 How to deal with faults of intake air temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271041A (en) * 1989-04-11 1990-11-06 Japan Electron Control Syst Co Ltd Intake-air temperature detecting device of internal combustion engine
JPH0357861A (en) * 1989-07-24 1991-03-13 Japan Electron Control Syst Co Ltd Intake air temperature detecting device for internal combustion engine
JPH04171248A (en) * 1990-11-05 1992-06-18 Aisan Ind Co Ltd Fuel injection valve controller
JPH09189256A (en) * 1996-01-10 1997-07-22 Unisia Jecs Corp Intake temperature estimating device of internal combustion engine and outside temperature estimating device
KR19980058911A (en) * 1996-12-30 1998-10-07 박병재 How to deal with faults of intake air temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006141A (en) 2015-07-07 2017-01-17 주식회사 현대케피코 Apparatus and method for modeling intake air temperature

Also Published As

Publication number Publication date
KR20020058749A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
US6088661A (en) Ambient temperature learning algorithm for automotive vehicles
US7677091B2 (en) Air-fuel ratio controller for an internal combustion engine and diagnosis apparatus for intake sensors
CA2200237C (en) Failure diagnosis controller of pressure sensor
US5299550A (en) Detecting device and method of an abnormality in an air-fuel ratio control system
JP2008121533A (en) Control device of internal combustion engine
CN111140385B (en) Method and system for improving robustness of natural gas engine
JP2006242748A (en) Heating resistor type air flow measurement apparatus and its measurement error correction method
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
JP3097491B2 (en) Failure diagnosis device for exhaust gas recirculation device
KR101981881B1 (en) How to increase the pressure detection accuracy without using a sensor
US7131321B2 (en) Throttle system abnormality determination apparatus
JPH07293358A (en) Failure diagnostic method for evaporative purging system
KR100405684B1 (en) Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle
US5467593A (en) Method of electronic fuel injection feedback control
US7305872B2 (en) Method for operating an internal combustion engine
US6092019A (en) Method of judging monitoring condition for diagnosis of engine
JPH0323347A (en) Deterioration detecting means for airflow meter
JP4655229B2 (en) Abnormality diagnosis apparatus for intake system of internal combustion engine
JP4492802B2 (en) Air-fuel ratio control device
US10094311B1 (en) Method for correcting air-fuel ratio deviation for each cylinder in engine
KR100401625B1 (en) System for diagnosing fuel temperature sensor trouble and method for the same
JP4277588B2 (en) Air supply device
CN114563126B (en) Air system pressure signal filtering self-learning method
KR100238393B1 (en) Self-diagnostic method of egr system
JP4000539B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee