JPH0357861A - Intake air temperature detecting device for internal combustion engine - Google Patents

Intake air temperature detecting device for internal combustion engine

Info

Publication number
JPH0357861A
JPH0357861A JP1188939A JP18893989A JPH0357861A JP H0357861 A JPH0357861 A JP H0357861A JP 1188939 A JP1188939 A JP 1188939A JP 18893989 A JP18893989 A JP 18893989A JP H0357861 A JPH0357861 A JP H0357861A
Authority
JP
Japan
Prior art keywords
engine
temperature
air temperature
intake air
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188939A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Masuo Kashiwabara
柏原 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1188939A priority Critical patent/JPH0357861A/en
Publication of JPH0357861A publication Critical patent/JPH0357861A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the control characteristic of air-fuel ratio at the time of transient operation with an intake air temperature detected accurately in good responsiveness by correcting a detection value of the outside air temperature to estimate the intake air temperature, being based on a difference between the outside air temperature and an engine temperature, intake air flow amount and an engine speed. CONSTITUTION:An engine operative condition, which contains at least a speed of an internal combustion engine and its intake pressure, is detected by a means A, while being based on a result of this detection, a fuel supply amount is set. Here temperatures of the outside air and the engine are further detected respectively by means B, C. While a difference between the detected outside air temperature and engine temperature is calculated in a means D. On the other hand, being based on the above described engine speed and intake air pressure, an intake air amount is set in a means E. Being based on the above described temperature difference, intake air amount and the engine speed, the outside air temperature is corrected, and an intake air temperature is estimated by a means F. Thus by detecting the intake air temperature accurately in good responsiveness, the control characteristic of air-fuel ratio is improved at the time of transient operation of the internal combustion engine.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、機関回転速度と吸気圧力とに基づいて燃料供
給量を設定する方式の内燃機関における吸気温度検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake air temperature detection device for an internal combustion engine that sets a fuel supply amount based on engine rotational speed and intake pressure.

く従来の技術〉 内燃機関の電子制御燃料供給装置において、吸気圧力と
機関回転速度との組み合わせによって基本燃料供給量を
設定するものがあるが、この場合には、吸入空気の質量
流量を求める必要があるために、吸入空気温度(以下、
吸気温度とする)を検出するセンサを設け、この吸気温
度に基づく空気密度補正を基本燃料供給量に施すように
している(実開昭60−120239号公報等参照)。
Conventional technology> Some electronically controlled fuel supply systems for internal combustion engines set the basic fuel supply amount by a combination of intake pressure and engine rotation speed, but in this case, it is necessary to determine the mass flow rate of intake air. Because of this, the intake air temperature (hereinafter,
A sensor is provided to detect the intake air temperature), and air density correction is applied to the basic fuel supply amount based on this intake air temperature (see Japanese Utility Model Application Publication No. 120239/1988, etc.).

く発明が解決しようとする課題〉 ところで、前述したように吸気温度を検出して燃料供給
量の空気密度補正する場合、吸気温度を検出する吸気温
センサを吸気マニホールドの集合部等に配置しているが
、第6図に示すようなスロットル弁開度TVOの変化が
大きい4i運転時のように吸気温度の変化が急激なとき
には、吸気温センサの応答性が悪いため、良好な空気密
度補正を施すことができず、空燃比制御性が悪化すると
いう問題があった。
Problems to be Solved by the Invention> By the way, as described above, when detecting the intake air temperature and correcting the air density of the fuel supply amount, it is necessary to arrange the intake air temperature sensor for detecting the intake air temperature at the gathering part of the intake manifold, etc. However, when the intake air temperature changes rapidly, such as during 4i operation with large changes in the throttle valve opening TVO as shown in Figure 6, the responsiveness of the intake air temperature sensor is poor, so a good air density correction is required. Therefore, there was a problem that the air-fuel ratio controllability deteriorated.

これは、低吸入空気流量域の吸気マニホールド内の吸気
温度が機関等の熱源より受熱して上昇し、高空気流量域
では受熱する時間が少ないため低空気流量域より吸気温
度の上昇が少ない。このため、加速運転するとこの吸気
温度の段差が生じ、吸気温センサは応答遅れがあるため
大きなりーン化が発生する。この現象は高い機関温度で
低い外気温度のとき顕著になる。又、第4図で示す如く
吸気マニホールド内の吸気温度と外気温度と吸入空気量
と機関回転速度と負荷により異なる傾向にある.本発明
は上記の事情に鑑みなされたもので、吸気温度を応答性
良く、且つ、正確に検出できる検出装置を提供して、吸
入空気の質量流量を直接検出するセンサを備えない機関
の燃料供給制御において、機関過渡運転時の空燃比制御
性を向上させることを目的とする. 〈課題を解決するための手段〉 このため本発明は、第1図に示すように、機関回転速度
,吸気圧力を少なくとも含む機関運転状態を検出する機
関運転状態検出手段を備え、該機関運転状態検出手段で
検出された機関回転速度と吸気圧力とに基づいて燃料供
給量が設定される内燃機関において、外気温度を検出す
る外気温度検出手段と、機関温度を検出する機関温度検
出手段と、各検出手段で検出された外気温度と機関温度
との差を算出する温度差演算手段と、前記運転状態検出
手段で検出された機関回転速度と吸気圧力とから吸入空
気流量を設定する吸入空気流量設定手段と、前記温度差
演算手段で演算された温度差と設定された吸入空気流量
及び検出された機関回転速度に基づいて外気温度の検出
値を補正して吸入空気温度を推定する吸気温度推定手段
とを含んで構成した。
This is because the intake air temperature in the intake manifold in the low intake air flow area increases as it receives heat from a heat source such as the engine, and in the high air flow area there is less time to receive heat, so the rise in intake air temperature is smaller than in the low air flow area. For this reason, when the engine accelerates, a difference in the intake air temperature occurs, and the intake air temperature sensor has a response delay, resulting in a large lean change. This phenomenon becomes more noticeable when the engine temperature is high and the outside air temperature is low. Furthermore, as shown in Figure 4, the temperature tends to vary depending on the intake air temperature in the intake manifold, outside air temperature, intake air amount, engine rotation speed, and load. The present invention has been made in view of the above circumstances, and provides a detection device capable of responsively and accurately detecting intake air temperature, thereby improving the fuel supply of an engine that is not equipped with a sensor that directly detects the mass flow rate of intake air. In control, the purpose is to improve air-fuel ratio controllability during engine transient operation. <Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention includes an engine operating state detection means for detecting an engine operating state including at least engine rotation speed and intake pressure. In an internal combustion engine in which the fuel supply amount is set based on the engine rotational speed and intake pressure detected by the detection means, an outside air temperature detection means for detecting outside air temperature, an engine temperature detection means for detecting the engine temperature, and each temperature difference calculation means for calculating the difference between the outside air temperature detected by the detection means and the engine temperature; and an intake air flow rate setting for setting the intake air flow rate from the engine rotational speed and intake pressure detected by the operating state detection means. and intake air temperature estimating means for estimating the intake air temperature by correcting the detected value of the outside air temperature based on the temperature difference calculated by the temperature difference calculating means, the set intake air flow rate, and the detected engine rotation speed. It is composed of the following.

〈作用〉 かかる構或によれば、外気温度検出手段は、機関温度に
影響され難い外気温度を検出するものであるから、かか
る検出手段で検出される外気温度に関しては、応答遅れ
や機関温度に影響されての誤検出は回避できる. また、機関の吸入空気は、外気から取り込まれて吸気通
路を通過する際に、機関との間で熱交換がなされるが、
ここでの熱交換は、吸入空気流量及び機関温度(特に吸
気マニホールドの壁面温度)と外気温度との温度差で略
決定されるため、機関温度検出手段で機関温度を検出し
、検出した機関温度と前記外気温度検出手段で検出した
外気温度との差を温度差演算手段で演算すると共に、運
転状態検出手段で検出した吸気圧力と機関回転速度とか
ら吸入空気流量設定手段で吸入空気流量を設定し、吸気
温度推定手段は、これらの演算値及び設定値から前記熱
交換の状態を推定することにより外気温度から吸気温度
を推定する。
<Function> According to this structure, the outside air temperature detection means detects the outside air temperature which is not easily influenced by the engine temperature, so the outside air temperature detected by the outside air temperature detection means is not affected by response delay or engine temperature. Erroneous detections due to this influence can be avoided. In addition, when the intake air of the engine is taken in from the outside air and passes through the intake passage, heat is exchanged with the engine.
The heat exchange here is approximately determined by the temperature difference between the intake air flow rate and engine temperature (particularly the wall temperature of the intake manifold) and the outside air temperature, so the engine temperature is detected by the engine temperature detection means and the detected engine temperature is A temperature difference calculation means calculates the difference between the temperature and the outside air temperature detected by the outside air temperature detection means, and an intake air flow rate setting means sets the intake air flow rate based on the intake air pressure and engine rotational speed detected by the operating state detection means. However, the intake air temperature estimating means estimates the intake air temperature from the outside air temperature by estimating the state of the heat exchange from these calculated values and set values.

く実施例〉 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図において、機関本体lには、エアクリ−ナ2,吸
気ダクト3,スロットルチャンバ4及び吸気マ二ホール
ド5を介して空気が吸入される。
In FIG. 2, air is taken into the engine body 1 through an air cleaner 2, an intake duct 3, a throttle chamber 4, and an intake manifold 5. As shown in FIG.

エアクリーナ2には、機関本体1の外気温度TAIRを
検出する外気温度検出手段としての外気温度センサ6が
設けられている. スロットルチャンバ4には、図示しないアクセルペダル
と連動するスロットル弁7が設けられていて、吸入空気
流IQを制御する。前記スロントル弁7には、その間度
TVOを検出するボテンショメータと共に、そのアイド
ル位置でONとなるアイドルスイッチ8Aを含むスロッ
トルセンサ8が付設されている. スロットル弁7下流の吸気マニホールド5には、吸気圧
力PBを検出する吸気圧センサ9が設けられると共に、
各気筒毎に電磁式の燃料噴射弁10が設けられている。
The air cleaner 2 is provided with an outside air temperature sensor 6 as an outside air temperature detection means for detecting the outside air temperature TAIR of the engine body 1. The throttle chamber 4 is provided with a throttle valve 7 that operates in conjunction with an accelerator pedal (not shown) to control the intake air flow IQ. The throttle valve 7 is provided with a potentiometer for detecting the TVO and a throttle sensor 8 including an idle switch 8A that is turned on at its idle position. The intake manifold 5 downstream of the throttle valve 7 is provided with an intake pressure sensor 9 that detects the intake pressure PB.
An electromagnetic fuel injection valve 10 is provided for each cylinder.

前記燃料噴射弁10は、後述するマイクロコンピュータ
を内蔵したコントローノレユニント1’lから、例えば
点火タイミングに同期して出力される噴射パルス信号に
よって所定時間だけ開弁駆動し、図示しない燃料ポンプ
からプレッシャレギュレー夕により所定圧力に制御され
た燃料を吸気マニホールド5内に噴射供給する。
The fuel injection valve 10 is driven to open for a predetermined time by an injection pulse signal output from a controller 1'l having a built-in microcomputer, which will be described later, in synchronization with the ignition timing, and is driven to open for a predetermined time by a fuel pump (not shown). Fuel controlled to a predetermined pressure by a pressure regulator is injected and supplied into the intake manifold 5.

更に、機関本体lの冷却ジャケット内の冷却水温度Tw
を検出する水温センサ12が設けられている。前記冷却
水温度Twは機関温度を代表するから、前記水温センサ
12が本実施例における機関温度検出手段に相当する。
Furthermore, the cooling water temperature Tw in the cooling jacket of the engine body l
A water temperature sensor 12 is provided to detect the water temperature. Since the cooling water temperature Tw represents the engine temperature, the water temperature sensor 12 corresponds to the engine temperature detection means in this embodiment.

コントロールユニット11は、クランク角センサ15か
ら、機関回転に同期して出力されるクランク単位角信号
POSを一定時間カウントして又は所定クランク角位置
毎に出力されるクランク基準角度信号REF (4気筒
の場合180゜毎)の周期を計測して機関回転速度Nを
算出する。
The control unit 11 counts the crank unit angle signal POS outputted from the crank angle sensor 15 in synchronization with engine rotation for a certain period of time, or outputs a crank reference angle signal REF (for 4 cylinders) at every predetermined crank angle position. The engine rotation speed N is calculated by measuring the period (every 180 degrees).

また、コントロールユニット1lは、前記吸気圧センサ
9で検出される吸気圧力PBと、クランク角センサl5
からの検出信号に基づいて算出した機関回転速度Nと、
吸気温度TSAに基づく空気密度補正係数KTSAとに
基づいて基本燃料噴射量(基本燃料供給量)Tpを設定
すると共に、この基本燃料噴射量TPを各種運転状態に
基づいて補正して最終的な燃料噴射量Tiを演算し、こ
の燃料噴射lTiに相当するパルス幅の噴射パルス信号
を所定のタイ【ングで燃料噴射弁lOに出力して機関本
体1に間欠的に燃料供給する。
The control unit 1l also controls the intake pressure PB detected by the intake pressure sensor 9 and the crank angle sensor l5.
The engine rotation speed N calculated based on the detection signal from
The basic fuel injection amount (basic fuel supply amount) Tp is set based on the air density correction coefficient KTSA based on the intake air temperature TSA, and the basic fuel injection amount TP is corrected based on various operating conditions to determine the final fuel injection amount. The injection amount Ti is calculated, and an injection pulse signal having a pulse width corresponding to the fuel injection lTi is outputted to the fuel injection valve lO at a predetermined timing to intermittently supply fuel to the engine body 1.

更に、コントロールユニット11は、外気温度センサ6
によって検出される外気温度TAIRを、冷却水温と外
気温度との差、吸気圧力PBと機関回転速度Nとから推
定される吸入空気流IQに応じて設定される補正係数K
.及び機関回転速度N及び機関負荷に応じて設定される
微修正項K.とにより求められる温度補正値ΔTAIR
で補正することにより、この補正された値を真の吸気温
度TSAとして推定する。ここで、コントロールユニッ
}11が、温度差演算手段、吸入空気流量設定手段及び
吸気温度推定手段に相当し、前述のように吸気圧センサ
9とクランク角センサ15が機関運転状態検出手段に相
当する。
Furthermore, the control unit 11 includes an outside temperature sensor 6.
The outside air temperature TAIR detected by
.. and a fine correction term K. which is set according to the engine rotational speed N and engine load. Temperature correction value ΔTAIR obtained by
By correcting this value, this corrected value is estimated as the true intake air temperature TSA. Here, the control unit} 11 corresponds to a temperature difference calculation means, an intake air flow rate setting means, and an intake air temperature estimation means, and as described above, the intake pressure sensor 9 and the crank angle sensor 15 correspond to an engine operating state detection means. .

かかる真の吸気温度TSAの推定を第3図のフローチャ
ートに従って説明する。
Estimation of the true intake air temperature TSA will be explained with reference to the flowchart of FIG. 3.

まず、ステッラ゜1(図中S1で示してある。以下同様
)では、水温センサl2から冷却水温.Twに応じて出
力されるアナログ信号をディジタル信号に変換して冷却
水温Twを読み込む。
First, in Stella 1 (indicated by S1 in the figure, the same applies hereinafter), the cooling water temperature is measured from the water temperature sensor l2. The analog signal output according to Tw is converted into a digital signal and the cooling water temperature Tw is read.

ステップ2では、外気温度センサ6から外気温度TAI
mに応じて出力されるアナログ信号をディジタル信号に
変換して外気温度TA,.の瞬時値を読み込む。
In step 2, the outside air temperature TAI is detected from the outside air temperature sensor 6.
The analog signal output according to m is converted into a digital signal and the outside air temperature TA, . Read the instantaneous value of .

ステップ3では、吸気圧センサ9から吸気圧力PBに応
して出力されるアナログ信号をディジタル信号に変換し
て吸気圧力PBを読み込む。
In step 3, the analog signal outputted from the intake pressure sensor 9 according to the intake pressure PB is converted into a digital signal and the intake pressure PB is read.

ステップ4では、クランク角センサl5からの信号に基
づいて前述の如く機関回転速度Nを算出する。
In step 4, the engine rotational speed N is calculated as described above based on the signal from the crank angle sensor l5.

ステップ5では、読み込んだ冷却水温Twと外気温度T
AIえとの温度差ΔT (=Tw  TAIN )を演
算する。
In step 5, the read cooling water temperature Tw and outside air temperature T
The temperature difference ΔT (=Tw TAIN ) between the AI and the other is calculated.

ステップ6では、吸気圧力PBと機関回転速度Nとから
予測設定される吸入空気流量Q(ζPBXN)に応じた
空気量補正係数K.のマップから?状の吸入空気11Q
に対応する空気量補正係数K0を検索する. ステップ7では、機関回転速度N及び吸気圧力PB(基
本燃料供給量Tpでもよい)に応じて予め設定された微
修正項KNのマップから機関回転速度N及び機関負荷に
対応する微修正項K8を検索する。
In step 6, an air amount correction coefficient K. From the map? intake air 11Q
Search for the air amount correction coefficient K0 corresponding to . In step 7, a fine correction term K8 corresponding to the engine rotation speed N and engine load is determined from a map of fine correction terms KN set in advance according to the engine rotation speed N and intake pressure PB (or the basic fuel supply amount Tp). search for.

ステップ8では、ステップ5〜7で得られた温度差ΔT
と空気量補正係数K.と微修正項KNを乗算して温度補
正値ΔTAINを設定する。
In step 8, the temperature difference ΔT obtained in steps 5 to 7 is
and air amount correction coefficient K. The temperature correction value ΔTAIN is set by multiplying by the fine correction term KN.

ステップ9では、外気温度センサ6で検出された外気温
度T■,にステップ8で設定された温度補正値ΔTAI
mを加算し、この加算値を真の吸気温度TSAとして推
定する。
In step 9, the temperature correction value ΔTAI set in step 8 is set to the outside air temperature T, detected by the outside air temperature sensor 6.
m is added, and this added value is estimated as the true intake air temperature TSA.

機関に吸入される空気は、エアクリーナ2を介して外気
から取り込まれた後、スロットルチャンハ4や吸気マニ
ホールド5を通過するときに熱交換されてからシリンダ
内に吸入される。従って、吸気温度TSAは吸気マニホ
ールド5等と外気との温度差に関連し、第4図に示すよ
うに、温度差?大きければ吸気温度TSAは高くなり、
また、流れる空気量が少ないと高くなる。更には、機関
回転速度N及び機関負荷にも依存して変化する。
Air taken into the engine is taken in from outside air via an air cleaner 2, and then heat exchanged when passing through a throttle chamber 4 and an intake manifold 5 before being taken into the cylinder. Therefore, the intake air temperature TSA is related to the temperature difference between the intake manifold 5 etc. and the outside air, and as shown in FIG. If it is larger, the intake air temperature TSA will be higher,
In addition, if the amount of air flowing is small, the cost will be high. Furthermore, it changes depending on the engine rotational speed N and the engine load.

これにより、熱交換状態を左右する吸気マニホールド5
等の温度を代表する冷却水温度Twと外気温度T a 
I*との温度差ΔTと、吸気圧力PBと機関回転速度N
とから推定できる空気流MQから得られる補正係数K0
と、機関回転数N及び機関負荷に応じた微修正項KHと
を用いて、外気温度TAIllを補正することで真の吸
気温度TSAが推定できる。
As a result, the intake manifold 5, which affects the heat exchange state,
The cooling water temperature Tw and the outside air temperature T a are representative of the temperatures such as
Temperature difference ΔT with I*, intake pressure PB and engine rotation speed N
The correction coefficient K0 obtained from the airflow MQ that can be estimated from
The true intake air temperature TSA can be estimated by correcting the outside air temperature TAIll using the fine correction term KH corresponding to the engine speed N and the engine load.

そして、外気温度センサ6は機関本体工の発熱部から遠
い位置に配置されるために、機関本体lの発熱に影響さ
れ難く、また、外気温度T■,は温度変動が緩やかであ
るから検出応答性が問題となることはない。また、水温
センサl2で検出される冷却水温度Twもセンサの応答
遅れが発生する程急激な温度変動を示すことはなく、更
に、吸気圧センサ9による検出も温度センサのレベルか
らすると、殆ど応答遅れはないと言っていい。
Since the outside air temperature sensor 6 is located far from the heat generating part of the engine body work, it is not easily affected by the heat generation of the engine body l, and the outside air temperature T, has a gentle temperature fluctuation, so the detection response is Gender is not an issue. In addition, the cooling water temperature Tw detected by the water temperature sensor l2 does not show a sudden temperature fluctuation that would cause a sensor response delay, and furthermore, the detection by the intake pressure sensor 9 has almost no response considering the level of the temperature sensor. I can say there is no delay.

?って、本実施例で推定される吸気温度TSAは、機関
本体lが過渡運転されるときであっても必要充分な応答
性を有し、この吸気温度TSAを用いて燃料供給量の空
気密度補正を施せば空燃比制御性が向上する。
? Therefore, the intake air temperature TSA estimated in this example has sufficient responsiveness even when the engine body l is operated transiently, and the air density of the fuel supply amount is determined using this intake air temperature TSA. If correction is performed, air-fuel ratio controllability will be improved.

上記のように吸気温度TSAが外気温度TA1,lから
推定されると、この吸気温度TSAに基づいて空気密度
補正係数KTAが第5図に示すマップから検索によって
求められ、基本燃料供給ftTpがこの空気密度補正係
数KTAで補正されて、質量空気量に沿った燃料供給量
の設定が行われる。
When the intake air temperature TSA is estimated from the outside air temperature TA1,l as described above, the air density correction coefficient KTA is found by searching from the map shown in Fig. 5 based on this intake air temperature TSA, and the basic fuel supply ftTp is calculated from this. The fuel supply amount is set according to the mass air amount by being corrected by the air density correction coefficient KTA.

吸気圧力PBと機関回転速度Nとに基づく基本燃料供給
量Tpの設定は、例えば以下のようにして行われる。
Setting of the basic fuel supply amount Tp based on the intake pressure PB and the engine rotational speed N is performed, for example, as follows.

まず、吸気圧力PBに基づいて基本体積効率補正係数K
PMを設定すると共に、機関回転速度Nと吸気圧力PB
とから微小修正係数KFLATを設定し、これらを乗算
して体積効率補正係数KQcvL (←K■XKFLA
?)を演算する。そして、この体積効率補正係数KQc
yLと、吸気圧力PBと、燃料噴射弁10の噴射特性に
基づく定数K,。8と、前記空気密度補正係数KTAと
により基本燃料供給量Tp(’−KeoNX P B 
X KQcvt X KTA)が演算される。
First, based on the intake pressure PB, the basic volumetric efficiency correction coefficient K
In addition to setting PM, engine rotation speed N and intake pressure PB
Set the minute correction coefficient KFLAT from and multiply these to obtain the volumetric efficiency correction coefficient KQcvL (←K■XKFLA
? ) is calculated. Then, this volumetric efficiency correction coefficient KQc
yL, the intake pressure PB, and a constant K based on the injection characteristics of the fuel injection valve 10. 8 and the air density correction coefficient KTA, the basic fuel supply amount Tp('-KeoNX P B
X KQcvt X KTA) is calculated.

〈発明の効果〉 以上説明したように本発明によれば、機関の吸気温度を
応答良く検出でき、しかも、機関温度に影響されて誤検
出することもないため、吸入空気流量を吸気圧力と機関
回転速度から予測設定することにより吸入空気の質量流
量を直接検出できない機関において、検出された吸気温
度に基づいて燃料供給量の空気密度補正を施すことによ
り、過渡運転時の空燃比制御性を向上でき、過渡運転性
能を改善できる。
<Effects of the Invention> As explained above, according to the present invention, the intake air temperature of the engine can be detected with good response, and there is no erroneous detection due to the influence of the engine temperature. In engines where the mass flow rate of intake air cannot be directly detected by setting a prediction based on the rotation speed, the air-fuel ratio controllability during transient operation is improved by correcting the air density of the fuel supply amount based on the detected intake air temperature. can improve transient operation performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構或を説明するブロック図、第2図は
本発明の一実施例を示すシステム概略図、第3図は同上
実施例の制御内容を示すフローチャート、第4図は機関
の運転状態と吸気温度との関係を示すグラフ、第5図は
空気密度補正係数の検索マップを示す図、第6図は従来
装置の問題点を説明するための線図である。 1・・・機関本体  6・・・外気温度センサ  8・
・・スロットルセンサ  9・・・吸気圧センサ  1
1・・・コントロールユニット  12・・・水温セン
サ  l5・・・クランク角センサ
Fig. 1 is a block diagram explaining the structure of the present invention, Fig. 2 is a system schematic diagram showing an embodiment of the present invention, Fig. 3 is a flowchart showing control contents of the above embodiment, and Fig. 4 is an engine diagram. FIG. 5 is a graph showing the relationship between the operating state and intake air temperature, FIG. 5 is a diagram showing a search map for the air density correction coefficient, and FIG. 6 is a diagram for explaining problems with the conventional device. 1... Engine body 6... Outside temperature sensor 8.
...Throttle sensor 9...Intake pressure sensor 1
1... Control unit 12... Water temperature sensor l5... Crank angle sensor

Claims (1)

【特許請求の範囲】[Claims] 機関回転速度、吸気圧力を少なくとも含む機関運転状態
を検出する機関運転状態検出手段を備え、該機関運転状
態検出手段で検出された機関回転速度と吸気圧力とに基
づいて燃料供給量が設定される内燃機関において、外気
温度を検出する外気温度検出手段と、機関温度を検出す
る機関温度検出手段と、各検出手段で検出された外気温
度と機関温度との差を算出する温度差演算手段と、前記
運転状態検出手段で検出された機関回転速度と吸気圧力
とから吸入空気流量を設定する吸入空気流量設定手段と
、前記温度差演算手段で演算された温度差と設定された
吸入空気流量及び検出された機関回転速度に基づいて外
気温度の検出値を補正して吸入空気温度を推定する吸気
温度推定手段とを含んで構成したことを特徴とする内燃
機関の吸気温度検出装置。
An engine operating state detection means is provided for detecting an engine operating state including at least an engine rotation speed and an intake pressure, and the fuel supply amount is set based on the engine rotation speed and intake pressure detected by the engine operation state detection means. In an internal combustion engine, an outside air temperature detection means for detecting outside air temperature, an engine temperature detection means for detecting engine temperature, and a temperature difference calculation means for calculating the difference between the outside air temperature detected by each detection means and the engine temperature; intake air flow rate setting means for setting an intake air flow rate based on the engine rotational speed and intake pressure detected by the operating state detection means; and a temperature difference calculated by the temperature difference calculation means, the set intake air flow rate, and detection. 1. An intake air temperature detection device for an internal combustion engine, comprising an intake air temperature estimating means for estimating an intake air temperature by correcting a detected value of outside air temperature based on the detected engine rotational speed.
JP1188939A 1989-07-24 1989-07-24 Intake air temperature detecting device for internal combustion engine Pending JPH0357861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188939A JPH0357861A (en) 1989-07-24 1989-07-24 Intake air temperature detecting device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188939A JPH0357861A (en) 1989-07-24 1989-07-24 Intake air temperature detecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0357861A true JPH0357861A (en) 1991-03-13

Family

ID=16232548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188939A Pending JPH0357861A (en) 1989-07-24 1989-07-24 Intake air temperature detecting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0357861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697290A1 (en) * 1993-03-23 1994-04-29 Siemens Automotive Sa Method of calculating injector opening time in internal combustion engine - using power law proportionality to relate corrected speed to temperature to convert tables produced for single temperature
KR100405684B1 (en) * 2000-12-30 2003-11-14 현대자동차주식회사 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle
WO2018061468A1 (en) * 2016-09-27 2018-04-05 株式会社ケーヒン Internal combustion engine control device
CN112912606A (en) * 2018-09-24 2021-06-04 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697290A1 (en) * 1993-03-23 1994-04-29 Siemens Automotive Sa Method of calculating injector opening time in internal combustion engine - using power law proportionality to relate corrected speed to temperature to convert tables produced for single temperature
KR100405684B1 (en) * 2000-12-30 2003-11-14 현대자동차주식회사 Method for controlling air/fuel rate by using modeling of air temperature sensor for a vehicle
WO2018061468A1 (en) * 2016-09-27 2018-04-05 株式会社ケーヒン Internal combustion engine control device
CN112912606A (en) * 2018-09-24 2021-06-04 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine
CN112912606B (en) * 2018-09-24 2022-12-06 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine

Similar Documents

Publication Publication Date Title
US6662640B2 (en) Air amount detector for internal combustion engine
JP2901613B2 (en) Fuel injection control device for automotive engine
JPS63143348A (en) Fuel injection controller
JPH09287507A (en) Throttle valve controller for internal combustion engine
JPH01100334A (en) Fuel supply control device for internal combustion engine
JPH02227532A (en) Fuel injection control device
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JP3843492B2 (en) Engine intake control device
JP2678789B2 (en) Intake air temperature detector for internal combustion engine
JPH09166038A (en) Idle revolution speed learning controller of internal combustion engine
JP3331118B2 (en) Throttle valve control device for internal combustion engine
JP2657713B2 (en) Fuel leak diagnosis system for electronically controlled fuel injection type internal combustion engine
JP3551706B2 (en) Engine intake control device
JP3627462B2 (en) Control device for internal combustion engine
JPH0212290Y2 (en)
JPH09228899A (en) Egr device for diesel engine
JPH10122057A (en) Egr controller for engine
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH03229952A (en) Intake air temperature detecting device for internal combustion engine with supercharger
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH0763101A (en) Fuel injection quantity control device of internal combustion engine
JPH08159995A (en) Exhaust heat quantity calculating apparatus
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPH0681913B2 (en) Electronic control unit for internal combustion engine