WO2018061468A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2018061468A1
WO2018061468A1 PCT/JP2017/027927 JP2017027927W WO2018061468A1 WO 2018061468 A1 WO2018061468 A1 WO 2018061468A1 JP 2017027927 W JP2017027927 W JP 2017027927W WO 2018061468 A1 WO2018061468 A1 WO 2018061468A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
internal combustion
combustion engine
intake air
air temperature
Prior art date
Application number
PCT/JP2017/027927
Other languages
French (fr)
Japanese (ja)
Inventor
将司 小川
佐々木 亮
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2018061468A1 publication Critical patent/WO2018061468A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
  • an intake air temperature sensor in a fuel injection system is generally used for calculating the air density taken into the internal combustion engine.
  • the fuel injection system calculates the intake air temperature of the internal combustion engine based on the output of the intake air temperature sensor, detects the air density taken into the internal combustion engine based on the calculated intake air temperature of the internal combustion engine, Ignition timing and fuel injection are controlled. For this reason, when adopting a fuel injection system, it is necessary to attach an intake air temperature sensor to the internal combustion engine. Furthermore, when installing the intake air temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the intake air temperature sensor is installed.
  • the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system.
  • an internal combustion engine control apparatus that controls a fuel injection system in a vehicle such as a general-purpose machine such as a generator or a small motorcycle, it is required to omit an intake air temperature sensor from the fuel injection system for the purpose of cost reduction. ing.
  • Patent Document 1 relates to an intake air temperature estimation device for an internal combustion engine that estimates the intake air temperature of the internal combustion engine 1 in order to set the fuel injection amount, and relates to the outside air temperature and the heat from the engine room to the intake system of the engine.
  • a configuration is disclosed in which the amount of transmission and the amount of heat conduction from the engine room to the intake system of the engine are estimated, and the intake temperature of the internal combustion engine 1 is estimated based on these estimation results.
  • the outside air temperature is estimated using the cooling fan ON / OFF time, the engine heat generation amount, and the vehicle speed.
  • the amount of heat transfer from the engine room to the engine intake system is estimated using the amount of heat generated by the engine and the amount of heat released from the engine room.
  • the amount of heat conduction from the engine room to the engine intake system is estimated using the amount of heat generated by the engine and the temperature of the engine.
  • the present invention has been made through the above-described studies, and can be practically mounted on an actual vehicle including a two-wheeled vehicle, and has a simple configuration and can reduce the storage capacity of a storage device such as a ROM of a control device. Therefore, it is an object of the present invention to provide an internal combustion engine control apparatus that can reduce the overall cost and can calculate the intake air temperature of the internal combustion engine with sufficient accuracy for practical use.
  • the control unit includes: An ambient temperature of the internal combustion engine is acquired, an injector temperature that is the temperature of the injector is acquired from a resistance value of the injector of the internal combustion engine, and an intake air temperature increase amount of the internal combustion engine is calculated from the ambient temperature and the injector temperature
  • the internal combustion engine control device calculates the intake air temperature of the internal combustion engine by adding the intake air temperature rise amount to the ambient temperature.
  • control unit uses the correlation characteristic that defines a relationship between a difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount, to use the intake air temperature.
  • the second aspect is to calculate the amount of increase.
  • control unit calculates an injection amount correction value of the injector from a fuel injection time per unit time of the internal combustion engine, and calculates the intake air temperature increase amount Correction with the injection amount correction value is a third aspect.
  • the present invention has a fourth aspect in which the control unit performs a filtering process on the calculated intake air temperature.
  • the present invention provides a first temperature sensor disposed in a casing of the internal combustion engine control device, and a position spaced from the first temperature sensor in the casing.
  • a second temperature sensor disposed on the first temperature sensor, wherein the control unit determines a detected temperature of one of the first temperature sensor and the second temperature sensor of the first temperature sensor and the second temperature sensor. It is a fifth aspect to calculate the ambient temperature by correcting with the other detected temperature.
  • the internal combustion engine control apparatus includes a control unit that controls the operating state of the internal combustion engine mounted on the internal combustion engine mounting body. Obtain the ambient temperature, obtain the injector temperature, which is the injector temperature, from the resistance value of the injector of the internal combustion engine, calculate the intake air temperature rise amount of the internal combustion engine from the ambient temperature and injector temperature, and add the intake air temperature rise amount to the ambient temperature Since the intake air temperature of the internal combustion engine is calculated by adding, it can be practically installed in an actual vehicle including a two-wheeled vehicle, and has a simple configuration and the storage capacity of a storage device such as a ROM of a control device. Since it can be reduced, the overall cost can be suppressed, and the intake air temperature of the internal combustion engine can be calculated with practically sufficient accuracy.
  • the control unit uses the correlation characteristic that defines the relationship between the difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount. Since the intake air temperature rise is calculated, the intake air temperature rise that has a correlation with the difference between the injector temperature and the engine ambient temperature is correlated with the correlation characteristic that defines the relationship between the differential temperature and the intake air temperature rise. Can be used to calculate.
  • the control unit calculates the injector injection amount correction value from the fuel injection amount per unit time of the internal combustion engine, and injects the intake air temperature increase amount. Since the correction is performed by the amount correction value, the intake air temperature can be calculated with high accuracy by calculating the intake air temperature in consideration of the decrease in the intake air temperature due to the traveling wind according to the vehicle speed of the vehicle.
  • control unit filters the calculated intake air temperature, so that the injector temperature increase characteristic and the intake air temperature increase characteristic coincide with each other. By doing so, the intake air temperature can be accurately calculated.
  • the first temperature sensor disposed in the casing of the internal combustion engine control apparatus and the position separated from the first temperature sensor in the casing.
  • a second temperature sensor provided, and the control unit corrects the detected temperature of one of the first temperature sensor and the second temperature sensor with the detected temperature of the other of the first temperature sensor and the second temperature sensor. Therefore, the atmospheric temperature can be calculated with high accuracy.
  • FIG. 1A is a schematic diagram illustrating a configuration of an internal combustion engine control device according to a first embodiment of the present invention. It is a schematic diagram which shows the structure of the injector in FIG. 1A.
  • FIG. 2 is a flowchart showing the flow of the intake air temperature calculation process of the internal combustion engine controller according to the present embodiment.
  • FIG. 3A is a diagram showing an intake air temperature rise amount table referred to by the internal combustion engine control apparatus in the present embodiment.
  • FIG. 3B is a diagram showing, as an example, changes in intake air temperature and the like calculated by the internal combustion engine control apparatus according to the present embodiment.
  • FIG. 4 is a schematic diagram showing the configuration of the internal combustion engine control apparatus according to the second embodiment of the present invention.
  • the internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle.
  • the internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
  • FIG. 1A is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment
  • FIG. 1B is a schematic diagram showing a configuration of an injector in FIG. 1A.
  • the internal combustion engine control device 1 is based on the temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown.
  • the electronic control unit (Electronic Control Unit: ECU) 10 is provided.
  • the ECU 10 operates using the electric power from the battery B mounted on the vehicle, and the waveform shaping circuit 11, the thermistor element 12, the A / D converter 13, the ignition circuit 14, the drive circuit 15, and the resistance value detection.
  • a circuit 16 an EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, a ROM (Read-Only Memory) 18, a RAM (Random Access Memory) 19, a timer 20, and a central processing unit (Central CPU 21) Yes.
  • Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
  • the waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal.
  • the waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
  • the thermistor element 12 is separated from the ignition circuit 14 which is typically a heat generating element in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters).
  • a chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature) that is an ambient temperature outside the casing 10a of the ECU 10.
  • the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13.
  • the thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal.
  • the temperature detected by the thermistor element 12 is equal to the atmospheric temperature (outside air temperature) that is the ambient air temperature around the engine. Further, since the thermistor element 12 is arranged on a circuit board (not shown) like the other components of the ECU 10, it is not necessary to provide a separate wiring and electrically connect the thermistor element 12 via this.
  • the A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5. , And the electrical signal indicating the ambient temperature output from the thermistor element 12 is converted from an analog form to a digital form. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
  • the ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture.
  • the ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
  • the drive circuit 15 includes a switching element such as a transistor that is controlled to be turned on / off according to a control signal from the CPU 21, and the switching element is turned on / off to energize the coil 7a of the injector 7 that supplies fuel to the engine. / Switch the de-energized state.
  • the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred.
  • the equivalent circuit 7b of the coil 7a of the injector 7 is represented by a series circuit including an inductance component L and an electric resistance component R.
  • the coil 7a is a component for electrically driving the solenoid 7c of the injector 7, and the fuel is ejected from the injector 7 when the solenoid 7c operates in the energized state of the coil 7a.
  • the resistance value detection circuit 16 measures an electrical resistance value (resistance value) that is a physical quantity that varies depending on the electrical resistance component of the coil 7a of the injector 7, and sends an electrical signal indicating the measured resistance value to the CPU 21. Output.
  • the EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
  • the ROM 18 is configured by a non-volatile storage device, and includes a control program for an intake air temperature calculation process described later, data related to an intake air temperature increase amount table used in the intake air temperature calculation process, data related to an injector injection amount subtraction value calculation table, and an injector temperature.
  • Various control data such as data relating to the table are stored.
  • the RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
  • the timer 20 performs a time measurement process according to a control signal from the CPU 21.
  • the CPU 21 as a control part controls operation
  • the CPU 21 executes the control program for the intake air temperature calculation process stored in the ROM 18, thereby obtaining the intake air temperature rise amount table and the injector injection amount subtraction value calculation table stored in the ROM 18.
  • the intake air temperature is calculated while referring to it.
  • the CPU 21 controls the operating state of the engine by controlling the ignition circuit 14 and the drive circuit 15 based on the intake air temperature thus calculated and the engine temperature separately detected.
  • the internal combustion engine control device 1 having such a configuration calculates the intake air temperature by executing the following intake air temperature calculation process.
  • the intake air temperature calculation process in the present embodiment will be described more specifically.
  • FIG. 2 is a flowchart showing the flow of the intake air temperature calculation process of the internal combustion engine controller according to the present embodiment.
  • FIG. 3A is a diagram showing an intake air temperature rise amount table referred to by the internal combustion engine control device in the present embodiment, and
  • FIG. 3B shows an example of changes in the intake air temperature and the like calculated by the internal combustion engine control device in the present embodiment.
  • the temperature of the intake air to the internal combustion engine is substantially equal to the outside air temperature at the outside air inlet, but rises by receiving heat from the intake passage.
  • the intake air temperature rise amount can be obtained by calculation using the temperature of the intake passage and the ambient temperature.
  • the temperature of the suction path can be represented by the injector temperature Tinj, it can be regarded as the same as the injector temperature Tinj.
  • the flowchart shown in FIG. 2 starts when the ignition switch of the vehicle is switched from the off state to the on state and the CPU 21 operates, and the intake air temperature calculation process proceeds to step S1.
  • the intake air temperature calculation process is repeatedly executed at predetermined control cycles while the CPU 21 is operating with the ignition switch of the vehicle turned on.
  • step S1 the CPU 21 detects the engine ambient temperature (thermistor temperature Tthr) via the thermistor element 12 and the A / D converter 13. Thereby, the process of step S1 is completed and the intake air temperature calculation process proceeds to the process of step S2.
  • step S2 the CPU 21 detects the resistance value (INJ resistance value) of the injector 7 through the resistance value detection circuit 16.
  • the injector temperature Tinj can be obtained using this characteristic.
  • the CPU 21 obtains the value of the injector temperature Tinj corresponding to the detected resistance value of the injector 7 from the injector temperature table indicating the relationship between the resistance value of the injector 7 and the value of the injector temperature Tinj stored in advance in the ROM 18. calculate. Thereby, the process of step S2 is completed, and the intake air temperature calculation process proceeds to the process of step S3.
  • the CPU 21 searches the intake air temperature rise amount table shown in FIG. 3A stored in advance in the ROM 18, and is detected in the process of step S1 and the injector temperature Tinj calculated in the process of step S2.
  • the value of the intake air temperature increase ⁇ TA corresponding to the difference temperature between the engine ambient temperature Tthr and the engine temperature Tinj-engine ambient temperature Tthr is obtained.
  • the intake air temperature and the differential temperature (Tinj ⁇ Tthr) increase with the increase of the injector temperature Tinj, and the differential temperature (Tinj ⁇ Tthr) and the intake air temperature increase amount ⁇ TA are increased. Since there is a strong correlation, referring to the data of the intake air temperature rise table shown in FIG.
  • step S3 as a correlation characteristic curve that defines the relationship between the differential temperature (Tinj ⁇ Tthr) and the intake air temperature rise ⁇ TA, the differential temperature ( An intake air temperature rise amount ⁇ TA corresponding to (Tinj ⁇ Tthr) can be obtained. Thereby, the process of step S3 is completed, and the intake air temperature calculation process proceeds to the process of step S4.
  • step S4 the CPU 21 searches the injector injection amount subtraction value calculation table that defines the relationship between the fuel injection amount per predetermined unit time and the injector injection amount subtraction value stored in advance in the ROM 18 to obtain a predetermined value.
  • An injector injection amount subtraction value (injection amount correction value) corresponding to the fuel injection amount per unit time is obtained.
  • the fuel injection amount may be obtained by converting the fuel injection time of the injector 7 into the fuel injection amount, or the fuel injection time of the injector 7 may be used as the fuel injection amount as it is.
  • the CPU 21 calculates a corrected intake air temperature increase amount ⁇ TB by subtracting the injector injection amount subtraction value from the intake air temperature increase amount ⁇ TA calculated in step S3.
  • the CPU 21 subtracts the injector injection amount subtraction value, which is the intake air temperature cooled and lowered by the traveling wind, from the intake air temperature increase amount ⁇ TA, thereby correcting the actual intake air temperature from the ambient temperature.
  • step S5 the CPU 21 calculates a value obtained by adding the corrected intake air temperature increase ⁇ TB calculated in the process of step S4 to the engine ambient temperature Tthr detected in the process of step S1 as the intake air temperature TA. Thereby, the process of step S5 is completed, and the intake air temperature calculation process proceeds to the process of step S6.
  • step S6 the CPU 21 calculates the filtered intake air temperature by delaying the change (temporal change) of the intake air temperature by filtering the intake air temperature TA calculated in the process of step S5.
  • Such filtering processing is typically processing for obtaining a load average or moving average of the intake air temperature TA.
  • the CPU 21 controls the ignition circuit 14 based on the intake air temperature estimated by executing the intake air temperature calculation process described above, and ignites the fuel / air mixture in the engine via a spark plug (not shown). . Further, the CPU 21 controls the drive circuit 15 based on the intake air temperature estimated by executing the intake air temperature calculation process described above, and causes the injector 7 to supply fuel to the engine. Note that the intake air temperature used by the CPU 21 here is an increase in the intake air temperature calculated in the process of step S3 to the ambient temperature Tthr of the engine detected in the process of step S1, depending on the accuracy of the required intake air temperature.
  • a value obtained by adding the amount ⁇ TA, a value obtained by adding the corrected intake air temperature increase ⁇ TB calculated in the process of step S4 to the engine ambient temperature Tthr detected in the process of step S1, or these values are processed in the process of step S6. It is possible to use a filtered value as shown in FIG.
  • the intake air temperature sensor can be omitted from the internal combustion engine controller 1, the ignition timing and fuel injection can be controlled by an inexpensive system.
  • FIG. 3B shows an example of a temporal transition of the intake air temperature and the like calculated by the internal combustion engine control device in the present embodiment.
  • FIG. 3B shows the time course of the intake air temperature and the like when the throttle valve opening (throttle opening) is fully open.
  • the intake air temperature increase amount ⁇ TA calculated in the process of step S3 of the intake air temperature calculation process shown in FIG. 2 is the engine ambient temperature (thermistor temperature) detected in the process of step S1 of the intake air temperature calculation process shown in FIG.
  • the transition P1 of the addition value added to (Tthr) deviates from the transition P0 of the actual measured value of the intake air temperature indicated by the solid line in FIG. 3B. Therefore, in the present embodiment, in the process of step S4 of the intake air temperature calculation process shown in FIG.
  • the corrected intake air temperature increase amount ⁇ TB is calculated by subtracting the injector injection amount subtraction value from the intake air temperature increase amount ⁇ TA, and FIG.
  • the intake air temperature TA is calculated by adding the corrected intake air temperature increase amount ⁇ TB to the engine ambient temperature.
  • the transition P2 of the intake air temperature TA obtained by adding the corrected intake air temperature increase amount ⁇ TB to the engine ambient temperature substantially matches the transition P0 of the actual measured value of the intake air temperature as shown in FIG. 3B. Become.
  • the intake air temperature TA tends to deviate from the actually measured value P0 of the intake air temperature at the rising edge. Therefore, in the present embodiment, in the process of step S6, in order to make the rise characteristic of the injector temperature and the rise characteristic of the intake air coincide with each other, the intake air temperature TA is subjected to filtering processing, and correction for delaying the rise characteristic of the intake air temperature TA is performed. . As a result, the corrected transition P3 of the intake air temperature TA coincides more accurately with the actually measured value P0 of the intake air temperature at the rise, as shown in FIG. 3B.
  • the ambient temperature of the internal combustion engine is acquired, the injector temperature that is the temperature of the injector 7 is acquired from the resistance value of the coil 7a of the injector 7, and the ambient temperature and injector temperature of the internal combustion engine are acquired. Therefore, the intake air temperature of the internal combustion engine is calculated by calculating the intake air temperature rise amount of the internal combustion engine and adding the intake air temperature rise amount to the ambient temperature, so that it can be practically installed in an actual vehicle including a motorcycle. Yes, it has a simple configuration and the storage capacity of the storage device such as the ROM of the control device can be reduced, so that the overall cost can be suppressed and the intake air temperature of the internal combustion engine is calculated with sufficient practical accuracy. be able to.
  • the intake air temperature rise amount is calculated using a correlation characteristic that defines the relationship between the difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount.
  • the intake air temperature rise amount correlated with the difference temperature between the injector temperature and the engine ambient temperature can be calculated using a correlation characteristic that defines the relationship between the differential temperature and the intake air temperature rise amount.
  • the corrected intake air amount is calculated by calculating the injection amount correction value of the injector 7 from the fuel injection amount per unit time of the internal combustion engine and subtracting the injection amount correction value from the intake air temperature rise amount. Since the intake air temperature is calculated by calculating the temperature increase amount and adding the corrected intake air temperature increase amount to the ambient temperature, the intake air temperature is considered in consideration of the decrease in the intake air temperature due to the traveling wind according to the vehicle speed of the vehicle. By calculating the intake air temperature, the intake air temperature can be calculated accurately.
  • the intake air temperature is accurately calculated by matching the rise characteristic of the injector temperature and the rise characteristic of the intake air temperature. be able to.
  • the internal combustion engine control device by calculating the atmospheric temperature of the engine with the temperature sensor in the internal combustion engine control device, it is possible to eliminate the need to separately provide an outside air temperature sensor outside the device, which is simple. The cost can be further reduced by the configuration.
  • the internal combustion engine control apparatus is also typically mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle.
  • the internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
  • the use of the thermistor elements 12a and 12b is the main difference from the configuration of the first embodiment described above.
  • parts having the same configuration as in FIG. 1A are assigned the same reference numerals and explanations thereof are omitted.
  • the thermistor element 12a as the first temperature sensor is a region having the highest temperature in the casing 10a of the ECU 10 (typically, the distance to the heating element that is the ignition circuit 14 is about several millimeters).
  • a chip thermistor arranged in a region close to a heating element which exhibits an electrical resistance value corresponding to the temperature and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13 To do.
  • the thermistor element 12a may be replaced with another temperature sensor such as a thermocouple as long as such an electrical signal can be output.
  • the thermistor element 12b as the second temperature sensor is an ambient temperature (outside temperature) that is the ambient temperature outside the casing 10a of the ECU 10 in the casing 10a of the ECU 10, that is, an ambient temperature that is the ambient temperature around the engine.
  • a chip thermistor disposed in a region close to (outside air temperature) typically a region close to the housing 10a whose distance to the housing 10a is about several millimeters
  • an electric resistance value corresponding to the temperature is output to the A / D converter 13.
  • the thermistor element 12b may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal.
  • the A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5.
  • the electrical signals output from the thermistor elements 12a and 12b are converted from an analog form to a digital form, respectively.
  • the A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
  • the thermistor elements 12 a and 12 b and the ignition circuit 14 are disposed in a housing 10 a that houses each component of the ECU 10.
  • the ignition circuit 14 is typically a driver IC and is a component that generates the largest amount of heat in the housing 10a.
  • the thermistor element 12a is disposed close to the ignition circuit 14 that generates the largest amount of heat in the housing 10a, and the thermistor element 12b is disposed farther from the ignition circuit 14 than the thermistor element 12a. ing.
  • the thermistor element 12a is arranged at a position where it is most directly affected by the heat generation of the ignition circuit 14 and becomes the highest temperature in the housing 10a, and the thermistor element 12b is most affected by the heat generation of the ignition circuit 14. It is disposed at a position that is most unlikely to be affected and is most affected by the atmospheric temperature outside the casing 10a close to the casing 10a (the atmospheric temperature of the ECU 10 and corresponding to the atmospheric temperature of the engine).
  • the internal combustion engine control device 1 having such a configuration calculates the atmospheric temperature of the engine by executing the following atmospheric temperature calculation process.
  • operation movement of the internal combustion engine control apparatus 1 at the time of performing the atmospheric temperature calculation process in this embodiment is demonstrated more concretely.
  • the atmosphere temperature calculation process in the present embodiment is determined based on the first differential temperature ⁇ T12 obtained by subtracting the detection temperature T2 of the thermistor element 12b from the detection temperature T1 of the thermistor element 12a, and the detection temperature T2 of the thermistor element 12b.
  • Table data indicating a correlation characteristic line in which a relationship with the second differential temperature ⁇ T2a obtained by subtracting the temperature Ta is previously stored in the ROM 18 is prepared.
  • the first differential temperature ⁇ T12 basically corresponds to the amount of heat generated by the ignition circuit 14, that is, the amount of heat generated by the ECU 10.
  • the second differential temperature ⁇ T2a is determined based on the detected temperature T2 of the thermistor element 12b in consideration of the fact that the detected temperature T2 of the thermistor element 12b may differ from the engine ambient temperature Ta due to the influence of the amount of heat generated by the ignition circuit 14, etc. This corresponds to the temperature difference between T2 and the engine ambient temperature Ta.
  • the first differential temperature ⁇ T12 is calculated, and the second differential temperature ⁇ T2a corresponding to the value of the first differential temperature ⁇ T12 is obtained by searching the table data indicating the correlation characteristic line. Find the value of. Then, a value obtained by subtracting the second differential temperature ⁇ T2a from the detected temperature T2 of the thermistor element 12b is calculated as the engine ambient temperature Ta. As a result, the ambient temperature Ta is calculated by correcting the detected temperature of the thermistor element 12b with the detected temperature of the thermistor element 12a. Ta can be calculated.
  • the detected temperature of the thermistor element 12b is corrected with the detected temperature of the thermistor element 12a.
  • the detection of the thermistor element 12a is performed by resetting the table data and searching the reset table data.
  • the temperature may be corrected by the detected temperature of the thermistor element 12b.
  • the present invention is not limited to the above-described embodiments in terms of the type, shape, arrangement, number, etc. of the members, and departs from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.
  • the ambient temperature is calculated using the thermistor elements 12, 12 a and 12 b in the ECU 10 correspondingly.
  • the ambient temperature is calculated using a resistance value of a relay or the like in the ECU 10.
  • a separate outside temperature sensor may be provided to measure the outside temperature.
  • the intake air temperature increase ⁇ TA is calculated using a table that defines the relationship between the difference between the injector temperature and the engine ambient temperature and the intake air temperature increase ⁇ TA.
  • the intake air temperature rise amount ⁇ TA may be calculated using a predetermined arithmetic expression that defines the relationship between the difference temperature between the engine temperature and the engine ambient temperature and the intake air temperature rise amount ⁇ TA.
  • the intake air temperature is calculated by adding the corrected intake air temperature increase amount ⁇ TB to the ambient temperature.
  • the injector temperature and the engine temperature are calculated.
  • the intake air temperature may be calculated by adding the intake air temperature rise amount ⁇ TA corresponding to the temperature difference from the ambient temperature.
  • the intake air temperature TA is filtered.
  • the air temperature TA is filtered. It does not have to be.
  • the present invention can be practically mounted on an actual vehicle including a two-wheeled vehicle, has a simple configuration, and can reduce the storage capacity of a storage device such as a ROM of a control device.
  • the internal combustion engine control apparatus capable of calculating the intake air temperature of the internal combustion engine with sufficient practical accuracy can be provided, and the internal combustion engine control apparatus for a motorcycle or the like because of its universal character It is expected to be widely applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is an internal combustion engine control device (1) that controls the operating state of an internal combustion engine mounted in an internal combustion engine mounting body, the control device (1): acquiring the ambient temperature of the internal combustion engine; acquiring an injector temperature, which is the temperature of an injector (7) of the internal combustion engine, from a resistance value of a coil (7a) of the injector (7); calculating an intake temperature increase amount of the internal combustion engine from the ambient temperature and the injector temperature; and calculating an intake temperature of the internal combustion engine by adding the intake temperature increase amount to the ambient temperature.

Description

内燃機関制御装置Internal combustion engine control device
 本発明は、発電機等の汎用機や自動二輪車等の車両に適用される内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
 近年、発電機等の汎用機や小型自動二輪車等の車両においては、キャブレタシステムでは今後より厳しくなる排気ガス規制に対応することが困難になるため、排気ガスの低減を目的として燃料噴射システムの採用が推進されている。しかしながら、発電機等の汎用機や小型自動二輪車等の車両の販売価格は大型自動二輪車や四輪自動車等の車両の販売価格と比較して安価であるために、このような販売価格を考えた場合、キャブレタシステムと比較して高コストな燃料噴射システムをそのまま発電機等の汎用機や小型自動二輪車等の車両に採用することは困難である。このため、発電機等の汎用機や小型自動二輪車等の車両においては、燃料噴射システムに関する部品、特にセンサ類については、コストの低減が求められている。 In recent years, in general-purpose machines such as generators and vehicles such as small motorcycles, it has become difficult to meet exhaust gas regulations that will become stricter in the future with carburetor systems, so a fuel injection system has been adopted to reduce exhaust gas. Is promoted. However, since the sales price of general-purpose machines such as generators and vehicles such as small motorcycles is lower than the sales prices of vehicles such as large motorcycles and four-wheeled vehicles, such a sales price was considered. In this case, it is difficult to adopt a fuel injection system that is more expensive than a carburetor system as it is for a general-purpose machine such as a generator or a vehicle such as a small motorcycle. For this reason, in general-purpose machines such as generators and vehicles such as small motorcycles, cost reduction is required for parts related to the fuel injection system, particularly sensors.
 ここで、例えば燃料噴射システムにおける吸気温度センサは、内燃機関に吸気される空気密度の演算に用いられることが一般的である。具体的には、燃料噴射システムは、吸気温度センサの出力に基づいて内燃機関の吸気温度を算出し、算出した内燃機関の吸気温度に基づいて内燃機関に吸気される空気密度を検出して、点火時期及び燃料噴射の制御を行っている。このため、燃料噴射システムを採用する場合には、内燃機関に吸気温度センサを装着する必要がある。更に、内燃機関に吸気温度センサを設置する際には、配線用のワイヤやカプラを設置する必要がある上に、吸気温度センサを設置する内燃機関の部位を加工する必要がある。この結果、販売価格における燃料噴射システムのコストの割合はキャブレタシステムのものと比較して高くなる。このため、特に発電機等の汎用機や小型自動二輪車等の車両において燃料噴射システムを制御する内燃機関制御装置においては、コストダウンを目的として燃料噴射システムから吸気温度センサを省略することが求められている。 Here, for example, an intake air temperature sensor in a fuel injection system is generally used for calculating the air density taken into the internal combustion engine. Specifically, the fuel injection system calculates the intake air temperature of the internal combustion engine based on the output of the intake air temperature sensor, detects the air density taken into the internal combustion engine based on the calculated intake air temperature of the internal combustion engine, Ignition timing and fuel injection are controlled. For this reason, when adopting a fuel injection system, it is necessary to attach an intake air temperature sensor to the internal combustion engine. Furthermore, when installing the intake air temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the intake air temperature sensor is installed. As a result, the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system. For this reason, in an internal combustion engine control apparatus that controls a fuel injection system in a vehicle such as a general-purpose machine such as a generator or a small motorcycle, it is required to omit an intake air temperature sensor from the fuel injection system for the purpose of cost reduction. ing.
 かかる状況下で、特許文献1は、燃料噴射量を設定するために内燃機関1の吸気温度を推定する内燃機関の吸気温度推定装置に関し、外気温度と、エンジンルームから機関の吸気系への熱伝達量と、エンジンルームから機関の吸気系への熱伝導量と、を推定し、これらの推定結果に基づいて、内燃機関1の吸気温度を推定する構成を開示する。かかる外気温度は、冷却用ファンのON又はOFFの時間と、機関の発熱量と、車速と、を用いて推定される。また、エンジンルームから機関の吸気系への熱伝達量は、機関の発熱量と、エンジンルームの放熱量と、を用いて推定される。更に、エンジンルームから機関の吸気系への熱伝導量は、機関の発熱量と、機関の温度と、を用いて推定される。 Under such circumstances, Patent Document 1 relates to an intake air temperature estimation device for an internal combustion engine that estimates the intake air temperature of the internal combustion engine 1 in order to set the fuel injection amount, and relates to the outside air temperature and the heat from the engine room to the intake system of the engine. A configuration is disclosed in which the amount of transmission and the amount of heat conduction from the engine room to the intake system of the engine are estimated, and the intake temperature of the internal combustion engine 1 is estimated based on these estimation results. The outside air temperature is estimated using the cooling fan ON / OFF time, the engine heat generation amount, and the vehicle speed. The amount of heat transfer from the engine room to the engine intake system is estimated using the amount of heat generated by the engine and the amount of heat released from the engine room. Furthermore, the amount of heat conduction from the engine room to the engine intake system is estimated using the amount of heat generated by the engine and the temperature of the engine.
特開平9-189256号公報JP-A-9-189256
 しかしながら、本発明者の検討によれば、特許文献1の構成により内燃機関の吸気温度を推定する場合には、その推定手法が複雑であるために実際に車両に搭載することが困難であると共に、制御装置のROM等の記憶装置の記憶容量が増加するためにコストの増大を招く。また、特許文献1の構成のようにエンジンルームから機関の吸気系への熱伝達量、及びエンジンルームから機関の吸気系への熱伝導量を推定する場合に、エンジンルームという概念のない二輪車には適用し難い。また、特許文献1の構成のように車速又は冷却用ファンのON又はOFFの時間を用いて外気温度を推定する場合に、安価な二輪車等には車速センサ及び冷却ファンが搭載されていないものも存在しているため適用し難い。更に、特許文献1の構成で吸気温度を推定するために用いられる外気温度と、エンジンルームから機関の吸気系への熱伝達量と、エンジンルームから機関の吸気系への熱伝導量と、は推定値であるため、吸気温度を精度よく推定できない可能性が考えられる。 However, according to the study of the present inventor, when estimating the intake air temperature of the internal combustion engine with the configuration of Patent Document 1, it is difficult to actually mount the intake air on the vehicle because the estimation method is complicated. The storage capacity of the storage device such as the ROM of the control device increases, resulting in an increase in cost. In addition, when estimating the amount of heat transfer from the engine room to the engine intake system and the amount of heat conduction from the engine room to the engine intake system as in the configuration of Patent Document 1, a motorcycle without the concept of an engine room is used. Is difficult to apply. In addition, when estimating the outside air temperature using the vehicle speed or the ON / OFF time of the cooling fan as in the configuration of Patent Document 1, some inexpensive motorcycles or the like are not equipped with a vehicle speed sensor and a cooling fan. It is difficult to apply because it exists. Furthermore, the outside air temperature used for estimating the intake air temperature in the configuration of Patent Document 1, the heat transfer amount from the engine room to the engine intake system, and the heat transfer amount from the engine room to the engine intake system are: Since it is an estimated value, there is a possibility that the intake air temperature cannot be estimated accurately.
 本発明は、以上の検討を経てなされたものであり、二輪車を含む実際の車両に実用的に搭載可能であり、簡素な構成であると共に制御装置のROM等の記憶装置の記憶容量を削減可能であるために全体のコストを抑制することができ、実用上充分な精度で内燃機関の吸気温度を算出可能な内燃機関制御装置を提供することを目的とする。 The present invention has been made through the above-described studies, and can be practically mounted on an actual vehicle including a two-wheeled vehicle, and has a simple configuration and can reduce the storage capacity of a storage device such as a ROM of a control device. Therefore, it is an object of the present invention to provide an internal combustion engine control apparatus that can reduce the overall cost and can calculate the intake air temperature of the internal combustion engine with sufficient accuracy for practical use.
 以上の目的を達成するべく、本発明は、第1の局面において、内燃機関搭載体に搭載された内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、前記制御部は、前記内燃機関の雰囲気温度を取得し、前記内燃機関のインジェクタの抵抗値から前記インジェクタの温度であるインジェクタ温度を取得し、前記雰囲気温度及び前記インジェクタ温度から前記内燃機関の吸気温度上昇量を算出し、前記雰囲気温度に前記吸気温度上昇量を加算することで前記内燃機関の吸気温度を算出する内燃機関制御装置である。 In order to achieve the above object, according to the first aspect of the present invention, in the internal combustion engine control device including a control unit that controls an operating state of the internal combustion engine mounted on the internal combustion engine mounting body, the control unit includes: An ambient temperature of the internal combustion engine is acquired, an injector temperature that is the temperature of the injector is acquired from a resistance value of the injector of the internal combustion engine, and an intake air temperature increase amount of the internal combustion engine is calculated from the ambient temperature and the injector temperature The internal combustion engine control device calculates the intake air temperature of the internal combustion engine by adding the intake air temperature rise amount to the ambient temperature.
 本発明は、第1の局面に加えて、前記制御部は、前記インジェクタ温度と前記雰囲気温度との差分温度と、前記吸気温度上昇量と、の関係を規定した相関特性を用いて前記吸気温度上昇量を算出することを第2の局面とする。 According to the present invention, in addition to the first aspect, the control unit uses the correlation characteristic that defines a relationship between a difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount, to use the intake air temperature. The second aspect is to calculate the amount of increase.
 本発明は、第1又は第2の局面に加えて、前記制御部は、前記内燃機関の単位時間あたりの燃料噴射時間から前記インジェクタの噴射量補正値を算出し、前記吸気温度上昇量を前記噴射量補正値で補正することを第3の局面とする。 In the present invention, in addition to the first or second aspect, the control unit calculates an injection amount correction value of the injector from a fuel injection time per unit time of the internal combustion engine, and calculates the intake air temperature increase amount Correction with the injection amount correction value is a third aspect.
 本発明は、第3の局面に加えて、前記制御部は、算出した前記吸気温度をフィルタリング処理することを第4の局面とする。 In addition to the third aspect, the present invention has a fourth aspect in which the control unit performs a filtering process on the calculated intake air temperature.
 本発明は、第1から第4の局面のいずれかに加えて、前記内燃機関制御装置の筐体内に配設された第1温度センサと、前記筐体内において前記第1温度センサから離間した位置に配設された第2温度センサと、を更に備え、前記制御部は、前記第1温度センサ及び前記第2温度センサの一方の検出温度を、前記第1温度センサ及び前記第2温度センサの他方の検出温度で補正することにより前記雰囲気温度を算出することを第5の局面とする。 In addition to any of the first to fourth aspects, the present invention provides a first temperature sensor disposed in a casing of the internal combustion engine control device, and a position spaced from the first temperature sensor in the casing. A second temperature sensor disposed on the first temperature sensor, wherein the control unit determines a detected temperature of one of the first temperature sensor and the second temperature sensor of the first temperature sensor and the second temperature sensor. It is a fifth aspect to calculate the ambient temperature by correcting with the other detected temperature.
 本発明の第1の局面にかかる内燃機関制御装置においては、内燃機関搭載体に搭載された内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、制御部は、内燃機関の雰囲気温度を取得し、内燃機関のインジェクタの抵抗値からインジェクタの温度であるインジェクタ温度を取得し、雰囲気温度及びインジェクタ温度から内燃機関の吸気温度上昇量を算出し、雰囲気温度に吸気温度上昇量を加算することで内燃機関の吸気温度を算出するものであるため、二輪車を含む実際の車両に実用的に搭載可能であり、簡素な構成であると共に制御装置のROM等の記憶装置の記憶容量を削減可能であるために全体のコストを抑制することができ、実用上充分な精度で内燃機関の吸気温度を算出することができる。 In the internal combustion engine control apparatus according to the first aspect of the present invention, the internal combustion engine control apparatus includes a control unit that controls the operating state of the internal combustion engine mounted on the internal combustion engine mounting body. Obtain the ambient temperature, obtain the injector temperature, which is the injector temperature, from the resistance value of the injector of the internal combustion engine, calculate the intake air temperature rise amount of the internal combustion engine from the ambient temperature and injector temperature, and add the intake air temperature rise amount to the ambient temperature Since the intake air temperature of the internal combustion engine is calculated by adding, it can be practically installed in an actual vehicle including a two-wheeled vehicle, and has a simple configuration and the storage capacity of a storage device such as a ROM of a control device. Since it can be reduced, the overall cost can be suppressed, and the intake air temperature of the internal combustion engine can be calculated with practically sufficient accuracy.
 また、本発明の第2の局面にかかる内燃機関制御装置によれば、制御部が、インジェクタ温度と雰囲気温度との差分温度と、吸気温度上昇量と、の関係を規定した相関特性を用いて吸気温度上昇量を算出するものであるため、インジェクタ温度とエンジンの雰囲気温度との差分温度に対して相関がある吸気温度上昇量を、差分温度と吸気温度上昇量との関係を規定した相関特性を用いて算出することができる。 Further, according to the internal combustion engine control apparatus according to the second aspect of the present invention, the control unit uses the correlation characteristic that defines the relationship between the difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount. Since the intake air temperature rise is calculated, the intake air temperature rise that has a correlation with the difference between the injector temperature and the engine ambient temperature is correlated with the correlation characteristic that defines the relationship between the differential temperature and the intake air temperature rise. Can be used to calculate.
 また、本発明の第3の局面にかかる内燃機関制御装置によれば、制御部が、内燃機関の単位時間あたりの燃料噴射量からインジェクタの噴射量補正値を算出し、吸気温度上昇量を噴射量補正値で補正するものであるため、車両の車速に応じた走行風による吸気温度の低下を考慮して吸気温度を算出することにより、吸気温度を精度よく算出することができる。 Further, according to the internal combustion engine control apparatus of the third aspect of the present invention, the control unit calculates the injector injection amount correction value from the fuel injection amount per unit time of the internal combustion engine, and injects the intake air temperature increase amount. Since the correction is performed by the amount correction value, the intake air temperature can be calculated with high accuracy by calculating the intake air temperature in consideration of the decrease in the intake air temperature due to the traveling wind according to the vehicle speed of the vehicle.
 また、本発明の第4の局面にかかる内燃機関制御装置によれば、制御部が、算出した吸気温度をフィルタリング処理するものであるため、インジェクタ温度の上昇特性と吸気温度の上昇特性とを一致させることにより、吸気温度を精度よく算出することができる。 Further, according to the internal combustion engine control apparatus according to the fourth aspect of the present invention, the control unit filters the calculated intake air temperature, so that the injector temperature increase characteristic and the intake air temperature increase characteristic coincide with each other. By doing so, the intake air temperature can be accurately calculated.
 また、本発明の第5の局面にかかる内燃機関制御装置によれば、内燃機関制御装置の筐体内に配設された第1温度センサと、筐体内において第1温度センサから離間した位置に配設された第2温度センサと、を更に備え、制御部が、第1温度センサ及び第2温度センサの一方の検出温度を、第1温度センサ及び第2温度センサの他方の検出温度で補正することにより雰囲気温度を算出するものであるため、雰囲気温度を精度よく算出することができる。 In addition, according to the internal combustion engine control apparatus of the fifth aspect of the present invention, the first temperature sensor disposed in the casing of the internal combustion engine control apparatus and the position separated from the first temperature sensor in the casing. A second temperature sensor provided, and the control unit corrects the detected temperature of one of the first temperature sensor and the second temperature sensor with the detected temperature of the other of the first temperature sensor and the second temperature sensor. Therefore, the atmospheric temperature can be calculated with high accuracy.
図1Aは、本発明の第1の実施形態における内燃機関制御装置の構成を示す模式図である。FIG. 1A is a schematic diagram illustrating a configuration of an internal combustion engine control device according to a first embodiment of the present invention. 図1A中のインジェクタの構成を示す模式図である。It is a schematic diagram which shows the structure of the injector in FIG. 1A. 図2は、本実施形態における内燃機関制御装置の吸気温度算出処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of the intake air temperature calculation process of the internal combustion engine controller according to the present embodiment. 図3Aは、本実施形態における内燃機関制御装置が参照する吸気温度上昇量テーブルを示す図である。FIG. 3A is a diagram showing an intake air temperature rise amount table referred to by the internal combustion engine control apparatus in the present embodiment. 図3Bは、本実施形態における内燃機関制御装置が算出する吸気温度等の推移を一例として示す図である。FIG. 3B is a diagram showing, as an example, changes in intake air temperature and the like calculated by the internal combustion engine control apparatus according to the present embodiment. 図4は、本発明の第2の実施形態における内燃機関制御装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of the internal combustion engine control apparatus according to the second embodiment of the present invention.
 以下、図面を適宜参照して、本発明の各実施形態における内燃機関制御装置につき、詳細に説明する。 Hereinafter, an internal combustion engine control apparatus according to each embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 (第1の実施形態)
 <内燃機関制御装置の構成>
 まず、図1A及び図1Bを参照して、本発明の第1の実施形態における内燃機関制御装置の構成について説明する。本実施形態における内燃機関制御装置は、典型的には、発電機等の汎用機や自動二輪車等の車両といった内燃機関搭載体に好適に搭載されるものであるが、以下、説明の便宜上、かかる内燃機関制御装置は、自動二輪車等の車両に搭載されるものとして説明する。
(First embodiment)
<Configuration of internal combustion engine control device>
First, with reference to FIG. 1A and FIG. 1B, the structure of the internal combustion engine control apparatus in the 1st Embodiment of this invention is demonstrated. The internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle. The internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
 図1Aは、本実施形態における内燃機関制御装置の構成を示す模式図であり、図1Bは、図1A中のインジェクタの構成を示す模式図である。 FIG. 1A is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment, and FIG. 1B is a schematic diagram showing a configuration of an injector in FIG. 1A.
 図1A及び図1Bに示すように、本実施形態における内燃機関制御装置1は、いずれも図示を省略する車両に搭載されたガソリンエンジン等の内燃機関であるエンジンの機能部品の温度に基づいてエンジンの運転状態を制御するものであり、電子制御ユニット(Electronic Control Unit:ECU)10を備えている。 As shown in FIGS. 1A and 1B, the internal combustion engine control device 1 according to the present embodiment is based on the temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown. The electronic control unit (Electronic Control Unit: ECU) 10 is provided.
 ECU10は、車両に搭載されたバッテリBからの電力を利用して動作するものであり、波形整形回路11、サーミスタ素子12、A/D変換器13、点火回路14、駆動回路
15、抵抗値検出回路16、EEPROM(Electrically Erasable Programmable Read-Only Memory)17、ROM(Read-Only Memory)18、RAM(Random Access Memory)19、タイマ20、及び中央処理ユニット(Central Processing Unit:CPU)21を備えている。かかるECU10の各構成要素は、ECU10の筐体10a内に収容される。また、典型的には、ECU10及びエンジンは、それらの周囲が外気に触れており、かつ、ECU10は、エンジンの放射熱及びエンジンからの伝熱の影響を受けないようにそれから離間して配置されるものである。
The ECU 10 operates using the electric power from the battery B mounted on the vehicle, and the waveform shaping circuit 11, the thermistor element 12, the A / D converter 13, the ignition circuit 14, the drive circuit 15, and the resistance value detection. A circuit 16, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, a ROM (Read-Only Memory) 18, a RAM (Random Access Memory) 19, a timer 20, and a central processing unit (Central CPU 21) Yes. Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
 波形整形回路11は、クランク角センサ2から出力されたエンジンのクランクシャフト3の回転角に対応するクランクパルス信号を整形してデジタルパルス信号を生成する。波形整形回路11は、このように生成したデジタルパルス信号をCPU21に出力する。 The waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal. The waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
 サーミスタ素子12は、ECU10の筐体10a内において、典型的には発熱素子である点火回路14から離間してECU10の雰囲気側の位置(例えば、筐体10aへの距離が数ミリメータ程度である筐体10aに近接した位置)に配置されたチップサーミスタであり、ECU10の筐体10a外の周囲の大気温度である雰囲気温度(外気温度)を検出する。具体的には、サーミスタ素子12は、その雰囲気温度に対応した電気抵抗値を呈して、その電気抵抗値に応じた電圧を示す電気信号をA/D変換器13に出力する。 The thermistor element 12 is separated from the ignition circuit 14 which is typically a heat generating element in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters). A chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature) that is an ambient temperature outside the casing 10a of the ECU 10. Specifically, the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13.
 なお、かかる電気信号を出力可能なものであれば、サーミスタ素子12を熱電対等の他の温度センサに代替してもよい。また、サーミスタ素子12が検出する温度は、エンジンの周囲の大気温度である雰囲気温度(外気温度)に等しいものである。更に、サーミスタ素子12はECU10の他の構成要素と同様に図示しない回路基板に配置されるため、別途配線を設けて、これを介してサーミスタ素子12を電気的に接続する必要がない。 Note that the thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal. The temperature detected by the thermistor element 12 is equal to the atmospheric temperature (outside air temperature) that is the ambient air temperature around the engine. Further, since the thermistor element 12 is arranged on a circuit board (not shown) like the other components of the ECU 10, it is not necessary to provide a separate wiring and electrically connect the thermistor element 12 via this.
 A/D変換器13は、スロットル開度センサ4から出力されたエンジンのスロットルバルブの開度を示す電気信号、酸素センサ5から出力されたエンジンに吸気される大気中の酸素濃度を示す電気信号、及びサーミスタ素子12から出力された雰囲気温度を示す電気信号を、アナログ形態からデジタル形態に各々変換する。A/D変換器13は、このようにデジタル形態に変換したこれらの電気信号をCPU21に出力する。 The A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5. , And the electrical signal indicating the ambient temperature output from the thermistor element 12 is converted from an analog form to a digital form. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
 点火回路14は、CPU21からの制御信号に従ってオン/オフ制御されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、図示を省略する点火プラグを介してエンジン内の燃料及び空気の混合気に点火するための2次電圧を発生する点火コイル6の動作を制御する。また、点火回路14は、典型的には半導体素子であるドライバIC(Integrated Circuit)であり、筐体10a内で発熱量が最も大きい構成要素である。 The ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture. The ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
 駆動回路15は、CPU21からの制御信号に従ってオン/オフ制御されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、エンジンに燃料を供給するインジェクタ7のコイル7aの通電/非通電状態を切り換える。ここで、インジェクタ7は、エンジンの図示を省略する吸気管やシリンダヘッドに装着され、エンジンから生じる熱が伝熱される。また、特に図1Bに示すように、インジェクタ7のコイル7aの等価回路7bは、インダクタンス成分Lと電気抵抗成分Rとから成る直列回路で表される。かかるコイル7aは、インジェクタ7のソレノイド7cを電気的に駆動するための構成部品であり、コイル7aの通電状態においてソレノイド7cが動作することにより、インジェクタ7から燃料が噴出されるものである。 The drive circuit 15 includes a switching element such as a transistor that is controlled to be turned on / off according to a control signal from the CPU 21, and the switching element is turned on / off to energize the coil 7a of the injector 7 that supplies fuel to the engine. / Switch the de-energized state. Here, the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred. Further, as shown in FIG. 1B in particular, the equivalent circuit 7b of the coil 7a of the injector 7 is represented by a series circuit including an inductance component L and an electric resistance component R. The coil 7a is a component for electrically driving the solenoid 7c of the injector 7, and the fuel is ejected from the injector 7 when the solenoid 7c operates in the energized state of the coil 7a.
 抵抗値検出回路16は、インジェクタ7のコイル7aの電気抵抗成分に依存して変動する物理量である電気抵抗値(抵抗値)を測定し、このように測定した抵抗値を示す電気信号をCPU21に出力する。 The resistance value detection circuit 16 measures an electrical resistance value (resistance value) that is a physical quantity that varies depending on the electrical resistance component of the coil 7a of the injector 7, and sends an electrical signal indicating the measured resistance value to the CPU 21. Output.
 EEPROM17は、燃料噴射量学習値やスロットル基準位置学習値といった各種学習値に関するデータ等を記憶する。なお、このような各種学習値に関するデータ等を記憶可能なものであれば、EEPROM17をデータフラッシュ等の他の記憶媒体に代替してもよい。 The EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
 ROM18は、不揮発性の記憶装置によって構成され、後述する吸気温度算出処理用の制御プログラム、吸気温度算出処理で用いられる吸気温度上昇量テーブルに関するデータ、インジェクタ噴射量減算値算出テーブルに関するデータ及びインジェクタ温度テーブルに関するデータ等の各種制御データを格納している。 The ROM 18 is configured by a non-volatile storage device, and includes a control program for an intake air temperature calculation process described later, data related to an intake air temperature increase amount table used in the intake air temperature calculation process, data related to an injector injection amount subtraction value calculation table, and an injector temperature. Various control data such as data relating to the table are stored.
 RAM19は、揮発性の記憶装置によって構成され、CPU21のワーキングエリアとして機能する。 The RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
 タイマ20は、CPU21からの制御信号に従って計時処理を実行する。 The timer 20 performs a time measurement process according to a control signal from the CPU 21.
 制御部としてのCPU21は、ECU10全体の動作を制御する。本実施形態では、CPU21は、ROM18内に格納されている吸気温度算出処理用の制御プログラムを実行することにより、ROM18内に格納されている吸気温度上昇量テーブルやインジェクタ噴射量減算値算出テーブルを参照しながら、吸気温度を算出する。CPU21は、このように算出した吸気温度や別途検出したエンジン温度に基づいて点火回路14及び駆動回路15を制御することによって、エンジンの運転状態を制御する。 CPU21 as a control part controls operation | movement of ECU10 whole. In the present embodiment, the CPU 21 executes the control program for the intake air temperature calculation process stored in the ROM 18, thereby obtaining the intake air temperature rise amount table and the injector injection amount subtraction value calculation table stored in the ROM 18. The intake air temperature is calculated while referring to it. The CPU 21 controls the operating state of the engine by controlling the ignition circuit 14 and the drive circuit 15 based on the intake air temperature thus calculated and the engine temperature separately detected.
 このような構成を有する内燃機関制御装置1は、以下に示す吸気温度算出処理を実行することによって、吸気温度を算出する。以下、本実施形態における吸気温度算出処理について、より具体的に説明する。 The internal combustion engine control device 1 having such a configuration calculates the intake air temperature by executing the following intake air temperature calculation process. Hereinafter, the intake air temperature calculation process in the present embodiment will be described more specifically.
 <吸気温度算出処理>
 図2、図3A及び図3Bを参照して、本実施形態に吸気温度算出処理の具体的な流れについて詳しく説明する。
<Intake air temperature calculation processing>
With reference to FIG. 2, FIG. 3A and FIG. 3B, the specific flow of the intake air temperature calculation processing in this embodiment will be described in detail.
 図2は、本実施形態における内燃機関制御装置の吸気温度算出処理の流れを示すフローチャートである。図3Aは、本実施形態における内燃機関制御装置が参照する吸気温度上昇量テーブルを示す図であり、図3Bは、本実施形態における内燃機関制御装置が算出する吸気温度等の推移を一例として示す図である。 FIG. 2 is a flowchart showing the flow of the intake air temperature calculation process of the internal combustion engine controller according to the present embodiment. FIG. 3A is a diagram showing an intake air temperature rise amount table referred to by the internal combustion engine control device in the present embodiment, and FIG. 3B shows an example of changes in the intake air temperature and the like calculated by the internal combustion engine control device in the present embodiment. FIG.
 ここで、内燃機関への吸入空気の温度は、外気の吸入口において外気温度と略同等であるが、吸入経路から受熱して上昇する。この際の吸気温度上昇量と、吸入経路の温度と外気温度との差と、には相関関係がある。従って、吸気温度上昇量は、吸入経路の温度及び雰囲気温度を用いて演算により求めることができる。また、吸入経路の温度は、インジェクタ温度Tinjで代表することができるため、インジェクタ温度Tinjと同一なものであるとみなすことができる。 Here, the temperature of the intake air to the internal combustion engine is substantially equal to the outside air temperature at the outside air inlet, but rises by receiving heat from the intake passage. There is a correlation between the amount of increase in intake air temperature and the difference between the temperature of the intake path and the outside air temperature. Therefore, the intake air temperature rise amount can be obtained by calculation using the temperature of the intake passage and the ambient temperature. Further, since the temperature of the suction path can be represented by the injector temperature Tinj, it can be regarded as the same as the injector temperature Tinj.
 具体的には、図2に示すフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り換えられてCPU21が稼働したタイミングで開始となり、吸気温度算出処理はステップS1の処理に進む。かかる吸気温度算出処理は、車両のイグニッションスイッチがオン状態でCPU21が稼働している間、所定の制御周期毎に繰り返し実行される。 Specifically, the flowchart shown in FIG. 2 starts when the ignition switch of the vehicle is switched from the off state to the on state and the CPU 21 operates, and the intake air temperature calculation process proceeds to step S1. The intake air temperature calculation process is repeatedly executed at predetermined control cycles while the CPU 21 is operating with the ignition switch of the vehicle turned on.
 ステップS1の処理では、CPU21が、サーミスタ素子12及びA/D変換器13を介してエンジンの雰囲気温度(サーミスタ温度Tthr)を検出する。これにより、ステップS1の処理は完了し、吸気温度算出処理はステップS2の処理に進む。 In step S1, the CPU 21 detects the engine ambient temperature (thermistor temperature Tthr) via the thermistor element 12 and the A / D converter 13. Thereby, the process of step S1 is completed and the intake air temperature calculation process proceeds to the process of step S2.
 ステップS2の処理では、CPU21が、抵抗値検出回路16を介してインジェクタ7の抵抗値(INJ抵抗値)を検出する。ここで、インジェクタ7の抵抗値は温度に比例して上昇する特性を有するため、この特性を利用してインジェクタ温度Tinjを求めることができる。そして、CPU21は、ROM18に予め格納されているインジェクタ7の抵抗値とインジェクタ温度Tinjの値との関係を示すインジェクタ温度テーブルから、検出されたインジェクタ7の抵抗値に対応するインジェクタ温度Tinjの値を算出する。これにより、ステップS2の処理は完了し、吸気温度算出処理はステップS3の処理に進む。 In step S2, the CPU 21 detects the resistance value (INJ resistance value) of the injector 7 through the resistance value detection circuit 16. Here, since the resistance value of the injector 7 has a characteristic of increasing in proportion to the temperature, the injector temperature Tinj can be obtained using this characteristic. Then, the CPU 21 obtains the value of the injector temperature Tinj corresponding to the detected resistance value of the injector 7 from the injector temperature table indicating the relationship between the resistance value of the injector 7 and the value of the injector temperature Tinj stored in advance in the ROM 18. calculate. Thereby, the process of step S2 is completed, and the intake air temperature calculation process proceeds to the process of step S3.
 ステップS3の処理では、CPU21が、ROM18に予め格納されている図3Aに示す吸気温度上昇量テーブルを検索して、ステップS2の処理において算出されたインジェクタ温度Tinjと、ステップS1の処理において検出されたエンジンの雰囲気温度Tthrと、の差分温度(インジェクタ温度Tinj-エンジンの雰囲気温度Tthr)に対応する吸気温度上昇量ΔTAの値を求める。ここで、本発明者の検討によれば、吸気温度及び差分温度(Tinj-Tthr)は、インジェクタ温度Tinjの上昇に伴って上昇し、差分温度(Tinj-Tthr)と吸気温度上昇量ΔTAとには強い相関関係があるため、差分温度(Tinj-Tthr)と吸気温度上昇量ΔTAとの関係を規定した相関特性曲線として図3Aに示す吸気温度上昇量テーブルのデータを参照して、差分温度(Tinj-Tthr)に対応する吸気温度上昇量ΔTAを求めることができる。これにより、ステップS3の処理は完了し、吸気温度算出処理はステップS4の処理に進む。 In the process of step S3, the CPU 21 searches the intake air temperature rise amount table shown in FIG. 3A stored in advance in the ROM 18, and is detected in the process of step S1 and the injector temperature Tinj calculated in the process of step S2. The value of the intake air temperature increase ΔTA corresponding to the difference temperature between the engine ambient temperature Tthr and the engine temperature Tinj-engine ambient temperature Tthr is obtained. Here, according to the study by the present inventor, the intake air temperature and the differential temperature (Tinj−Tthr) increase with the increase of the injector temperature Tinj, and the differential temperature (Tinj−Tthr) and the intake air temperature increase amount ΔTA are increased. Since there is a strong correlation, referring to the data of the intake air temperature rise table shown in FIG. 3A as a correlation characteristic curve that defines the relationship between the differential temperature (Tinj−Tthr) and the intake air temperature rise ΔTA, the differential temperature ( An intake air temperature rise amount ΔTA corresponding to (Tinj−Tthr) can be obtained. Thereby, the process of step S3 is completed, and the intake air temperature calculation process proceeds to the process of step S4.
 ステップS4の処理では、CPU21が、ROM18に予め格納されている所定の単位時間あたりの燃料噴射量とインジェクタ噴射量減算値との関係を規定したインジェクタ噴射量減算値算出テーブルを検索して、所定の単位時間あたりの燃料噴射量に対応するインジェクタ噴射量減算値(噴射量補正値)を求める。ここで、かかる燃料噴射量としては、インジェクタ7の燃料噴射時間を燃料噴射量に換算して求めるか又はインジェクタ7の燃料噴射時間をそのまま燃料噴射量として用いればよい。そして、CPU21は、ステップS3の処理において算出された吸気温度上昇量ΔTAからインジェクタ噴射量減算値を減算して補正済吸気温度上昇量ΔTBを算出する。内燃機関の高負荷時等において燃料噴射量(燃料噴射時間)が増大した際には車両の車速が速くなって車両が受ける走行風が増大するため、吸入空気が通過する吸入経路が冷やされ、実際の吸気温度の雰囲気温度からの上昇量はインジェクタ温度Tinjから算出した吸気温度上昇量ΔTAよりも低くなる。従って、CPU21は、吸気温度上昇量ΔTAから、走行風により冷却されて低下した吸気温度であるインジェクタ噴射量減算値を減算することにより、実際の吸気温度の雰囲気温度からの上昇量に相当する補正済吸気温度上昇量ΔTBを求める。これにより、ステップS4の処理は完了し、吸気温度算出処理はステップS5の処理に進む。 In the process of step S4, the CPU 21 searches the injector injection amount subtraction value calculation table that defines the relationship between the fuel injection amount per predetermined unit time and the injector injection amount subtraction value stored in advance in the ROM 18 to obtain a predetermined value. An injector injection amount subtraction value (injection amount correction value) corresponding to the fuel injection amount per unit time is obtained. Here, the fuel injection amount may be obtained by converting the fuel injection time of the injector 7 into the fuel injection amount, or the fuel injection time of the injector 7 may be used as the fuel injection amount as it is. Then, the CPU 21 calculates a corrected intake air temperature increase amount ΔTB by subtracting the injector injection amount subtraction value from the intake air temperature increase amount ΔTA calculated in step S3. When the fuel injection amount (fuel injection time) increases when the internal combustion engine is at a high load or the like, the vehicle speed increases and the traveling wind received by the vehicle increases, so the intake path through which the intake air passes is cooled, The actual intake air temperature rise from the ambient temperature is lower than the intake air temperature rise ΔTA calculated from the injector temperature Tinj. Therefore, the CPU 21 subtracts the injector injection amount subtraction value, which is the intake air temperature cooled and lowered by the traveling wind, from the intake air temperature increase amount ΔTA, thereby correcting the actual intake air temperature from the ambient temperature. Determine the intake air temperature rise amount ΔTB. Thereby, the process of step S4 is completed, and the intake air temperature calculation process proceeds to the process of step S5.
 ステップS5の処理では、CPU21が、ステップS1の処理において検出されたエンジンの雰囲気温度TthrにステップS4の処理において算出された補正済吸気温度上昇量ΔTBを加算した値を吸気温度TAとして算出する。これにより、ステップS5の処理は完了し、吸気温度算出処理はステップS6の処理に進む。 In the process of step S5, the CPU 21 calculates a value obtained by adding the corrected intake air temperature increase ΔTB calculated in the process of step S4 to the engine ambient temperature Tthr detected in the process of step S1 as the intake air temperature TA. Thereby, the process of step S5 is completed, and the intake air temperature calculation process proceeds to the process of step S6.
 ステップS6の処理では、CPU21が、ステップS5の処理において算出された吸気温度TAをフィルタリング処理して吸気温度の変化(時間的変化)を遅らせることにより、フィルタリング済吸気温度を算出する。かかるフィルタリング処理は、典型的には吸気温度TAの荷重平均又は移動平均を求める処理である。これにより、ステップS6の処理は完了し、今回の一連の吸気温度算出処理は終了する。 In the process of step S6, the CPU 21 calculates the filtered intake air temperature by delaying the change (temporal change) of the intake air temperature by filtering the intake air temperature TA calculated in the process of step S5. Such filtering processing is typically processing for obtaining a load average or moving average of the intake air temperature TA. Thereby, the process in step S6 is completed, and the current series of intake air temperature calculation processes ends.
 そして、CPU21は、上述した吸気温度算出処理を実行することにより推定した吸気温度に基づいて点火回路14を制御して、図示しない点火プラグを介してエンジン内の燃料及び空気の混合気に点火させる。また、CPU21は、上述した吸気温度算出処理を実行することにより推定した吸気温度に基づいて駆動回路15を制御して、インジェクタ7よりエンジンに燃料を供給させる。なお、ここでCPU21が用いる吸気温度としては、必要とされる吸気温度の精度等に応じて、ステップS1の処理において検出されたエンジンの雰囲気温度TthrにステップS3の処理で算出された吸気温度上昇量ΔTAを加算した値、ステップS1の処理において検出されたエンジンの雰囲気温度TthrにステップS4の処理において算出された補正済吸気温度上昇量ΔTBを加算した値、又はこれらの値をステップS6の処理で示すようなフィルタリング処理した値を用いることが可能である。 Then, the CPU 21 controls the ignition circuit 14 based on the intake air temperature estimated by executing the intake air temperature calculation process described above, and ignites the fuel / air mixture in the engine via a spark plug (not shown). . Further, the CPU 21 controls the drive circuit 15 based on the intake air temperature estimated by executing the intake air temperature calculation process described above, and causes the injector 7 to supply fuel to the engine. Note that the intake air temperature used by the CPU 21 here is an increase in the intake air temperature calculated in the process of step S3 to the ambient temperature Tthr of the engine detected in the process of step S1, depending on the accuracy of the required intake air temperature. A value obtained by adding the amount ΔTA, a value obtained by adding the corrected intake air temperature increase ΔTB calculated in the process of step S4 to the engine ambient temperature Tthr detected in the process of step S1, or these values are processed in the process of step S6. It is possible to use a filtered value as shown in FIG.
 このように、内燃機関制御装置1から吸気温度センサを省くことができるため、廉価なシステムで点火時期及び燃料噴射を制御することができる。 Thus, since the intake air temperature sensor can be omitted from the internal combustion engine controller 1, the ignition timing and fuel injection can be controlled by an inexpensive system.
 また、燃料噴射システムを用いて点火時期及び燃料噴射の制御を行うことにより、キャブレタシステムと比較して、排気ガスを低減することができる。 Further, by controlling the ignition timing and fuel injection using the fuel injection system, it is possible to reduce the exhaust gas as compared with the carburetor system.
 更に、開発段階において、キャブレタシステムから燃料噴射システムへ移行する際に、車両に対するスロットルボディ、インジェクタ及び燃料ポンプ等の搭載位置の設計、及び、クランクセンサ、リラクタ及び点火コイルの変更等の開発項目が多岐にわたることとなるが、吸気温度センサの搭載について開発を行う必要がないため、キャブレタシステムから燃料噴射システムへの置換が容易になる。 Furthermore, at the development stage, when shifting from the carburetor system to the fuel injection system, development items such as the design of the mounting positions of the throttle body, injectors, fuel pumps, etc. for the vehicle, and changes to the crank sensor, reluctor, and ignition coil are Although there is a wide variety, it is not necessary to develop the installation of the intake air temperature sensor, so that it is easy to replace the carburetor system with the fuel injection system.
 ここで、図3Bは、本実施形態における内燃機関制御装置が算出する吸気温度等の経時推移の一例を示している。なお、図3Bは、スロットルバルブの開度(スロットル開度)の全開時の吸気温度等の経時推移を示している。 Here, FIG. 3B shows an example of a temporal transition of the intake air temperature and the like calculated by the internal combustion engine control device in the present embodiment. FIG. 3B shows the time course of the intake air temperature and the like when the throttle valve opening (throttle opening) is fully open.
 スロットル開度の全開時においては、エンジンの負荷が大きくなるため、インジェクタ7の自己発熱はエミッション走行モード時等に比べて多くなる。これ故、図2に示す吸気温度算出処理のステップS3の処理において算出された吸気温度上昇量ΔTAを図2に示す吸気温度算出処理のステップS1の処理において検出されたエンジンの雰囲気温度(サーミスタ温度Tthr)に加算した加算値の推移P1は、図3Bにおいて実線で示す吸気温度の実測値の推移P0から乖離してしまう。そこで本実施形態では、図2に示す吸気温度算出処理のステップS4の処理において、吸気温度上昇量ΔTAからインジェクタ噴射量減算値を減算して補正済吸気温度上昇量ΔTBを算出し、図2に示す吸気温度算出処理のステップS5の処理において、エンジンの雰囲気温度に補正済吸気温度上昇量ΔTBを加算して吸気温度TAを算出する。これにより、エンジンの雰囲気温度に補正済吸気温度上昇量ΔTBを加算して求めた吸気温度TAの推移P2は、図3Bに示すように、吸気温度の実測値の推移P0と略一致することになる。 When the throttle opening is fully open, the engine load increases, so the self-heating of the injector 7 increases compared to the emission travel mode. Therefore, the intake air temperature increase amount ΔTA calculated in the process of step S3 of the intake air temperature calculation process shown in FIG. 2 is the engine ambient temperature (thermistor temperature) detected in the process of step S1 of the intake air temperature calculation process shown in FIG. The transition P1 of the addition value added to (Tthr) deviates from the transition P0 of the actual measured value of the intake air temperature indicated by the solid line in FIG. 3B. Therefore, in the present embodiment, in the process of step S4 of the intake air temperature calculation process shown in FIG. 2, the corrected intake air temperature increase amount ΔTB is calculated by subtracting the injector injection amount subtraction value from the intake air temperature increase amount ΔTA, and FIG. In the process of step S5 of the intake air temperature calculation process shown, the intake air temperature TA is calculated by adding the corrected intake air temperature increase amount ΔTB to the engine ambient temperature. As a result, the transition P2 of the intake air temperature TA obtained by adding the corrected intake air temperature increase amount ΔTB to the engine ambient temperature substantially matches the transition P0 of the actual measured value of the intake air temperature as shown in FIG. 3B. Become.
 しかしながら、インジェクタ温度の上昇特性より吸気温度の上昇特性の方が遅いため、吸気温度TAは、立ち上がりにおいて吸気温度の実測値P0から乖離してしまう傾向がある。そこで本実施形態では、更にステップS6の処理において、インジェクタ温度の上昇特性と吸気温度の上昇特性とを一致させるために吸気温度TAをフィルタリング処理して、吸気温度TAの上昇特性を遅らせる補正を行う。これにより、補正された吸気温度TAの推移P3は、図3Bに示すように、立ち上がりにおいて吸気温度の実測値P0により精度よく一致することになる。 However, since the rise characteristic of the intake air temperature is slower than the rise characteristic of the injector temperature, the intake air temperature TA tends to deviate from the actually measured value P0 of the intake air temperature at the rising edge. Therefore, in the present embodiment, in the process of step S6, in order to make the rise characteristic of the injector temperature and the rise characteristic of the intake air coincide with each other, the intake air temperature TA is subjected to filtering processing, and correction for delaying the rise characteristic of the intake air temperature TA is performed. . As a result, the corrected transition P3 of the intake air temperature TA coincides more accurately with the actually measured value P0 of the intake air temperature at the rise, as shown in FIG. 3B.
 以上の本実施形態における内燃機関制御装置では、内燃機関の雰囲気温度を取得し、インジェクタ7のコイル7aの抵抗値からインジェクタ7の温度であるインジェクタ温度を取得し、内燃機関の雰囲気温度及びインジェクタ温度から内燃機関の吸気温度上昇量を算出し、雰囲気温度に吸気温度上昇量を加算することで内燃機関の吸気温度を算出するものであるため、二輪車を含む実際の車両に実用的に搭載可能であり、簡素な構成であると共に制御装置のROM等の記憶装置の記憶容量を削減可能であるために全体のコストを抑制することができ、実用上充分な精度で内燃機関の吸気温度を算出することができる。 In the above-described internal combustion engine control apparatus according to the present embodiment, the ambient temperature of the internal combustion engine is acquired, the injector temperature that is the temperature of the injector 7 is acquired from the resistance value of the coil 7a of the injector 7, and the ambient temperature and injector temperature of the internal combustion engine are acquired. Therefore, the intake air temperature of the internal combustion engine is calculated by calculating the intake air temperature rise amount of the internal combustion engine and adding the intake air temperature rise amount to the ambient temperature, so that it can be practically installed in an actual vehicle including a motorcycle. Yes, it has a simple configuration and the storage capacity of the storage device such as the ROM of the control device can be reduced, so that the overall cost can be suppressed and the intake air temperature of the internal combustion engine is calculated with sufficient practical accuracy. be able to.
 また、本実施形態における内燃機関制御装置では、インジェクタ温度と雰囲気温度との差分温度と、吸気温度上昇量と、の関係を規定した相関特性を用いて吸気温度上昇量を算出するものであるため、インジェクタ温度とエンジンの雰囲気温度との差分温度に対して相関がある吸気温度上昇量を、差分温度と吸気温度上昇量との関係を規定した相関特性を用いて算出することができる。 Further, in the internal combustion engine control apparatus according to the present embodiment, the intake air temperature rise amount is calculated using a correlation characteristic that defines the relationship between the difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount. The intake air temperature rise amount correlated with the difference temperature between the injector temperature and the engine ambient temperature can be calculated using a correlation characteristic that defines the relationship between the differential temperature and the intake air temperature rise amount.
 また、本実施形態における内燃機関制御装置では、内燃機関の単位時間あたりの燃料噴射量からインジェクタ7の噴射量補正値を算出し、吸気温度上昇量から噴射量補正値を減算して補正済吸気温度上昇量を算出し、雰囲気温度に補正済吸気温度上昇量を加算することで吸気温度を算出するものであるため、車両の車速に応じた走行風による吸気温度の低下を考慮して吸気温度を算出することにより、吸気温度を精度よく算出することができる。 In the internal combustion engine control apparatus according to the present embodiment, the corrected intake air amount is calculated by calculating the injection amount correction value of the injector 7 from the fuel injection amount per unit time of the internal combustion engine and subtracting the injection amount correction value from the intake air temperature rise amount. Since the intake air temperature is calculated by calculating the temperature increase amount and adding the corrected intake air temperature increase amount to the ambient temperature, the intake air temperature is considered in consideration of the decrease in the intake air temperature due to the traveling wind according to the vehicle speed of the vehicle. By calculating the intake air temperature, the intake air temperature can be calculated accurately.
 また、本実施形態における内燃機関制御装置では、算出した吸気温度をフィルタリング処理するものであるため、インジェクタ温度の上昇特性と吸気温度の上昇特性とを一致させることにより、吸気温度を精度よく算出することができる。 Further, in the internal combustion engine control apparatus according to the present embodiment, since the calculated intake air temperature is filtered, the intake air temperature is accurately calculated by matching the rise characteristic of the injector temperature and the rise characteristic of the intake air temperature. be able to.
 また、本実施形態における内燃機関制御装置では、エンジンの雰囲気温度を内燃機関制御装置内の温度センサにより算出することにより、装置外に外気温度センサを別途設ける必要をなくすることができ、簡素な構成で更なるコストダウンを図ることができる。 Further, in the internal combustion engine control device according to the present embodiment, by calculating the atmospheric temperature of the engine with the temperature sensor in the internal combustion engine control device, it is possible to eliminate the need to separately provide an outside air temperature sensor outside the device, which is simple. The cost can be further reduced by the configuration.
 (第2の実施形態)
 <内燃機関制御装置の構成>
 次に、図4を参照して、本発明の第2の実施形態における内燃機関制御装置の構成について説明する。本実施形態における内燃機関制御装置も、典型的には、発電機等の汎用機や自動二輪車等の車両といった内燃機関搭載体に好適に搭載されるものであるが、以下、説明の便宜上、かかる内燃機関制御装置は、自動二輪車等の車両に搭載されるものとして説明する。
(Second Embodiment)
<Configuration of internal combustion engine control device>
Next, the configuration of the internal combustion engine control apparatus according to the second embodiment of the present invention will be described with reference to FIG. The internal combustion engine control apparatus according to the present embodiment is also typically mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle. The internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
 ここで、本実施形態の構成では、サーミスタ素子12a及び12bを用いていることが上述した第1の実施形態の構成との主たる相違点である。なお、図4において、図1Aと同一構成である部分については同一符号を付して、その説明を省略する。 Here, in the configuration of this embodiment, the use of the thermistor elements 12a and 12b is the main difference from the configuration of the first embodiment described above. In FIG. 4, parts having the same configuration as in FIG. 1A are assigned the same reference numerals and explanations thereof are omitted.
 図4に示すように、第1温度センサとしてのサーミスタ素子12aは、ECU10の筐体10a内で最も高温となる領域(典型的には点火回路14である発熱素子への距離が数ミリメータ程度である発熱素子に近接した領域)に配置されたチップサーミスタであり、その温度に対応した電気抵抗値を呈して、その電気抵抗値に応じた電圧を示す電気信号をA/D変換器13に出力する。なお、かかる電気信号を出力可能なものであれば、サーミスタ素子12aを熱電対等の他の温度センサに代替してもよい。 As shown in FIG. 4, the thermistor element 12a as the first temperature sensor is a region having the highest temperature in the casing 10a of the ECU 10 (typically, the distance to the heating element that is the ignition circuit 14 is about several millimeters). A chip thermistor arranged in a region close to a heating element), which exhibits an electrical resistance value corresponding to the temperature and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13 To do. The thermistor element 12a may be replaced with another temperature sensor such as a thermocouple as long as such an electrical signal can be output.
 第2温度センサとしてのサーミスタ素子12bは、ECU10の筐体10a内で最もECU10の筐体10a外の周囲の大気温度である雰囲気温度(外気温)、つまりエンジンの周囲の大気温度である雰囲気温度(外気温度)に近くなる領域(典型的には筐体10aへの距離が数ミリメータ程度である筐体10aに近接した領域)に配置されたチップサーミスタであり、その温度に対応した電気抵抗値を呈してその電気抵抗値に応じた電圧を示す電気信号をA/D変換器13に出力する。なお、かかる電気信号を出力可能なものであれば、サーミスタ素子12bを熱電対等の他の温度センサに代替してもよい。 The thermistor element 12b as the second temperature sensor is an ambient temperature (outside temperature) that is the ambient temperature outside the casing 10a of the ECU 10 in the casing 10a of the ECU 10, that is, an ambient temperature that is the ambient temperature around the engine. A chip thermistor disposed in a region close to (outside air temperature) (typically a region close to the housing 10a whose distance to the housing 10a is about several millimeters), and an electric resistance value corresponding to the temperature And an electric signal indicating a voltage corresponding to the electric resistance value is output to the A / D converter 13. The thermistor element 12b may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal.
 A/D変換器13は、スロットル開度センサ4から出力されたエンジンのスロットルバルブの開度を示す電気信号、酸素センサ5から出力されたエンジンに吸気される大気中の酸素濃度を示す電気信号、及びサーミスタ素子12a、12bから出力された電気信号を、アナログ形態からデジタル形態に各々変換する。A/D変換器13は、このようにデジタル形態に変換したこれらの電気信号をCPU21に出力する。 The A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5. The electrical signals output from the thermistor elements 12a and 12b are converted from an analog form to a digital form, respectively. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
 <サーミスタ素子の配置位置>
 次に、サーミスタ素子12a、12bの配置位置について、より具体的に説明する。
<Arrangement position of thermistor element>
Next, the arrangement positions of the thermistor elements 12a and 12b will be described more specifically.
 サーミスタ素子12a、12b及び点火回路14は、ECU10の各構成要素を収容する筐体10a内に配設されている。点火回路14は、典型的にはドライバICであり、筐体10a内で発熱量が最も大きい構成要素である。そして、サーミスタ素子12aは、筐体10a内で発熱量が最も大きい点火回路14に対して近接して配設され、サーミスタ素子12bは、サーミスタ素子12aよりも点火回路14から離隔されて配設されている。即ち、サーミスタ素子12aは、点火回路14の発熱の影響を最も直接的に受けて筐体10a内で最も高温となる位置に配設され、サーミスタ素子12bは、点火回路14の発熱の影響を最も受けにくくかつ筐体10aに近接した筐体10a外の大気温度(ECU10の雰囲気温度であってエンジンの雰囲気温度に相当する)の影響を最も受ける位置に配設されている。 The thermistor elements 12 a and 12 b and the ignition circuit 14 are disposed in a housing 10 a that houses each component of the ECU 10. The ignition circuit 14 is typically a driver IC and is a component that generates the largest amount of heat in the housing 10a. The thermistor element 12a is disposed close to the ignition circuit 14 that generates the largest amount of heat in the housing 10a, and the thermistor element 12b is disposed farther from the ignition circuit 14 than the thermistor element 12a. ing. That is, the thermistor element 12a is arranged at a position where it is most directly affected by the heat generation of the ignition circuit 14 and becomes the highest temperature in the housing 10a, and the thermistor element 12b is most affected by the heat generation of the ignition circuit 14. It is disposed at a position that is most unlikely to be affected and is most affected by the atmospheric temperature outside the casing 10a close to the casing 10a (the atmospheric temperature of the ECU 10 and corresponding to the atmospheric temperature of the engine).
 このような構成を有する内燃機関制御装置1は、以下に示す雰囲気温度算出処理を実行することによって、エンジンの雰囲気温度を算出する。以下、本実施形態における雰囲気温度算出処理を実行する際の内燃機関制御装置1の動作について、より具体的に説明する。 The internal combustion engine control device 1 having such a configuration calculates the atmospheric temperature of the engine by executing the following atmospheric temperature calculation process. Hereinafter, operation | movement of the internal combustion engine control apparatus 1 at the time of performing the atmospheric temperature calculation process in this embodiment is demonstrated more concretely.
 <雰囲気温度算出処理>
 まず、本実施形態における雰囲気温度算出処理では、前提として、サーミスタ素子12aの検出温度T1からサーミスタ素子12bの検出温度T2を減算した第1の差分温度ΔT12と、サーミスタ素子12bの検出温度T2から雰囲気温度Taを減算した第2の差分温度ΔT2aとの関係を予め規定した相関特性線を示すテーブルデータをROM18中に予め記憶させて用意する。
<Atmosphere temperature calculation processing>
First, in the atmosphere temperature calculation process in the present embodiment, as a premise, the atmosphere is determined based on the first differential temperature ΔT12 obtained by subtracting the detection temperature T2 of the thermistor element 12b from the detection temperature T1 of the thermistor element 12a, and the detection temperature T2 of the thermistor element 12b. Table data indicating a correlation characteristic line in which a relationship with the second differential temperature ΔT2a obtained by subtracting the temperature Ta is previously stored in the ROM 18 is prepared.
 第1の差分温度ΔT12は、基本的には点火回路14の発熱量、即ちECU10の発熱量に対応するものである。また、第2の差分温度ΔT2aは、点火回路14の発熱量の影響等でサーミスタ素子12bの検出温度T2がエンジンの雰囲気温度Taから相違する場合があることを考慮し、サーミスタ素子12bの検出温度T2とエンジンの雰囲気温度Taとの差分温度に対応するものである。 The first differential temperature ΔT12 basically corresponds to the amount of heat generated by the ignition circuit 14, that is, the amount of heat generated by the ECU 10. The second differential temperature ΔT2a is determined based on the detected temperature T2 of the thermistor element 12b in consideration of the fact that the detected temperature T2 of the thermistor element 12b may differ from the engine ambient temperature Ta due to the influence of the amount of heat generated by the ignition circuit 14, etc. This corresponds to the temperature difference between T2 and the engine ambient temperature Ta.
 本実施形態における雰囲気温度算出処理では、第1の差分温度ΔT12を算出し、相関特性線を示すテーブルデータを検索することにより、第1の差分温度ΔT12の値に対応する第2の差分温度ΔT2aの値を求める。そして、サーミスタ素子12bの検出温度T2から第2の差分温度ΔT2aを減算した値をエンジンの雰囲気温度Taとして算出する。これにより、サーミスタ素子12bの検出温度を、サーミスタ素子12aの検出温度で補正することにより雰囲気温度Taを算出するので、ECU10の発熱量の影響を排除して実用上の精度のよいエンジンの雰囲気温度Taを算出することができる。 In the atmospheric temperature calculation process in the present embodiment, the first differential temperature ΔT12 is calculated, and the second differential temperature ΔT2a corresponding to the value of the first differential temperature ΔT12 is obtained by searching the table data indicating the correlation characteristic line. Find the value of. Then, a value obtained by subtracting the second differential temperature ΔT2a from the detected temperature T2 of the thermistor element 12b is calculated as the engine ambient temperature Ta. As a result, the ambient temperature Ta is calculated by correcting the detected temperature of the thermistor element 12b with the detected temperature of the thermistor element 12a. Ta can be calculated.
 以上の本実施形態における内燃機関制御装置では、内燃機関制御装置1の筐体内に配設されたサーミスタ素子12a、及び筐体内においてサーミスタ素子12aから離間した位置に配設されたサーミスタ素子12bの一方の検出温度を他方の検出温度で補正することにより雰囲気温度を算出するものであるため、上述した第1の実施形態の効果に加えて、雰囲気温度を精度よく算出することができる。 In the internal combustion engine control device in the present embodiment described above, one of the thermistor element 12a disposed in the housing of the internal combustion engine control device 1 and the thermistor element 12b disposed in the housing at a position separated from the thermistor element 12a. Since the ambient temperature is calculated by correcting the detected temperature with the other detected temperature, the ambient temperature can be accurately calculated in addition to the effects of the first embodiment described above.
 なお、本実施形態において、サーミスタ素子12bの検出温度を、サーミスタ素子12aの検出温度で補正したが、テーブルデータを再設定して、再設定したテーブルデータを検索することにより、サーミスタ素子12aの検出温度を、サーミスタ素子12bの検出温度で補正してもよい。 In this embodiment, the detected temperature of the thermistor element 12b is corrected with the detected temperature of the thermistor element 12a. However, the detection of the thermistor element 12a is performed by resetting the table data and searching the reset table data. The temperature may be corrected by the detected temperature of the thermistor element 12b.
 本発明は、部材の種類、形状、配置、個数等は上述した各実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 The present invention is not limited to the above-described embodiments in terms of the type, shape, arrangement, number, etc. of the members, and departs from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.
 例えば、上述した各実施形態において、ECU10内のサーミスタ素子12、12a及び12bを対応して用いて雰囲気温度を算出したが、ECU10内のリレー等の抵抗値を用いて雰囲気温度を算出してもよいし、別途外気温度センサを設けて外気温度を測定してもよい。 For example, in each of the above-described embodiments, the ambient temperature is calculated using the thermistor elements 12, 12 a and 12 b in the ECU 10 correspondingly. However, even if the ambient temperature is calculated using a resistance value of a relay or the like in the ECU 10. Alternatively, a separate outside temperature sensor may be provided to measure the outside temperature.
 また、上述した各実施形態において、インジェクタ温度とエンジンの雰囲気温度との差分温度と、吸気温度上昇量ΔTAと、の関係を規定したテーブルを用いて吸気温度上昇量ΔTAを算出したが、インジェクタ温度とエンジンの雰囲気温度との差分温度と、吸気温度上昇量ΔTAと、の関係を規定した所定の演算式を用いて吸気温度上昇量ΔTAを算出してもよい。 Further, in each of the above-described embodiments, the intake air temperature increase ΔTA is calculated using a table that defines the relationship between the difference between the injector temperature and the engine ambient temperature and the intake air temperature increase ΔTA. The intake air temperature rise amount ΔTA may be calculated using a predetermined arithmetic expression that defines the relationship between the difference temperature between the engine temperature and the engine ambient temperature and the intake air temperature rise amount ΔTA.
 また、上述した各実施形態において、雰囲気温度に補正済吸気温度上昇量ΔTBを加算して吸気温度を算出したが、吸気温度の要求される算出精度に応じて、雰囲気温度にインジェクタ温度とエンジンの雰囲気温度との差分温度に対応する吸気温度上昇量ΔTAを加算して吸気温度を算出してもよい。 Further, in each of the above-described embodiments, the intake air temperature is calculated by adding the corrected intake air temperature increase amount ΔTB to the ambient temperature. However, according to the required calculation accuracy of the intake air temperature, the injector temperature and the engine temperature are calculated. The intake air temperature may be calculated by adding the intake air temperature rise amount ΔTA corresponding to the temperature difference from the ambient temperature.
 また、上述した各実施形態において、吸気温度TAをフィルタリング処理したが、インジェクタ温度の上昇特性と吸気温度の上昇特性とを一致させる必要がない制御を行う場合には、気温度TAをフィルタリング処理しなくてもよい。 Further, in each of the above-described embodiments, the intake air temperature TA is filtered. However, when control that does not require the injector temperature rise characteristic and the intake air temperature rise characteristic to be matched is performed, the air temperature TA is filtered. It does not have to be.
 以上のように、本発明においては、二輪車を含む実際の車両に実用的に搭載可能であり、簡素な構成であると共に制御装置のROM等の記憶装置の記憶容量を削減可能であるために全体のコストを抑制することができ、実用上充分な精度で内燃機関の吸気温度を算出可能な内燃機関制御装置を提供することができ、その汎用普遍的な性格から自動二輪車等の内燃機関制御装置に広範に適用され得るものと期待される。 As described above, the present invention can be practically mounted on an actual vehicle including a two-wheeled vehicle, has a simple configuration, and can reduce the storage capacity of a storage device such as a ROM of a control device. The internal combustion engine control apparatus capable of calculating the intake air temperature of the internal combustion engine with sufficient practical accuracy can be provided, and the internal combustion engine control apparatus for a motorcycle or the like because of its universal character It is expected to be widely applicable.

Claims (5)

  1.  内燃機関搭載体に搭載された内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、
     前記制御部は、
     前記内燃機関の雰囲気温度を取得し、
     前記内燃機関のインジェクタの抵抗値から前記インジェクタの温度であるインジェクタ温度を取得し、
     前記雰囲気温度及び前記インジェクタ温度から前記内燃機関の吸気温度上昇量を算出し、
     前記雰囲気温度に前記吸気温度上昇量を加算することで前記内燃機関の吸気温度を算出することを特徴とする内燃機関制御装置。
    In the internal combustion engine control device including a control unit that controls the operating state of the internal combustion engine mounted on the internal combustion engine mounting body,
    The controller is
    Obtaining the ambient temperature of the internal combustion engine;
    Obtaining an injector temperature which is the temperature of the injector from the resistance value of the injector of the internal combustion engine;
    An intake air temperature rise amount of the internal combustion engine is calculated from the ambient temperature and the injector temperature,
    An internal combustion engine control apparatus that calculates an intake air temperature of the internal combustion engine by adding the intake air temperature increase amount to the ambient temperature.
  2.  前記制御部は、
     前記インジェクタ温度と前記雰囲気温度との差分温度と、前記吸気温度上昇量と、の関係を規定した相関特性を用いて前記吸気温度上昇量を算出することを特徴とする請求項1記載の内燃機関制御装置。
    The controller is
    2. The internal combustion engine according to claim 1, wherein the intake air temperature rise amount is calculated using a correlation characteristic that defines a relationship between a difference temperature between the injector temperature and the ambient temperature and the intake air temperature rise amount. Control device.
  3.  前記制御部は、
     前記内燃機関の単位時間あたりの燃料噴射量から噴射量補正値を算出し、
     前記吸気温度上昇量を前記噴射量補正値で補正することを特徴とする請求項1又は請求項2に記載の内燃機関制御装置。
    The controller is
    An injection amount correction value is calculated from the fuel injection amount per unit time of the internal combustion engine,
    The internal combustion engine control device according to claim 1 or 2, wherein the intake air temperature rise amount is corrected by the injection amount correction value.
  4.  前記制御部は、
     算出した前記吸気温度をフィルタリング処理することを特徴とする請求項3記載の内燃機関制御装置。
    The controller is
    The internal combustion engine control apparatus according to claim 3, wherein the calculated intake air temperature is subjected to filtering processing.
  5.  前記内燃機関制御装置の筐体内に配設された第1温度センサと、
     前記筐体内において前記第1温度センサから離間した位置に配設された第2温度センサと、
     を更に備え、
     前記制御部は、
     前記第1温度センサ及び前記第2温度センサの一方の検出温度を、前記第1温度センサ及び前記第2温度センサの他方の検出温度で補正することにより前記雰囲気温度を算出することを特徴とする請求項1から請求項4のいずれかに記載の内燃機関制御装置。
    A first temperature sensor disposed in a housing of the internal combustion engine control device;
    A second temperature sensor disposed in a position away from the first temperature sensor in the housing;
    Further comprising
    The controller is
    The ambient temperature is calculated by correcting one detected temperature of the first temperature sensor and the second temperature sensor with the other detected temperature of the first temperature sensor and the second temperature sensor. The internal combustion engine control device according to any one of claims 1 to 4.
PCT/JP2017/027927 2016-09-27 2017-08-01 Internal combustion engine control device WO2018061468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187902A JP6692269B2 (en) 2016-09-27 2016-09-27 Internal combustion engine controller
JP2016-187902 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018061468A1 true WO2018061468A1 (en) 2018-04-05

Family

ID=61762747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027927 WO2018061468A1 (en) 2016-09-27 2017-08-01 Internal combustion engine control device

Country Status (2)

Country Link
JP (1) JP6692269B2 (en)
WO (1) WO2018061468A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357861A (en) * 1989-07-24 1991-03-13 Japan Electron Control Syst Co Ltd Intake air temperature detecting device for internal combustion engine
JPH09189256A (en) * 1996-01-10 1997-07-22 Unisia Jecs Corp Intake temperature estimating device of internal combustion engine and outside temperature estimating device
JP2000073901A (en) * 1998-09-02 2000-03-07 Nippon Soken Inc Fuel supply control device for internal combustion engine
WO2013094540A1 (en) * 2011-12-22 2013-06-27 株式会社ケーヒン Fuel injection control device
JP2013130176A (en) * 2011-12-22 2013-07-04 Keihin Corp Fuel injection control device
JP2016145549A (en) * 2015-02-09 2016-08-12 愛三工業株式会社 Engine control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357861A (en) * 1989-07-24 1991-03-13 Japan Electron Control Syst Co Ltd Intake air temperature detecting device for internal combustion engine
JPH09189256A (en) * 1996-01-10 1997-07-22 Unisia Jecs Corp Intake temperature estimating device of internal combustion engine and outside temperature estimating device
JP2000073901A (en) * 1998-09-02 2000-03-07 Nippon Soken Inc Fuel supply control device for internal combustion engine
WO2013094540A1 (en) * 2011-12-22 2013-06-27 株式会社ケーヒン Fuel injection control device
JP2013130176A (en) * 2011-12-22 2013-07-04 Keihin Corp Fuel injection control device
JP2016145549A (en) * 2015-02-09 2016-08-12 愛三工業株式会社 Engine control device

Also Published As

Publication number Publication date
JP6692269B2 (en) 2020-05-13
JP2018053743A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
CN106150695B (en) Control device for internal combustion engine
JP2013163978A (en) Control device of engine
CN110446843B (en) Control device for internal combustion engine
WO2018061468A1 (en) Internal combustion engine control device
CN107110055B (en) Control device for internal combustion engine
CN108474318B (en) Control device for internal combustion engine
JP6739317B2 (en) Internal combustion engine controller
JP6625889B2 (en) Internal combustion engine control device
CN110582629B (en) Control device for internal combustion engine
JP6378738B2 (en) Internal combustion engine control device
CN108506108B (en) Electronic circuit device and vehicle using the same
JP2018162749A (en) Internal combustion engine control device
WO2018110229A1 (en) Internal combustion engine control device
WO2018180468A1 (en) Internal combustion engine control device
JP2016176346A (en) Internal combustion engine control device
JP2019094829A (en) Deterioration determination device of oxygen concentration detector
JP4980943B2 (en) Fuel flow rate calculation device
JP2018071361A (en) Internal combustion engine control device
JP2016145549A (en) Engine control device
JP6393564B2 (en) Fuel injection control device
JP2019094828A (en) Deterioration determination device of oxygen concentration detector
TH66979A (en) Systems and methods for correcting warm-up fuel injection in air-cooled internal combustion engines.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855426

Country of ref document: EP

Kind code of ref document: A1