WO2013094540A1 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
WO2013094540A1
WO2013094540A1 PCT/JP2012/082541 JP2012082541W WO2013094540A1 WO 2013094540 A1 WO2013094540 A1 WO 2013094540A1 JP 2012082541 W JP2012082541 W JP 2012082541W WO 2013094540 A1 WO2013094540 A1 WO 2013094540A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
temperature
fuel
injection valve
injector
Prior art date
Application number
PCT/JP2012/082541
Other languages
French (fr)
Japanese (ja)
Inventor
智敬 古巣
和哉 横山
崇資 加藤
雅人 小出
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2013094540A1 publication Critical patent/WO2013094540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2065Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control being related to the coil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures

Definitions

  • the present invention relates to a fuel injection control device.
  • This application claims priority based on Japanese Patent Application No. 2011-281368 for which it applied on December 22, 2011, and uses the content here.
  • the electromagnetic coil current is increased at the start of opening of the electromagnetic fuel injection valve (at the start of energization) to increase the suction force acting on the movable core, while the valve opening is completed (the movable core is After detecting lift completion), a technique is disclosed in which both the response of the fuel injection valve is improved and the power consumption is reduced by reducing the current of the electromagnetic coil and maintaining the valve open state.
  • Patent Document 2 when the fuel injection valve is opened and closed by open loop current control to inject fuel and supply it to the engine, when the off time of the pulse signal that opens and closes the fuel injection valve changes, There has been disclosed a technique for changing the suction time and holding time of the movable iron core during the on-time according to the changed off-time so that the current value of the current flowing through the electromagnetic coil is always constant.
  • Patent Document 1 The technique of the above-mentioned Patent Document 1 is intended to accurately detect the completion of the fuel injection valve opening, and a large current flows in the time from the start of energization of the electromagnetic coil to the completion of valve opening. Therefore, if the time from the start of energization of the electromagnetic coil to the completion of valve opening becomes longer due to the temperature drop of the fuel injection valve, a large current will continue to flow through the electromagnetic coil for the longer time, resulting in increased power consumption. .
  • An aspect of the present invention has been made in view of the above-described circumstances, and provides a fuel injection control device capable of reducing the power consumption of the fuel injection valve as compared with the prior art when performing energization control of the fuel injection valve.
  • the purpose is to do.
  • the fuel injection control device employs the following configuration in order to achieve the above object.
  • One aspect of the present invention is a fuel injection control device that performs energization control of a fuel injection valve that injects fuel into an engine, the temperature estimation unit estimating a temperature of the fuel injection valve; and the temperature estimation unit Based on the temperature of the fuel injection valve estimated in Step 1, the initial energization time to be energized with a duty ratio through which the maximum drive current flows from the start of energization of the fuel injection valve to the completion of opening of the fuel injection valve.
  • the temperature estimating means includes an integrated value of energization time of the fuel injection valve, the temperature of the fuel, the ambient temperature around the fuel injection valve, the engine speed, and the The temperature of the fuel injection valve may be estimated based on at least one of the fuel flow rates.
  • the temperature estimation means may calculate the flow rate of the fuel based on the energization time of the fuel injection valve and the rotational speed of the engine.
  • the setting means supplies the current to the fuel injection valve in addition to the temperature of the fuel injection valve estimated by the temperature estimation means.
  • the initial energization time may be set based on the power supply voltage used in the above and the pressure of the fuel supplied to the fuel injection valve.
  • the initial energization time to be energized at a duty ratio at which the maximum drive current flows from the start of energization of the fuel injector is set to an appropriate value according to the temperature of the fuel injector.
  • FIG. 1 is a schematic configuration diagram of a fuel injection control device 1 according to the present embodiment.
  • a fuel injection control device 1 is an ECU (Electric Control Unit) that controls energization of an injector (fuel injection valve) 2 that injects fuel (liquid fuel or gaseous fuel) into an engine (not shown).
  • the power supply circuit 11 has an input terminal connected to the positive terminal of the battery 4 via the ignition switch 3 and an output terminal connected to the microcomputer 14 and other low voltage circuits (not shown).
  • the power supply circuit 11 steps down the power supply voltage V BATT (for example, 12V) supplied from the battery 4 when the ignition switch 3 is turned on, and supplies the low voltage circuit power supply voltage Vcc (for example, 5V) to be supplied to the microcomputer 14 and other low voltage circuits. ) Is generated.
  • the injector drive circuit 12 supplies a drive current Id to the injector 2 (specifically, the electromagnetic coil 2a of the injector 2) according to control by the microcomputer 14, and includes a first diode 12a, a second diode 12b, and a Zener diode 12c.
  • the first diode 12a has a cathode terminal connected to the positive terminal of the battery 4 via the ignition switch 3, and is connected to one end of the electromagnetic coil 2a of the injector 2, and an anode terminal is the collector terminal of the first transistor 12d. It is connected to the.
  • the second diode 12b has a cathode terminal connected to the gate terminal of the third transistor 12f and one end of the fourth resistor 12j, and an anode terminal connected to the anode terminal of the Zener diode 12c.
  • the Zener diode 12c has a cathode terminal connected to the other end of the electromagnetic coil 2a of the injector 2, an emitter terminal of the first transistor 12d, and a drain terminal of the third transistor 12f, and an anode terminal connected to the anode terminal of the second diode 12b. It is connected.
  • the first transistor 12d is, for example, a PNP-type bipolar transistor, and has a collector terminal connected to the anode terminal of the first diode 12a, an emitter terminal connected to the other end of the electromagnetic coil 2a of the injector 2, a cathode terminal of the Zener diode 12c, and a second terminal.
  • the drain terminal of the three transistors 12f is connected, and the base terminal is connected to one end of the first resistor 12g.
  • the second transistor 12e is, for example, an NPN bipolar transistor, and has a collector terminal connected to the other end of the first resistor 12g, an emitter terminal connected to one end of the second resistor 12h and the ground, and a base terminal connected to the second resistor. The other end of 12h and one end of the third resistor 12i are connected.
  • the third transistor 12f is, for example, an N-channel MOS-FET, and has a drain terminal connected to the other end of the electromagnetic coil 2a of the injector 2, a cathode terminal of the Zener diode 12c, and an emitter terminal of the first transistor 12d. Is connected to the ground, and the gate terminal is connected to the cathode terminal of the second diode 12b and one end of the fourth resistor 12j.
  • the first resistor 12g has one end connected to the base terminal of the first transistor 12d and the other end connected to the collector terminal of the second transistor 12e.
  • the second resistor 12h has one end connected to the emitter terminal of the second transistor 12e and the ground, and the other end connected to the base terminal of the second transistor 12e and one end of the third resistor 12i.
  • the third resistor 12i has one end connected to the base terminal of the second transistor 12e and the other end of the second resistor 12h, and the other end connected to the first output port P1 of the microcomputer 14.
  • the fourth resistor 12j has one end connected to the cathode terminal of the second diode 12b and the gate terminal of the third transistor 12f, and the other end connected to one end of the fifth resistor 12k and the second output port P2 of the microcomputer 14. .
  • the fifth resistor 12k has one end connected to the other end of the fourth resistor 12j and the second output port P2 of the microcomputer 14, and the other end connected to the ground.
  • the injector drive circuit 12 having such a configuration, the on / off state of the first transistor 12d, the second transistor 12e, and the third transistor 12f is controlled, whereby the energization duty ratio of the injector 2 (electromagnetic coil 2a) can be arbitrarily set. Therefore, the drive current Id flowing through the electromagnetic coil 2a can be arbitrarily controlled.
  • the resistance voltage dividing circuit 13 is a circuit that divides the power supply voltage V BATT to 5 V or less, which is a voltage value that can be processed by the microcomputer 14, and outputs the divided voltage to the microcomputer 14, and between the wiring connected to the ignition switch 3 and the ground. Are composed of two resistance elements 13a and 13b connected in series. The connection location of these two resistance elements 13a and 13b is connected to the voltage monitoring port Pm of the microcomputer 14.
  • the microcomputer 14 is a microcomputer in which a CPU (Central Processing Unit), a memory, an input / output interface, and the like are integrated, and various sensor signals input from various sensors (not shown) for detecting an engine state and resistance Based on the output voltage of the voltage dividing circuit 13 (input voltage to the voltage monitoring port Pm), energization control of the injector 2 is performed.
  • a CPU Central Processing Unit
  • the microcomputer 14 outputs the first control signal AINJH from the first output port P1, and outputs the second control signal AINJL from the second output port P2, whereby the first transistor 12d, the second transistor 12e and the third transistor 12f are controlled to turn on / off, and the energization duty ratio of the injector 2 (electromagnetic coil 2a), and hence the drive current Id, is controlled.
  • the various sensor signals input to the microcomputer 14 include at least a crank pulse signal having a period during which the crankshaft rotates by a certain angle as one cycle, an intake air temperature signal indicating the intake air temperature (atmosphere temperature of the injector 2), and the injector 2 A fuel temperature signal indicating the latest fuel temperature, a fuel pressure signal indicating the fuel pressure, and the like are included.
  • the microcomputer 14 performs A / D conversion on the intake air temperature signal, the fuel temperature signal, the fuel pressure signal, and the output voltage of the resistance voltage dividing circuit 13, so that the intake air temperature, the fuel temperature, the fuel pressure, and the power supply voltage V BATT (the battery 4 Recognize each value of output voltage.
  • the microcomputer 14 performs energization control (fuel injection control) of the injector 2 according to the procedure described below. First, the microcomputer 14 determines the fuel to be injected into the engine at the current fuel injection timing based on various externally input sensor signals and the output voltage of the resistance voltage dividing circuit 13 (input voltage to the voltage monitoring port Pm). An injection amount (energization time of the injector 2) is calculated.
  • the drive current Id flowing through the electromagnetic coil 2a is increased to increase the attractive force acting on the movable iron core, while the valve opening is completed (movable iron core).
  • the control target is to achieve both improvement in the response of the injector 2 and reduction in power consumption by reducing the drive current Id and maintaining the valve open state after the completion of the lift.
  • the injector energization time the initial energization time (in practice, the duty ratio (for example, 100% duty ratio) at which the maximum drive current Id flows from the start of energization)
  • the fuel is not injected but the time required to open the valve) and the holding energization time (the amount of the amount actually required) to be energized at a duty ratio at which the drive current Id flows so that the valve open state can be maintained after completion of the valve opening. Time required to inject fuel).
  • FIG. 2 is a functional block diagram for setting the initial energization time of the microcomputer 14.
  • the microcomputer 14 is based on the injector temperature estimation unit 14a (temperature estimation means) that estimates the injector temperature and the estimated injector temperature as software functions realized by executing the program.
  • an initial energization time setting unit 14b (setting means) for setting an initial energization time to be energized at a duty ratio of 100% from the start of energization of the injector 2.
  • the injector temperature estimation unit 14a estimates the injector temperature based on the integrated value of the injector energization time, the fuel temperature, the intake air temperature, the engine speed and the fuel flow rate. Specifically, the injector temperature estimation unit 14a is a table that shows experimentally obtained correspondence values between the integrated value of the injector energization time, the fuel temperature, the intake air temperature, the engine speed, the fuel flow rate, and the injector temperature. The injector temperature is estimated by referring to the data. The injector temperature estimation unit 14a calculates the fuel flow rate based on the injector energization time and the engine speed.
  • table data indicating the corresponding relationship between the injector energization time, fuel temperature, intake air temperature, engine speed, fuel flow rate, and injector temperature, which cause changes in the injector temperature should be obtained experimentally in advance.
  • the injector temperature can be accurately estimated.
  • the initial energization time setting unit 14b supplies the power supply voltage V BATT (the output voltage of the battery 4) used for energization of the injector 2 and the fuel supplied to the injector 2 Based on the pressure (fuel pressure), the initial energization time for energization with a duty ratio of 100% from the start of energization of the injector 2 is set.
  • the initial energization time setting unit 14b refers to the initial energization time with reference to the table data indicating the correspondence relationship between the injector temperature, the power supply voltage V BATT, the fuel pressure, and the initial energization time, which is experimentally obtained in advance. Set.
  • the microcomputer 14 After the initial energization time is set as described above, the microcomputer 14 is driven so that the valve opening state can be maintained from the end of the initial energization time based on the environmental conditions of the engine (for example, engine speed, intake air temperature, etc.).
  • the holding energization time to be energized is set at the duty ratio through which the current Id flows. Specifically, the microcomputer 14 sets the holding energization time with reference to table data indicating the correspondence relationship between the engine speed and the intake air temperature and the holding energization time, which is experimentally obtained in advance.
  • FIG. 3 is a timing chart showing the correspondence between the first control signal AINJH and the second control signal AINJL output from the microcomputer 14, the drive current Id flowing through the electromagnetic coil 2a of the injector 2, and the lift state of the movable core of the injector 2. It is a chart. In FIG. 3, it is assumed that time t1 is the fuel injection timing, and the period from time t1 to time t3 is the injector energization time.
  • the microcomputer 14 outputs the low-level first control signal AINJH and the high-level second control during the period from time t1 to time t2 corresponding to the initial energization time when the fuel injection timing arrives at time t1.
  • the signal AINJL is output.
  • the injector 2 is energized with a duty ratio of 100%, and the drive current Id increases toward the maximum value from time t1.
  • the drive current Id flowing through the electromagnetic coil 2a rises to a certain value
  • the movable iron core of the injector 2 starts to lift, and after a certain time, the lift is completed (opened valve is completed), and fuel injection is started.
  • the microcomputer 14 changes the first control signal AINJH and the second control signal AINJL during the period from the time t2 to the time t3 corresponding to the holding energization time when the initial energization time ends, that is, when the time t2 comes.
  • the injector 2 is energized with a duty ratio at which the drive current Id flows so as to maintain the valve open state. As a result, during the holding energization time, the opened state of the injector 2 is held and the required amount of fuel is injected.
  • the initial energization time to be energized at the duty ratio (for example, 100% duty ratio) through which the maximum drive current Id flows from the start of energization of the injector 2 is appropriate according to the injector temperature.
  • the duty ratio for example, 100% duty ratio
  • the maximum drive current Id flows from the start of energization of the injector 2 is appropriate according to the injector temperature.
  • the present invention is not limited to this, and the injector temperature is determined by an arithmetic expression using the integrated value of the injector energization time, fuel temperature, intake air temperature, engine speed, and fuel flow rate as variables. May be estimated (calculated).
  • the parameters used for estimating the injector temperature are not limited to the integrated value of the injector energization time, fuel temperature, intake air temperature, engine speed, and fuel flow rate.
  • the initial energization time is set with reference to table data indicating the correspondence relationship between the injector temperature, the power supply voltage V BATT and the fuel pressure and the initial energization time, which are experimentally obtained in advance.
  • the present invention is not limited to this, and the initial energization time may be set (calculated) by an arithmetic expression using the injector temperature, the power supply voltage V BATT and the fuel pressure as variables. If the power supply voltage V BATT and the fuel pressure are not required for setting the initial energization time, the initial energization time may be set only by the injector temperature.
  • the fuel injection control device 1 used in a monofuel system that supplies liquid fuel or gaseous fuel to a single engine has been exemplified.
  • the present invention is not limited to this, and liquid fuel and gas are used.
  • the present invention can also be applied to a fuel injection control device used in a bi-fuel system that selectively supplies fuel to a single engine.
  • SYMBOLS 1 Fuel injection control apparatus, 11 ... Power supply circuit, 12 ... Injector drive circuit, 13 ... Resistance voltage dividing circuit, 14 ... Microcomputer, 14a ... Injector temperature estimation part (temperature estimation means), 14b ... Initial energization time setting part (setting) means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A fuel injection control device performs energization control of a fuel injection valve for injecting fuel to an engine, and is provided with a temperature estimation means (14a) for estimating the temperature of the fuel injection valve, and a setting means (14b) for setting an initial energization time, during which energization should be performed at a duty ratio at which a maximum drive current flows, from the start of the energization of the fuel injection valve to the completion of the opening of the fuel injection valve on the basis of the temperature of the fuel injection valve estimated by the temperature estimation means.

Description

燃料噴射制御装置Fuel injection control device
 本発明は、燃料噴射制御装置に関する。
 本願は、2011年12月22日に出願された日本国特願2011-281368号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fuel injection control device.
This application claims priority based on Japanese Patent Application No. 2011-281368 for which it applied on December 22, 2011, and uses the content here.
 下記特許文献1には、電磁式の燃料噴射弁の開弁開始時(通電開始時)に電磁コイルの電流を大きくして可動鉄心に作用する吸引力を高める一方、開弁完了(可動鉄心のリフト完了)を検出した後には電磁コイルの電流を小さくして開弁状態を保持することにより、燃料噴射弁の応答性向上及び消費電力削減を両立する技術が開示されている。 In the following Patent Document 1, the electromagnetic coil current is increased at the start of opening of the electromagnetic fuel injection valve (at the start of energization) to increase the suction force acting on the movable core, while the valve opening is completed (the movable core is After detecting lift completion), a technique is disclosed in which both the response of the fuel injection valve is improved and the power consumption is reduced by reducing the current of the electromagnetic coil and maintaining the valve open state.
 また、下記特許文献2には、オープンループの電流制御により燃料噴射弁を開閉動作させて燃料を噴射させエンジンに供給するにあたり、燃料噴射弁を開閉動作させるパルス信号のオフ時間が変化したとき、電磁コイルを流れる電流の電流値が常に一定となるように、変化したオフ時間に応じてオン時間における可動鉄心の吸引時間と保持時間とを変更する技術が開示されている。 Further, in Patent Document 2 below, when the fuel injection valve is opened and closed by open loop current control to inject fuel and supply it to the engine, when the off time of the pulse signal that opens and closes the fuel injection valve changes, There has been disclosed a technique for changing the suction time and holding time of the movable iron core during the on-time according to the changed off-time so that the current value of the current flowing through the electromagnetic coil is always constant.
日本国特開平10-227250号公報Japanese Unexamined Patent Publication No. 10-227250 日本国特開2005-23811号公報Japanese Unexamined Patent Publication No. 2005-23811
 ところで、燃料噴射弁の温度が低下すると電磁コイルのインピーダンスも低下するため、電磁コイルに流れる電流が大きくなり可動鉄心に作用する吸引力も増すが、その反面、燃料に含まれる不純物の影響で可動鉄心の摺動抵抗も増大する。この結果、電磁コイルの通電開始から開弁完了までの時間(可動鉄心のリフト完了までの時間)が長くなる。 By the way, when the temperature of the fuel injection valve decreases, the impedance of the electromagnetic coil also decreases, so the current flowing through the electromagnetic coil increases and the attractive force acting on the movable iron core also increases, but on the other hand, the movable iron core is affected by the impurities contained in the fuel. The sliding resistance also increases. As a result, the time from the start of energization of the electromagnetic coil to the completion of valve opening (time until the lift of the movable iron core) becomes longer.
 上記特許文献1の技術では、燃料噴射弁の開弁完了を正確に検出することが目的であり、電磁コイルの通電開始から開弁完了までの時間に大きな電流を流す。したがって、燃料噴射弁の温度低下によって電磁コイルの通電開始から開弁完了までの時間が長くなると、その長くなった時間分、大きな電流を電磁コイルに流し続けることになり、消費電力が増えてしまう。 The technique of the above-mentioned Patent Document 1 is intended to accurately detect the completion of the fuel injection valve opening, and a large current flows in the time from the start of energization of the electromagnetic coil to the completion of valve opening. Therefore, if the time from the start of energization of the electromagnetic coil to the completion of valve opening becomes longer due to the temperature drop of the fuel injection valve, a large current will continue to flow through the electromagnetic coil for the longer time, resulting in increased power consumption. .
 また、上記特許文献2の技術では、燃料噴射弁の電磁コイルに流れる電流をオープンループ制御する。このため、燃料噴射弁の温度低下によって可動鉄心の摺動抵抗が増した分、可動鉄心に作用する吸引力が大きくなるように目標電流値を高めに設定する必要があるが、高温時にも同じように目標電流値を高めに設定するので、消費電力が増えてしまう。 In the technique disclosed in Patent Document 2, the current flowing through the electromagnetic coil of the fuel injection valve is subjected to open loop control. For this reason, it is necessary to set the target current value higher so that the attractive force acting on the movable iron core increases as the sliding resistance of the movable iron core increases due to the temperature drop of the fuel injection valve. Thus, since the target current value is set higher, the power consumption increases.
 本発明の態様は、上述した事情に鑑みてなされたものであり、燃料噴射弁の通電制御を行うに当たって、従来よりも燃料噴射弁の消費電力を削減することが可能な燃料噴射制御装置を提供することを目的とする。 An aspect of the present invention has been made in view of the above-described circumstances, and provides a fuel injection control device capable of reducing the power consumption of the fuel injection valve as compared with the prior art when performing energization control of the fuel injection valve. The purpose is to do.
 本発明に係る燃料噴射制御装置では、上記目的を達成するために以下の構成を採用した。
(1)本発明の一態様は、エンジンに燃料を噴射する燃料噴射弁の通電制御を行う燃料噴射制御装置であって、前記燃料噴射弁の温度を推定する温度推定手段と;前記温度推定手段にて推定された前記燃料噴射弁の温度に基づいて、前記燃料噴射弁の通電開始から前記燃料噴射弁の開弁完了までの、最大の駆動電流が流れるデューティ比で通電すべき初期通電時間を設定する設定手段;とを備える。
The fuel injection control device according to the present invention employs the following configuration in order to achieve the above object.
(1) One aspect of the present invention is a fuel injection control device that performs energization control of a fuel injection valve that injects fuel into an engine, the temperature estimation unit estimating a temperature of the fuel injection valve; and the temperature estimation unit Based on the temperature of the fuel injection valve estimated in Step 1, the initial energization time to be energized with a duty ratio through which the maximum drive current flows from the start of energization of the fuel injection valve to the completion of opening of the fuel injection valve. Setting means for setting.
(2)上記(1)の態様では、前記温度推定手段は、前記燃料噴射弁の通電時間の積算値、前記燃料の温度、前記燃料噴射弁の周囲の雰囲気温度、前記エンジンの回転数及び前記燃料の流量の少なくとも1つに基づいて前記燃料噴射弁の温度を推定してもよい。 (2) In the aspect of (1), the temperature estimating means includes an integrated value of energization time of the fuel injection valve, the temperature of the fuel, the ambient temperature around the fuel injection valve, the engine speed, and the The temperature of the fuel injection valve may be estimated based on at least one of the fuel flow rates.
(3)上記(1)または(2)の態様では、前記温度推定手段は、前記燃料噴射弁の通電時間と前記エンジンの回転数とに基づいて前記燃料の流量を算出してもよい。 (3) In the above aspect (1) or (2), the temperature estimation means may calculate the flow rate of the fuel based on the energization time of the fuel injection valve and the rotational speed of the engine.
(4)上記(1)から(3)のいずれか一項の態様では、前記設定手段は、前記温度推定手段にて推定された前記燃料噴射弁の温度に加えて、前記燃料噴射弁の通電に用いられる電源電圧及び前記燃料噴射弁に供給される前記燃料の圧力に基づいて前記初期通電時間を設定してもよい。 (4) In the aspect according to any one of (1) to (3), the setting means supplies the current to the fuel injection valve in addition to the temperature of the fuel injection valve estimated by the temperature estimation means. The initial energization time may be set based on the power supply voltage used in the above and the pressure of the fuel supplied to the fuel injection valve.
 本発明の上記態様によれば、燃料噴射弁の通電開始から最大の駆動電流が流れるデューティ比で通電すべき初期通電時間を燃料噴射弁の温度に応じて適切な値に設定する。これにより、燃料噴射弁の通電制御、特に燃料噴射弁の応答性向上及び消費電力削減を両立する制御を行うに当たって、従来よりも燃料噴射弁の消費電力を削減することが可能となる。 According to the above aspect of the present invention, the initial energization time to be energized at a duty ratio at which the maximum drive current flows from the start of energization of the fuel injector is set to an appropriate value according to the temperature of the fuel injector. As a result, it is possible to reduce the power consumption of the fuel injection valve as compared with the prior art when performing the energization control of the fuel injection valve, particularly the control for improving the response of the fuel injection valve and reducing the power consumption.
本実施形態に係る燃料噴射制御装置1の概略構成図である。It is a schematic structure figure of fuel injection control device 1 concerning this embodiment. マイコン14が有する初期通電時間を設定するための機能ブロック図である。It is a functional block diagram for setting the initial energization time which the microcomputer 14 has. マイコン14が出力する第1コントロール信号AINJH及び第2コントロール信号AINJLと、インジェクタ2の電磁コイル2aに流れる駆動電流Idと、インジェクタ2の可動鉄心のリフト状態との対応関係を示すタイミングチャートである。4 is a timing chart showing a correspondence relationship between a first control signal AINJH and a second control signal AINJL output from a microcomputer 14, a drive current Id flowing through an electromagnetic coil 2a of the injector 2, and a lift state of a movable core of the injector 2.
 以下、本発明の一実施形態について、図面を参照しながら説明する。
 図1は、本実施形態に係る燃料噴射制御装置1の概略構成図である。この図1に示すように、燃料噴射制御装置1は、不図示のエンジンに燃料(液体燃料或いは気体燃料)を噴射するインジェクタ(燃料噴射弁)2の通電制御を行うECU(Electric Control Unit)であり、電源回路11、インジェクタ駆動回路12、抵抗分圧回路13及びマイコン14を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a fuel injection control device 1 according to the present embodiment. As shown in FIG. 1, a fuel injection control device 1 is an ECU (Electric Control Unit) that controls energization of an injector (fuel injection valve) 2 that injects fuel (liquid fuel or gaseous fuel) into an engine (not shown). A power supply circuit 11, an injector drive circuit 12, a resistance voltage dividing circuit 13, and a microcomputer 14.
 電源回路11は、入力端子がイグニションスイッチ3を介してバッテリ4の正極端子に接続されていると共に、出力端子がマイコン14や他の低圧回路(図示省略)に接続されている。電源回路11は、イグニションスイッチ3のオン時にバッテリ4から供給される電源電圧VBATT(例えば12V)を降圧して、マイコン14や他の低圧回路に供給すべき低圧回路用電源電圧Vcc(例えば5V)を生成する。 The power supply circuit 11 has an input terminal connected to the positive terminal of the battery 4 via the ignition switch 3 and an output terminal connected to the microcomputer 14 and other low voltage circuits (not shown). The power supply circuit 11 steps down the power supply voltage V BATT (for example, 12V) supplied from the battery 4 when the ignition switch 3 is turned on, and supplies the low voltage circuit power supply voltage Vcc (for example, 5V) to be supplied to the microcomputer 14 and other low voltage circuits. ) Is generated.
 インジェクタ駆動回路12は、マイコン14による制御に応じてインジェクタ2(詳細にはインジェクタ2の電磁コイル2a)に駆動電流Idを供給するものであり、第1ダイオード12a、第2ダイオード12b、ツェナーダイオード12c、第1トランジスタ12d、第2トランジスタ12e、第3トランジスタ12f、第1抵抗12g、第2抵抗12h、第3抵抗12i、第4抵抗12j及び第5抵抗12kから構成されている。 The injector drive circuit 12 supplies a drive current Id to the injector 2 (specifically, the electromagnetic coil 2a of the injector 2) according to control by the microcomputer 14, and includes a first diode 12a, a second diode 12b, and a Zener diode 12c. The first transistor 12d, the second transistor 12e, the third transistor 12f, the first resistor 12g, the second resistor 12h, the third resistor 12i, the fourth resistor 12j, and the fifth resistor 12k.
 第1ダイオード12aは、カソード端子がイグニションスイッチ3を介してバッテリ4の正極端子に接続されていると共にインジェクタ2の電磁コイル2aの一端に接続されており、アノード端子が第1トランジスタ12dのコレクタ端子に接続されている。 The first diode 12a has a cathode terminal connected to the positive terminal of the battery 4 via the ignition switch 3, and is connected to one end of the electromagnetic coil 2a of the injector 2, and an anode terminal is the collector terminal of the first transistor 12d. It is connected to the.
 第2ダイオード12bは、カソード端子が第3トランジスタ12fのゲート端子に接続されていると共に第4抵抗12jの一端に接続されており、アノード端子がツェナーダイオード12cのアノード端子に接続されている。 The second diode 12b has a cathode terminal connected to the gate terminal of the third transistor 12f and one end of the fourth resistor 12j, and an anode terminal connected to the anode terminal of the Zener diode 12c.
 ツェナーダイオード12cは、カソード端子がインジェクタ2の電磁コイル2aの他端、第1トランジスタ12dのエミッタ端子及び第3トランジスタ12fのドレイン端子に接続されており、アノード端子が第2ダイオード12bのアノード端子に接続されている。 The Zener diode 12c has a cathode terminal connected to the other end of the electromagnetic coil 2a of the injector 2, an emitter terminal of the first transistor 12d, and a drain terminal of the third transistor 12f, and an anode terminal connected to the anode terminal of the second diode 12b. It is connected.
 第1トランジスタ12dは、例えばPNP型のバイポーラトランジスタであり、コレクタ端子が第1ダイオード12aのアノード端子に接続され、エミッタ端子がインジェクタ2の電磁コイル2aの他端、ツェナーダイオード12cのカソード端子及び第3トランジスタ12fのドレイン端子に接続され、ベース端子が第1抵抗12gの一端に接続されている。 The first transistor 12d is, for example, a PNP-type bipolar transistor, and has a collector terminal connected to the anode terminal of the first diode 12a, an emitter terminal connected to the other end of the electromagnetic coil 2a of the injector 2, a cathode terminal of the Zener diode 12c, and a second terminal. The drain terminal of the three transistors 12f is connected, and the base terminal is connected to one end of the first resistor 12g.
 第2トランジスタ12eは、例えばNPN型のバイポーラトランジスタであり、コレクタ端子が第1抵抗12gの他端に接続され、エミッタ端子が第2抵抗12hの一端及びグラウンドに接続され、ベース端子が第2抵抗12hの他端及び第3抵抗12iの一端に接続されている。 The second transistor 12e is, for example, an NPN bipolar transistor, and has a collector terminal connected to the other end of the first resistor 12g, an emitter terminal connected to one end of the second resistor 12h and the ground, and a base terminal connected to the second resistor. The other end of 12h and one end of the third resistor 12i are connected.
 第3トランジスタ12fは、例えばNチャネル型のMOS-FETであり、ドレイン端子がインジェクタ2の電磁コイル2aの他端、ツェナーダイオード12cのカソード端子及び第1トランジスタ12dのエミッタ端子に接続され、ソース端子がグラウンドに接続され、ゲート端子が第2ダイオード12bのカソード端子及び第4抵抗12jの一端に接続されている。 The third transistor 12f is, for example, an N-channel MOS-FET, and has a drain terminal connected to the other end of the electromagnetic coil 2a of the injector 2, a cathode terminal of the Zener diode 12c, and an emitter terminal of the first transistor 12d. Is connected to the ground, and the gate terminal is connected to the cathode terminal of the second diode 12b and one end of the fourth resistor 12j.
 第1抵抗12gは、一端が第1トランジスタ12dのベース端子に接続され、他端が第2トランジスタ12eのコレクタ端子に接続されている。第2抵抗12hは、一端が第2トランジスタ12eのエミッタ端子及びグラウンドに接続され、他端が第2トランジスタ12eのベース端子及び第3抵抗12iの一端に接続されている。第3抵抗12iは、一端が第2トランジスタ12eのベース端子及び第2抵抗12hの他端に接続され、他端がマイコン14の第1出力ポートP1に接続されている。 The first resistor 12g has one end connected to the base terminal of the first transistor 12d and the other end connected to the collector terminal of the second transistor 12e. The second resistor 12h has one end connected to the emitter terminal of the second transistor 12e and the ground, and the other end connected to the base terminal of the second transistor 12e and one end of the third resistor 12i. The third resistor 12i has one end connected to the base terminal of the second transistor 12e and the other end of the second resistor 12h, and the other end connected to the first output port P1 of the microcomputer 14.
 第4抵抗12jは、一端が第2ダイオード12bのカソード端子及び第3トランジスタ12fのゲート端子に接続され、他端が第5抵抗12kの一端及びマイコン14の第2出力ポートP2に接続されている。第5抵抗12kは、一端が第4抵抗12jの他端及びマイコン14の第2出力ポートP2に接続され、他端がグラウンドに接続されている。 The fourth resistor 12j has one end connected to the cathode terminal of the second diode 12b and the gate terminal of the third transistor 12f, and the other end connected to one end of the fifth resistor 12k and the second output port P2 of the microcomputer 14. . The fifth resistor 12k has one end connected to the other end of the fourth resistor 12j and the second output port P2 of the microcomputer 14, and the other end connected to the ground.
 このような構成のインジェクタ駆動回路12によると、第1トランジスタ12d、第2トランジスタ12e及び第3トランジスタ12fのオン/オフ状態を制御することで、インジェクタ2(電磁コイル2a)の通電デューティ比を任意に設定できるので、電磁コイル2aに流れる駆動電流Idを任意に制御できる。 According to the injector drive circuit 12 having such a configuration, the on / off state of the first transistor 12d, the second transistor 12e, and the third transistor 12f is controlled, whereby the energization duty ratio of the injector 2 (electromagnetic coil 2a) can be arbitrarily set. Therefore, the drive current Id flowing through the electromagnetic coil 2a can be arbitrarily controlled.
 抵抗分圧回路13は、電源電圧VBATTをマイコン14が処理可能な電圧値である5V以下に分圧してマイコン14に出力する回路であり、イグニションスイッチ3に接続された配線とグラウンドとの間に直列接続された2つの抵抗素子13a、13bから構成されている。これら2つの抵抗素子13a、13bの接続箇所がマイコン14の電圧監視ポートPmに接続されている。 The resistance voltage dividing circuit 13 is a circuit that divides the power supply voltage V BATT to 5 V or less, which is a voltage value that can be processed by the microcomputer 14, and outputs the divided voltage to the microcomputer 14, and between the wiring connected to the ignition switch 3 and the ground. Are composed of two resistance elements 13a and 13b connected in series. The connection location of these two resistance elements 13a and 13b is connected to the voltage monitoring port Pm of the microcomputer 14.
 マイコン14は、CPU(Central Processing Unit)やメモリ、入出力インターフェイス等が一体的に組み込まれたマイクロコンピュータであり、エンジン状態を検出する各種センサ(図示省略)から入力される各種センサ信号と、抵抗分圧回路13の出力電圧(電圧監視ポートPmへの入力電圧)とに基づいて、インジェクタ2の通電制御を行う。
 具体的には、マイコン14は、第1出力ポートP1から第1コントロール信号AINJHを出力すると共に、第2出力ポートP2から第2コントロール信号AINJLを出力することにより、第1トランジスタ12d、第2トランジスタ12e及び第3トランジスタ12fのオン/オフ状態を制御し、インジェクタ2(電磁コイル2a)の通電デューティ比、ひいては駆動電流Idを制御する。
The microcomputer 14 is a microcomputer in which a CPU (Central Processing Unit), a memory, an input / output interface, and the like are integrated, and various sensor signals input from various sensors (not shown) for detecting an engine state and resistance Based on the output voltage of the voltage dividing circuit 13 (input voltage to the voltage monitoring port Pm), energization control of the injector 2 is performed.
Specifically, the microcomputer 14 outputs the first control signal AINJH from the first output port P1, and outputs the second control signal AINJL from the second output port P2, whereby the first transistor 12d, the second transistor 12e and the third transistor 12f are controlled to turn on / off, and the energization duty ratio of the injector 2 (electromagnetic coil 2a), and hence the drive current Id, is controlled.
 なお、マイコン14に入力される各種センサ信号には、少なくとも、クランク軸が一定角度回転する時間を1周期とするクランクパルス信号、吸気温度(インジェクタ2の雰囲気温度)を示す吸気温度信号、インジェクタ2の直近の燃料温度を示す燃料温度信号、燃料圧力を示す燃料圧力信号などが含まれている。マイコン14は、吸気温度信号、燃料温度信号、燃料圧力信号及び抵抗分圧回路13の出力電圧をA/D変換することにより、吸気温度、燃料温度、燃料圧力及び電源電圧VBATT(バッテリ4の出力電圧)のそれぞれの値を認識する。 The various sensor signals input to the microcomputer 14 include at least a crank pulse signal having a period during which the crankshaft rotates by a certain angle as one cycle, an intake air temperature signal indicating the intake air temperature (atmosphere temperature of the injector 2), and the injector 2 A fuel temperature signal indicating the latest fuel temperature, a fuel pressure signal indicating the fuel pressure, and the like are included. The microcomputer 14 performs A / D conversion on the intake air temperature signal, the fuel temperature signal, the fuel pressure signal, and the output voltage of the resistance voltage dividing circuit 13, so that the intake air temperature, the fuel temperature, the fuel pressure, and the power supply voltage V BATT (the battery 4 Recognize each value of output voltage.
 このマイコン14は、以下で説明する手順に従ってインジェクタ2の通電制御(燃料噴射制御)を行う。まず、マイコン14は、外部入力される各種センサ信号と、抵抗分圧回路13の出力電圧(電圧監視ポートPmへの入力電圧)とに基づいて、今回の燃料噴射タイミングでエンジンに噴射すべき燃料噴射量(インジェクタ2の通電時間)を算出する。 The microcomputer 14 performs energization control (fuel injection control) of the injector 2 according to the procedure described below. First, the microcomputer 14 determines the fuel to be injected into the engine at the current fuel injection timing based on various externally input sensor signals and the output voltage of the resistance voltage dividing circuit 13 (input voltage to the voltage monitoring port Pm). An injection amount (energization time of the injector 2) is calculated.
 ここで本実施形態では、インジェクタ2の開弁開始時(通電開始時)には電磁コイル2aに流れる駆動電流Idを大きくして可動鉄心に作用する吸引力を高める一方、開弁完了(可動鉄心のリフト完了)後には駆動電流Idを小さくして開弁状態を保持することにより、インジェクタ2の応答性向上及び消費電力削減を両立することを制御目標としている。 Here, in the present embodiment, at the start of opening of the injector 2 (at the start of energization), the drive current Id flowing through the electromagnetic coil 2a is increased to increase the attractive force acting on the movable iron core, while the valve opening is completed (movable iron core). The control target is to achieve both improvement in the response of the injector 2 and reduction in power consumption by reducing the drive current Id and maintaining the valve open state after the completion of the lift.
 従って、インジェクタ2の通電時間(以下、インジェクタ通電時間と称す)には、通電開始から最大の駆動電流Idが流れるデューティ比(例えば100%のデューティ比)で通電すべき初期通電時間(実際には燃料は噴射されないが開弁させるために必要な時間)と、開弁完了後に開弁状態を保持できる程度の駆動電流Idが流れるデューティ比で通電すべき保持通電時間(実際に要求される量の燃料を噴射するのに必要な時間)とが含まれている。 Accordingly, during the energization time of the injector 2 (hereinafter referred to as the injector energization time), the initial energization time (in practice, the duty ratio (for example, 100% duty ratio) at which the maximum drive current Id flows from the start of energization) The fuel is not injected but the time required to open the valve) and the holding energization time (the amount of the amount actually required) to be energized at a duty ratio at which the drive current Id flows so that the valve open state can be maintained after completion of the valve opening. Time required to inject fuel).
 ところが、前述のように、インジェクタ2の温度が低下すると、燃料に含まれる不純物の影響で可動鉄心の摺動抵抗が増大するので、結果的に電磁コイル2aの通電開始から開弁完了までの時間(可動鉄心のリフト完了までの時間)が長くなる。つまり、通電開始から開弁完了までの時間には温度依存性があり、上記の初期通電時間をインジェクタ2の温度に関係なく設定すると、低温では駆動電流Idを十分な時間流すことができずに応答性が低下し、逆に高温では駆動電流Idを流す時間が延びて消費電力が増してしまう。 However, as described above, when the temperature of the injector 2 decreases, the sliding resistance of the movable iron core increases due to the influence of impurities contained in the fuel. As a result, the time from the start of energization of the electromagnetic coil 2a to the completion of valve opening. (Time to complete lift of movable core) becomes longer. In other words, the time from the start of energization to the completion of valve opening has temperature dependence, and if the initial energization time is set regardless of the temperature of the injector 2, the drive current Id cannot flow for a sufficient time at a low temperature. Responsiveness decreases, and conversely, at high temperatures, the time during which the drive current Id flows is extended and power consumption increases.
 そこで、本実施形態において、マイコン14は、上記の初期通電時間をインジェクタ2の温度(以下、インジェクタ温度と称す)に応じて適切な値となるように設定する。図2は、マイコン14が有する初期通電時間を設定するための機能ブロック図である。この図2に示すように、マイコン14は、プログラムの実行により実現されるソフトウェア的な機能として、インジェクタ温度を推定するインジェクタ温度推定部14a(温度推定手段)と、推定されたインジェクタ温度に基づいて、インジェクタ2の通電開始から100%のデューティ比で通電すべき初期通電時間を設定する初期通電時間設定部14b(設定手段)とを有している。 Therefore, in the present embodiment, the microcomputer 14 sets the initial energization time to an appropriate value according to the temperature of the injector 2 (hereinafter referred to as injector temperature). FIG. 2 is a functional block diagram for setting the initial energization time of the microcomputer 14. As shown in FIG. 2, the microcomputer 14 is based on the injector temperature estimation unit 14a (temperature estimation means) that estimates the injector temperature and the estimated injector temperature as software functions realized by executing the program. And an initial energization time setting unit 14b (setting means) for setting an initial energization time to be energized at a duty ratio of 100% from the start of energization of the injector 2.
 インジェクタ温度推定部14aは、インジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量に基づいてインジェクタ温度を推定する。具体的には、インジェクタ温度推定部14aは、予め実験的に求められた、インジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量とインジェクタ温度との対応関係を示すテーブルデータを参照してインジェクタ温度を推定する。なお、インジェクタ温度推定部14aは、インジェクタ通電時間とエンジンの回転数に基づいて燃料流量を算出する。 The injector temperature estimation unit 14a estimates the injector temperature based on the integrated value of the injector energization time, the fuel temperature, the intake air temperature, the engine speed and the fuel flow rate. Specifically, the injector temperature estimation unit 14a is a table that shows experimentally obtained correspondence values between the integrated value of the injector energization time, the fuel temperature, the intake air temperature, the engine speed, the fuel flow rate, and the injector temperature. The injector temperature is estimated by referring to the data. The injector temperature estimation unit 14a calculates the fuel flow rate based on the injector energization time and the engine speed.
 これらインジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量は、それぞれインジェクタ温度の変化要因となるものである。すなわち、インジェクタ通電時間の積算値が増加すると、インジェクタ2の電磁コイル2aの発熱量が増加してインジェクタ温度が上昇する。また、燃料温度が上昇すると、インジェクタ2を通過する燃料の温度が高いのでインジェクタ温度が上昇する。また、吸気温度が上昇すると、インジェクタ2の雰囲気温度が上昇するのでインジェクタ温度が上昇する。また、エンジンの回転数が高くなると、単位時間当たりのピーク電流が増加(電磁コイル2aの発熱量が増加)してインジェクタ温度が上昇する。また、燃料流量が増加すると、燃料によるインジェクタ2の冷却効果が増大する。 These integrated values of the injector energization time, fuel temperature, intake air temperature, engine speed, and fuel flow rate are factors that change the injector temperature. That is, when the integrated value of the injector energization time increases, the amount of heat generated by the electromagnetic coil 2a of the injector 2 increases and the injector temperature rises. Further, when the fuel temperature rises, the temperature of the fuel passing through the injector 2 is high, so that the injector temperature rises. Further, when the intake air temperature rises, the ambient temperature of the injector 2 rises, so that the injector temperature rises. As the engine speed increases, the peak current per unit time increases (the amount of heat generated by the electromagnetic coil 2a increases), and the injector temperature rises. Further, when the fuel flow rate increases, the cooling effect of the injector 2 by the fuel increases.
 従って、これらインジェクタ温度の変化要因となるインジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量とインジェクタ温度との対応関係を示すテーブルデータを予め実験的に求めておくことにより、インジェクタ温度を正確に推定することができる。 Therefore, table data indicating the corresponding relationship between the injector energization time, fuel temperature, intake air temperature, engine speed, fuel flow rate, and injector temperature, which cause changes in the injector temperature, should be obtained experimentally in advance. Thus, the injector temperature can be accurately estimated.
 初期通電時間設定部14bは、インジェクタ温度推定部14aにて推定されたインジェクタ温度に加えて、インジェクタ2の通電に用いられる電源電圧VBATT(バッテリ4の出力電圧)及びインジェクタ2に供給される燃料の圧力(燃料圧力)に基づいて、インジェクタ2の通電開始から100%のデューティ比で通電すべき初期通電時間を設定する。具体的には、初期通電時間設定部14bは、予め実験的に求められた、インジェクタ温度、電源電圧VBATT及び燃料圧力と初期通電時間との対応関係を示すテーブルデータを参照して初期通電時間を設定する。 In addition to the injector temperature estimated by the injector temperature estimation unit 14a, the initial energization time setting unit 14b supplies the power supply voltage V BATT (the output voltage of the battery 4) used for energization of the injector 2 and the fuel supplied to the injector 2 Based on the pressure (fuel pressure), the initial energization time for energization with a duty ratio of 100% from the start of energization of the injector 2 is set. Specifically, the initial energization time setting unit 14b refers to the initial energization time with reference to the table data indicating the correspondence relationship between the injector temperature, the power supply voltage V BATT, the fuel pressure, and the initial energization time, which is experimentally obtained in advance. Set.
 マイコン14は、上記のように初期通電時間を設定した後、エンジンの環境条件(例えばエンジン回転数及び吸気温度等)に基づいて、初期通電時間の終了時から開弁状態を保持できる程度の駆動電流Idが流れるデューティ比で通電すべき保持通電時間を設定する。具体的には、マイコン14は、予め実験的に求められた、エンジン回転数及び吸気温度と保持通電時間との対応関係を示すテーブルデータを参照して保持通電時間を設定する。 After the initial energization time is set as described above, the microcomputer 14 is driven so that the valve opening state can be maintained from the end of the initial energization time based on the environmental conditions of the engine (for example, engine speed, intake air temperature, etc.). The holding energization time to be energized is set at the duty ratio through which the current Id flows. Specifically, the microcomputer 14 sets the holding energization time with reference to table data indicating the correspondence relationship between the engine speed and the intake air temperature and the holding energization time, which is experimentally obtained in advance.
 マイコン14は、上記のように算出された初期通電時間と保持通電時間との加算値をインジェクタ通電時間(=初期通電時間+保持通電時間)として算出し、今回の燃料噴射タイミングが到来した時に、そのインジェクタ通電時間の内、初期通電時間では100%のデューティ比でインジェクタ2の通電を行い、残りの保持通電時間では開弁状態を保持できる程度の駆動電流Idが流れるデューティ比でインジェクタ2の通電を行う。 The microcomputer 14 calculates the added value of the initial energization time and the holding energization time calculated as described above as the injector energization time (= initial energization time + holding energization time), and when the current fuel injection timing arrives, During the initial energization time, the injector 2 is energized at a duty ratio of 100%, and during the remaining holding energization time, the injector 2 is energized at a duty ratio at which the drive current Id flows so that the valve open state can be maintained. I do.
 図3は、マイコン14が出力する第1コントロール信号AINJH及び第2コントロール信号AINJLと、インジェクタ2の電磁コイル2aに流れる駆動電流Idと、インジェクタ2の可動鉄心のリフト状態との対応関係を示すタイミングチャートである。この図3において、時刻t1が燃料噴射タイミングであり、時刻t1から時刻t3の期間がインジェクタ通電時間であると想定する。 FIG. 3 is a timing chart showing the correspondence between the first control signal AINJH and the second control signal AINJL output from the microcomputer 14, the drive current Id flowing through the electromagnetic coil 2a of the injector 2, and the lift state of the movable core of the injector 2. It is a chart. In FIG. 3, it is assumed that time t1 is the fuel injection timing, and the period from time t1 to time t3 is the injector energization time.
 マイコン14は、時刻t1、つまり燃料噴射タイミングが到来すると、初期通電時間に相当する時刻t1から時刻t2までの期間に、ローレベルの第1コントロール信号AINJHを出力すると共に、ハイレベルの第2コントロール信号AINJLを出力する。これにより、初期通電時間中では、インジェクタ2が100%のデューティ比で通電され、時刻t1から駆動電流Idが最大値に向かって上昇していくことになる。そして、電磁コイル2aに流れる駆動電流Idがある値まで上昇すると、インジェクタ2の可動鉄心がリフトを開始し始め、一定時間後にリフト完了状態(開弁完了状態)となり、燃料噴射が開始される。 The microcomputer 14 outputs the low-level first control signal AINJH and the high-level second control during the period from time t1 to time t2 corresponding to the initial energization time when the fuel injection timing arrives at time t1. The signal AINJL is output. As a result, during the initial energization time, the injector 2 is energized with a duty ratio of 100%, and the drive current Id increases toward the maximum value from time t1. When the drive current Id flowing through the electromagnetic coil 2a rises to a certain value, the movable iron core of the injector 2 starts to lift, and after a certain time, the lift is completed (opened valve is completed), and fuel injection is started.
 マイコン14は、初期通電時間が終了する、つまり時刻t2が到来すると、保持通電時間に相当する時刻t2から時刻t3までの期間に、第1コントロール信号AINJH及び第2コントロール信号AINJLを変化させて、開弁状態を保持できる程度の駆動電流Idが流れるデューティ比でインジェクタ2の通電を行う。これにより、保持通電時間中では、インジェクタ2の開弁状態が保持されて要求量の燃料が噴射される。 The microcomputer 14 changes the first control signal AINJH and the second control signal AINJL during the period from the time t2 to the time t3 corresponding to the holding energization time when the initial energization time ends, that is, when the time t2 comes. The injector 2 is energized with a duty ratio at which the drive current Id flows so as to maintain the valve open state. As a result, during the holding energization time, the opened state of the injector 2 is held and the required amount of fuel is injected.
 以上のように、本実施形態によれば、インジェクタ2の通電開始から最大の駆動電流Idが流れるデューティ比(例えば100%のデューティ比)で通電すべき初期通電時間をインジェクタ温度に応じて適切な値に設定する。これにより、インジェクタ2の通電制御、特にインジェクタ2の応答性向上及び消費電力削減を両立する制御を行うに当たって、従来よりもインジェクタ2の消費電力を削減することが可能となる。 As described above, according to the present embodiment, the initial energization time to be energized at the duty ratio (for example, 100% duty ratio) through which the maximum drive current Id flows from the start of energization of the injector 2 is appropriate according to the injector temperature. Set to value. As a result, it is possible to reduce the power consumption of the injector 2 as compared with the prior art when performing the energization control of the injector 2, particularly the control that achieves both improvement in response of the injector 2 and reduction in power consumption.
 なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、予め実験的に求められた、インジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量とインジェクタ温度との対応関係を示すテーブルデータを参照してインジェクタ温度を推定する場合を例示したが、本発明はこれに限定されず、インジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量を変数とした演算式によってインジェクタ温度を推定(算出)するようにしても良い。また、インジェクタ温度を推定するために使用するパラメータは、これらインジェクタ通電時間の積算値、燃料温度、吸気温度、エンジンの回転数及び燃料流量に限定されない。
In addition, this invention is not limited to the said embodiment, The following modifications are mentioned.
(1) In the embodiment described above, reference is made to the table data indicating the correspondence relationship between the integrated value of the injector energization time, the fuel temperature, the intake air temperature, the engine speed, the fuel flow rate, and the injector temperature, experimentally obtained in advance. However, the present invention is not limited to this, and the injector temperature is determined by an arithmetic expression using the integrated value of the injector energization time, fuel temperature, intake air temperature, engine speed, and fuel flow rate as variables. May be estimated (calculated). The parameters used for estimating the injector temperature are not limited to the integrated value of the injector energization time, fuel temperature, intake air temperature, engine speed, and fuel flow rate.
(2)上記実施形態では、予め実験的に求められた、インジェクタ温度、電源電圧VBATT及び燃料圧力と初期通電時間との対応関係を示すテーブルデータを参照して初期通電時間を設定する場合を例示したが、本発明はこれに限定されず、インジェクタ温度、電源電圧VBATT及び燃料圧力を変数とした演算式によって初期通電時間を設定(算出)するようにしても良い。また、初期通電時間の設定に電源電圧VBATT及び燃料圧力が不要であれば、インジェクタ温度のみで初期通電時間を設定しても良い。 (2) In the above embodiment, the initial energization time is set with reference to table data indicating the correspondence relationship between the injector temperature, the power supply voltage V BATT and the fuel pressure and the initial energization time, which are experimentally obtained in advance. Although illustrated, the present invention is not limited to this, and the initial energization time may be set (calculated) by an arithmetic expression using the injector temperature, the power supply voltage V BATT and the fuel pressure as variables. If the power supply voltage V BATT and the fuel pressure are not required for setting the initial energization time, the initial energization time may be set only by the injector temperature.
(3)上記実施形態では、液体燃料或いは気体燃料を単一エンジンに供給するモノフューエルシステムに使用される燃料噴射制御装置1を例示したが、本発明はこれに限定されず、液体燃料と気体燃料とを選択的に単一エンジンに供給するバイフューエルシステムに使用される燃料噴射制御装置にも本発明を適用することができる。 (3) In the above embodiment, the fuel injection control device 1 used in a monofuel system that supplies liquid fuel or gaseous fuel to a single engine has been exemplified. However, the present invention is not limited to this, and liquid fuel and gas are used. The present invention can also be applied to a fuel injection control device used in a bi-fuel system that selectively supplies fuel to a single engine.
 1…燃料噴射制御装置、11…電源回路、12…インジェクタ駆動回路、13…抵抗分圧回路、14…マイコン、14a…インジェクタ温度推定部(温度推定手段)、14b…初期通電時間設定部(設定手段) DESCRIPTION OF SYMBOLS 1 ... Fuel injection control apparatus, 11 ... Power supply circuit, 12 ... Injector drive circuit, 13 ... Resistance voltage dividing circuit, 14 ... Microcomputer, 14a ... Injector temperature estimation part (temperature estimation means), 14b ... Initial energization time setting part (setting) means)

Claims (4)

  1.  エンジンに燃料を噴射する燃料噴射弁の通電制御を行う燃料噴射制御装置であって、
     前記燃料噴射弁の温度を推定する温度推定手段と;
     前記温度推定手段にて推定された前記燃料噴射弁の温度に基づいて、前記燃料噴射弁の通電開始から前記燃料噴射弁の開弁完了までの、最大の駆動電流が流れるデューティ比で通電すべき初期通電時間を設定する設定手段と;
     を備えることを特徴とする燃料噴射制御装置。
    A fuel injection control device that controls energization of a fuel injection valve that injects fuel into an engine,
    Temperature estimation means for estimating the temperature of the fuel injection valve;
    Based on the temperature of the fuel injection valve estimated by the temperature estimation means, it should be energized with a duty ratio through which the maximum drive current flows from the start of energization of the fuel injection valve to the completion of opening of the fuel injection valve. Setting means for setting the initial energization time;
    A fuel injection control device comprising:
  2.  前記温度推定手段は、前記燃料噴射弁の通電時間の積算値、前記燃料の温度、前記燃料噴射弁の周囲の雰囲気温度、前記エンジンの回転数及び前記燃料の流量の少なくとも1つに基づいて前記燃料噴射弁の温度を推定することを特徴とする請求項1に記載の燃料噴射制御装置。 The temperature estimation means is based on at least one of an integrated value of energization time of the fuel injection valve, a temperature of the fuel, an ambient temperature around the fuel injection valve, an engine speed, and a flow rate of the fuel. The fuel injection control device according to claim 1, wherein the temperature of the fuel injection valve is estimated.
  3.  前記温度推定手段は、前記燃料噴射弁の通電時間と前記エンジンの回転数とに基づいて前記燃料の流量を算出することを特徴とする請求項2に記載の燃料噴射制御装置。 3. The fuel injection control device according to claim 2, wherein the temperature estimation means calculates the flow rate of the fuel based on a current-carrying time of the fuel injection valve and the rotational speed of the engine.
  4.  前記設定手段は、前記温度推定手段にて推定された前記燃料噴射弁の温度に加えて、前記燃料噴射弁の通電に用いられる電源電圧及び前記燃料噴射弁に供給される前記燃料の圧力に基づいて前記初期通電時間を設定することを特徴とする請求項1~3のいずれか一項に記載の燃料噴射制御装置。 The setting means is based on a power supply voltage used for energizing the fuel injection valve and a pressure of the fuel supplied to the fuel injection valve in addition to the temperature of the fuel injection valve estimated by the temperature estimation means. 4. The fuel injection control apparatus according to claim 1, wherein the initial energization time is set.
PCT/JP2012/082541 2011-12-22 2012-12-14 Fuel injection control device WO2013094540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281368 2011-12-22
JP2011281368A JP2013130155A (en) 2011-12-22 2011-12-22 Fuel injection control device

Publications (1)

Publication Number Publication Date
WO2013094540A1 true WO2013094540A1 (en) 2013-06-27

Family

ID=48668431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082541 WO2013094540A1 (en) 2011-12-22 2012-12-14 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP2013130155A (en)
WO (1) WO2013094540A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027347A1 (en) * 2014-10-17 2016-04-22 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING A QUANTITY OF FUEL TO BE INJECTED IN AN INTERNAL COMBUSTION ENGINE
WO2018061468A1 (en) * 2016-09-27 2018-04-05 株式会社ケーヒン Internal combustion engine control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162747A (en) 2017-03-27 2018-10-18 株式会社ケーヒン Internal combustion engine control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084575A (en) * 1994-06-22 1996-01-09 Unisia Jecs Corp Drive control device of fuel injection valve for engine
JP2005180352A (en) * 2003-12-19 2005-07-07 Toyota Motor Corp Temperature estimating method for fuel injection valve, and fuel injection quantity correcting method for fuel injection valve using this temperature estimating method
JP2008190345A (en) * 2007-02-01 2008-08-21 Nikki Co Ltd Injector control device
JP2008202492A (en) * 2007-02-20 2008-09-04 Yamaha Motor Co Ltd Fuel injection control device, engine, and straddle-type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084575A (en) * 1994-06-22 1996-01-09 Unisia Jecs Corp Drive control device of fuel injection valve for engine
JP2005180352A (en) * 2003-12-19 2005-07-07 Toyota Motor Corp Temperature estimating method for fuel injection valve, and fuel injection quantity correcting method for fuel injection valve using this temperature estimating method
JP2008190345A (en) * 2007-02-01 2008-08-21 Nikki Co Ltd Injector control device
JP2008202492A (en) * 2007-02-20 2008-09-04 Yamaha Motor Co Ltd Fuel injection control device, engine, and straddle-type vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027347A1 (en) * 2014-10-17 2016-04-22 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING A QUANTITY OF FUEL TO BE INJECTED IN AN INTERNAL COMBUSTION ENGINE
WO2018061468A1 (en) * 2016-09-27 2018-04-05 株式会社ケーヒン Internal combustion engine control device

Also Published As

Publication number Publication date
JP2013130155A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US9228526B2 (en) Fuel injection controller
JP6104302B2 (en) In-vehicle engine controller
US8115144B2 (en) Method for controlling the operation of a glow-plug in a diesel engine
US20060016435A1 (en) Supplemental fuel injector trigger circuit
US20120194961A1 (en) Injector Drive Circuit
JP6199227B2 (en) Fuel injection control device for internal combustion engine
WO2013094540A1 (en) Fuel injection control device
JP2001050092A (en) Solenoid valve driving system
JP5890678B2 (en) Fuel injection control device
JP2022051146A (en) Injection control device
US9322384B2 (en) Glow plug control drive method and glow plug drive control system
JP2004060555A (en) Start air volume control device of internal combustion engine
JP5900369B2 (en) Solenoid valve drive
JP6158026B2 (en) Booster
JP2012184686A (en) Engine control unit
JP5426622B2 (en) Boost control device for fuel injection valve
US20200200114A1 (en) Method of controlling injector driving circuit
JP2013151925A (en) Injector control device
JP2008128058A (en) Electric power supply device
JP2020188374A (en) Solenoid valve drive device
JP5450248B2 (en) Electronic control unit
JP6804557B2 (en) Engine drive system
JP2014020207A (en) Fuel injection control device of internal combustion engine
JP2009085043A (en) Drive device for fuel injection valve
KR101271411B1 (en) Fuel cut solenoid valve control apparatus of fuel pump motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860868

Country of ref document: EP

Kind code of ref document: A1