JP2014020207A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2014020207A
JP2014020207A JP2012156302A JP2012156302A JP2014020207A JP 2014020207 A JP2014020207 A JP 2014020207A JP 2012156302 A JP2012156302 A JP 2012156302A JP 2012156302 A JP2012156302 A JP 2012156302A JP 2014020207 A JP2014020207 A JP 2014020207A
Authority
JP
Japan
Prior art keywords
fuel injection
injection valve
drive
current value
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012156302A
Other languages
Japanese (ja)
Inventor
Hirotomo Ujiie
弘智 氏家
Junji Kurauchi
淳史 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012156302A priority Critical patent/JP2014020207A/en
Publication of JP2014020207A publication Critical patent/JP2014020207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device of an internal combustion engine which detects a driving current value of each fuel injection valve and reduces power consumption without increasing circuit parts, in a driving circuit for driving both of a port fuel injection valve and a direct fuel injection valve.SOLUTION: A driving current IDP supplied to a port fuel injection valve 3 and a driving current IDD supplied to a direct fuel injection valve 4 are detected by a common current detecting resistor R1 and a CPU 11. Duty feedback control of a driving voltage that causes a retention current value IHLDD for valve-opening state retention of the direct fuel injection valve 4 to accord with a target current value ICMDD is performed. At the same time, duty feedback control of a driving voltage that causes a retention current value IHLDP for valve-opening state retention of the port fuel injection valve 3 to accord with a target current value ICMDP is performed.

Description

本発明は、内燃機関の燃料噴射制御装置に関し、特に吸気通路内に燃料を噴射する燃料噴射弁と、燃焼室内に燃料を噴射する燃料噴射弁とを備える内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device for an internal combustion engine that includes a fuel injection valve that injects fuel into an intake passage and a fuel injection valve that injects fuel into a combustion chamber.

特許文献1には、吸気通路内に燃料を噴射する燃料噴射弁(以下「ポート燃料噴射弁」という)と、燃焼室内に燃料を噴射する燃料噴射弁(以下「筒内燃料噴射弁」という)とを備える内燃機関の燃料噴射制御装置が示されており、特許文献2には、筒内燃料噴射弁を駆動する駆動回路が具体的に示されている。   Patent Document 1 discloses a fuel injection valve that injects fuel into an intake passage (hereinafter referred to as “port fuel injection valve”) and a fuel injection valve that injects fuel into a combustion chamber (hereinafter referred to as “in-cylinder fuel injection valve”). Is shown, and Patent Document 2 specifically shows a drive circuit for driving the in-cylinder fuel injection valve.

特許文献2に示されて駆動回路では、筒内燃料噴射弁のソレノイドに供給される駆動電流値が検出され、検出される開弁保持電流値が所定電流値の範囲内に入るように、電源とソレノイドとの間に設けられたスイッチング素子がオンオフ制御される。   In the driving circuit shown in Patent Document 2, the driving current value supplied to the solenoid of the in-cylinder fuel injection valve is detected, and the power supply is set so that the detected valve-opening holding current value falls within a predetermined current value range. The switching element provided between the solenoid and the solenoid is on / off controlled.

特開2007−192088号公報Japanese Patent Laid-Open No. 2007-92088 特許4474423号公報Japanese Patent No. 4474423

ポート燃料噴射弁の駆動回路においては、特許文献2に示されるような保持電流値のフィードバック制御、すなわちポート燃料噴射弁のソレノイドに供給される駆動電流値を検出し、検出される駆動電流値に応じてスイッチング素子をオンオフ制御することは、行われいない。   In the drive circuit of the port fuel injection valve, the feedback control of the holding current value as shown in Patent Document 2, that is, the drive current value supplied to the solenoid of the port fuel injection valve is detected, and the detected drive current value is set. Accordingly, the on / off control of the switching element is not performed.

したがって、ポート燃料噴射弁の駆動回路では、開弁状態を保持するための保持電流を供給している期間においても駆動電圧がソレノイドに常時印加されるため、消費電力低減の観点で改善の余地があった。   Therefore, in the drive circuit of the port fuel injection valve, the drive voltage is always applied to the solenoid even during the period in which the holding current for maintaining the valve open state is supplied, so there is room for improvement from the viewpoint of reducing power consumption. there were.

本発明はこの点に着目してなされたものであり、ポート燃料噴射弁及び筒内燃料噴射弁をともに駆動する駆動回路において、回路部品を増加させることなく、各燃料噴射弁の駆動電流値を検出するとともに、消費電力を低減することができる燃料噴射制御装置を提供することを目的とする。   The present invention has been made paying attention to this point, and in the drive circuit that drives both the port fuel injection valve and the in-cylinder fuel injection valve, the drive current value of each fuel injection valve is increased without increasing circuit components. An object of the present invention is to provide a fuel injection control device that can detect and reduce power consumption.

上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の吸気通路(2)内へ燃料を噴射する第1燃料噴射弁(3)と、前記機関の燃焼室内へ燃料を噴射する第2燃料噴射弁(4)とを備える内燃機関の燃料噴射制御装置において、前記第1燃料噴射弁(3)を開閉駆動する第1駆動回路(Q3,L1,Q4)と、前記第2燃料噴射弁(4)を開閉駆動する第2駆動回路(Q1,Q2,L2,Q5)と、前記第1及び第2駆動回路に接続され、前記第1燃料噴射弁の駆動電流値(IDP)及び前記第2燃料噴射弁の駆動電流値(IDD)を検出可能な電流検出手段(R1,CPU11)と、前記第1及び第2燃料噴射弁(3,4)による燃料噴射制御を行う燃料噴射制御手段とを備え、該燃料噴射制御手段は、検出される前記第1燃料噴射弁(3)の駆動電流値である第1駆動電流値(IDP)に応じて、前記第1駆動回路を介して前記第1燃料噴射弁(3)の駆動制御を行う第1駆動制御手段と、検出される前記第2燃料噴射弁の駆動電流値である第2駆動電流値(IDD)に応じて、前記第2駆動回路を介して前記第2燃料噴射弁の駆動制御を行う第2駆動制御手段とを有し、前記第1燃料噴射弁の開弁期間(TIPCMD)と、前記第2燃料噴射弁の開弁期間(TIDCMD)とが重複しないように前記燃料噴射制御を行い、前記第1駆動制御手段は、前記第1駆動電流値(IDP)に応じて、前記第1燃料噴射弁の開弁後の開弁状態保持のための保持電流値(IHLDP)が第1目標値(ICMDP)と一致するように前記第1燃料噴射弁の駆動電圧(VDP)のデューティフィードバック制御を行い、前記第2駆動制御手段は、前記第2駆動電流値(IDD)に応じて、前記第2燃料噴射弁の開弁後の開弁状態保持のための保持電流値(IHLDD)が第2目標値(ICMDD)と一致するように前記第2燃料噴射弁の駆動電圧(VDD)のデューティフィードバック制御を行うことを特徴とする。   In order to achieve the above object, the invention described in claim 1 includes a first fuel injection valve (3) for injecting fuel into the intake passage (2) of the internal combustion engine (1), and fuel into the combustion chamber of the engine. In a fuel injection control device for an internal combustion engine comprising a second fuel injection valve (4) for injecting, a first drive circuit (Q3, L1, Q4) for opening and closing the first fuel injection valve (3), and the first A second drive circuit (Q1, Q2, L2, Q5) for opening and closing the fuel injection valve (4), and a drive current value (IDP) of the first fuel injection valve connected to the first and second drive circuits; ) And current detection means (R1, CPU11) capable of detecting the drive current value (IDD) of the second fuel injection valve, and fuel for performing fuel injection control by the first and second fuel injection valves (3, 4) Injection control means, wherein the fuel injection control means is detected by the first First drive control for controlling the drive of the first fuel injection valve (3) via the first drive circuit in accordance with a first drive current value (IDP) which is a drive current value of the fuel injection valve (3). And a second drive current value (IDD), which is a detected drive current value of the second fuel injection valve, for controlling the drive of the second fuel injection valve via the second drive circuit. 2 drive control means, and performs the fuel injection control so that a valve opening period (TIPCMD) of the first fuel injection valve and a valve opening period (TIDCMD) of the second fuel injection valve do not overlap, In accordance with the first drive current value (IDP), the first drive control means has a holding current value (IHLDP) for holding an open state after the opening of the first fuel injection valve is a first target value. The driving voltage (VDP) of the first fuel injection valve so as to coincide with (ICMDP) Duty feedback control is performed, and the second drive control means performs a holding current value (IHLDD) for holding the valve open state after the second fuel injection valve is opened according to the second drive current value (IDD). ) Is a duty feedback control of the drive voltage (VDD) of the second fuel injector so that the second target value (ICMDD) matches.

請求項1に記載の発明によれば、第1燃料噴射弁(ポート燃料噴射弁)に供給される第1駆動電流値及び第2燃料噴射弁(筒内燃料噴射弁)に供給される第2駆動電流値が共通の電流検出手段によって検出され、第2燃料噴射弁の開弁状態保持のための保持電流値を第2目標値に一致させるデューティフィードバック制御が行われるとともに、第1燃料噴射弁の開弁状態保持のための保持電流値を第1目標値に一致させるデューティフィードバック制御が行われる。第1駆動電流値は、第2駆動電流値を検出する電流検出手段によって行われるため、第1駆動電流値を検出するための電流検出回路を追加する必要がなく、コストの増加を回避することができる。また、第1燃料噴射弁についてもデューティフィードバック制御を行うことにより、消費電力を低減することができる。   According to the first aspect of the present invention, the first drive current value supplied to the first fuel injection valve (port fuel injection valve) and the second drive current value supplied to the second fuel injection valve (in-cylinder fuel injection valve). The drive current value is detected by a common current detecting means, duty feedback control is performed to match the holding current value for maintaining the open state of the second fuel injection valve with the second target value, and the first fuel injection valve Duty feedback control is performed to match the holding current value for maintaining the valve open state with the first target value. Since the first drive current value is performed by current detection means for detecting the second drive current value, it is not necessary to add a current detection circuit for detecting the first drive current value, and an increase in cost is avoided. Can do. Moreover, power consumption can be reduced by performing duty feedback control also about the 1st fuel injection valve.

本発明の一実施形態にかかる内燃機関の燃料噴射制御装置を示す図である。It is a figure showing a fuel injection control device of an internal-combustion engine concerning one embodiment of the present invention. 図1に示す電子制御ユニット(ECU5)に含まれる燃料噴射弁駆動部の構成を示す回路図である。It is a circuit diagram which shows the structure of the fuel injection valve drive part contained in the electronic control unit (ECU5) shown in FIG. 図1に示す筒内燃料噴射弁の駆動電圧及び駆動電流の推移を示すタイムチャートである。It is a time chart which shows transition of the drive voltage and drive current of the cylinder fuel injection valve shown in FIG. 図1に示すポート燃料噴射弁の駆動電圧及び駆動電流の推移を示すタイムチャートである。It is a time chart which shows transition of the drive voltage and drive current of the port fuel injection valve shown in FIG. 燃料噴射弁駆動制御のフローチャートである。It is a flowchart of fuel injection valve drive control.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関(以下「エンジン」という)1の燃料噴射制御装置を示しており、4気筒のエンジン1は、各気筒の吸気弁の少し上流側に気筒毎に設けられ、吸気通路2(吸気ポート)内に燃料を噴射するポート燃料噴射弁3と、各気筒の燃焼室内に直接燃料を噴射する筒内燃料噴射弁4とを備えている。各噴射弁3,4は図示しない燃料ポンプに接続されていると共に電子制御ユニット(以下「ECU」という)5に電気的に接続されてECU5からの信号により開弁時期(燃料噴射時期)及び開弁時間(燃料噴射時間)が制御される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a fuel injection control device for an internal combustion engine (hereinafter referred to as “engine”) 1 according to an embodiment of the present invention. The four-cylinder engine 1 is arranged on the cylinder side slightly upstream of the intake valve of each cylinder. And a port fuel injection valve 3 for injecting fuel into the intake passage 2 (intake port), and an in-cylinder fuel injection valve 4 for injecting fuel directly into the combustion chamber of each cylinder. Each injection valve 3, 4 is connected to a fuel pump (not shown) and is electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 5. The valve time (fuel injection time) is controlled.

ECU5には、電源としてのバッテリ6が接続されており、バッテリ6からECU5が動作するための電力及びポート燃料噴射弁3及び筒内燃料噴射弁4を駆動するための電力が供給される。   A battery 6 as a power source is connected to the ECU 5, and electric power for operating the ECU 5 and electric power for driving the port fuel injection valve 3 and the in-cylinder fuel injection valve 4 are supplied from the battery 6.

図2はECU5に含まれる燃料噴射弁駆動部の構成を示す回路図であり、1つのポート燃料噴射弁3のソレノイドL1と、1つの筒内燃料噴射弁4のソレノイドL2に駆動電流を供給する回路構成が示されている。他の3つのポート燃料噴射弁3及び筒内燃料噴射弁4のソレノイドに駆動電流を供給する回路も同様に構成されている。   FIG. 2 is a circuit diagram showing a configuration of a fuel injection valve drive unit included in the ECU 5, and supplies a drive current to the solenoid L 1 of one port fuel injection valve 3 and the solenoid L 2 of one in-cylinder fuel injection valve 4. The circuit configuration is shown. The circuits for supplying the drive current to the solenoids of the other three port fuel injection valves 3 and the in-cylinder fuel injection valve 4 are similarly configured.

図2に示す燃料噴射弁駆動部は、ソレノイドL2の一端に供給する電源電圧のオンオフ切換を行うスイッチング素子としての電界効果トランジスタ(以下「FET」という)Q1,Q2と、ソレノイドL1の一端に供給する電源電圧のオンオフ切換を行うためのスイッチング素子としてのFETQ3と、ソレノイドL1,L2の他端とアースとの接続/非接続を切り換えるためのスイッチング素子としてのFETQ4,Q5と、ダイオードD1〜D3と、抵抗R1と、CPU11と、昇圧回路12と、駆動回路13及び14とを備えており、CPU11からFETQ1〜Q5に制御信号が供給されるとともに、抵抗R1の一端がCPU11の電流検出端子VIDINに接続されている。電流検出端子VIDINに供給される電圧値VIDは抵抗R1を流れる電流値に比例するので、電圧値VIDによってソレノイドL1及びL2に供給される駆動電流値が検出される。   The fuel injection valve drive unit shown in FIG. 2 supplies field effect transistors (hereinafter referred to as “FETs”) Q1 and Q2 as switching elements for switching on and off the power supply voltage supplied to one end of the solenoid L2, and supplies one end of the solenoid L1. FET Q3 as a switching element for performing on / off switching of the power supply voltage to be performed, FETs Q4 and Q5 as switching elements for switching connection / disconnection between the other ends of the solenoids L1, L2 and the ground, and diodes D1-D3 A resistor R1, a CPU 11, a booster circuit 12, and drive circuits 13 and 14, a control signal is supplied from the CPU 11 to the FETs Q1 to Q5, and one end of the resistor R1 is connected to the current detection terminal VIDIN of the CPU 11. It is connected. Since the voltage value VID supplied to the current detection terminal VIDIN is proportional to the current value flowing through the resistor R1, the drive current value supplied to the solenoids L1 and L2 is detected by the voltage value VID.

昇圧回路12は、バッテリ4の出力電圧(以下「第1電源電圧」という)VS1(例えば14V)を昇圧して第2電源電圧VS2(例えば40V)を出力する。第1電源電圧VS1は、FETQ3を介してソレノイドL1の一端に供給されるとともにFETQ2及びダイオードD1を介してソレノイドL2の一端に供給される。第2電源電圧VS2は、FETQ1を介してソレノイドL2の一端に供給される。ダイオードD1は、昇圧された第2電源電圧VS2の電源ラインから第1電源電圧VS1の電源ラインへ電流が流入することを防止するための設けられている。   The booster circuit 12 boosts an output voltage (hereinafter referred to as “first power supply voltage”) VS1 (for example, 14V) of the battery 4 and outputs a second power supply voltage VS2 (for example, 40V). The first power supply voltage VS1 is supplied to one end of the solenoid L1 through the FET Q3 and is supplied to one end of the solenoid L2 through the FET Q2 and the diode D1. The second power supply voltage VS2 is supplied to one end of the solenoid L2 via the FET Q1. The diode D1 is provided to prevent a current from flowing from the boosted power supply line of the second power supply voltage VS2 to the power supply line of the first power supply voltage VS1.

ソレノイドL1の他端は、FETQ4を介して抵抗R1の一端に接続され、ソレノイドL2の他端は、FETQ5を介して抵抗R1の一端に接続されている。
CPU11の出力端子BSHSW1から出力される電圧制御信号は、駆動回路13を介してFETQ1のゲートに供給され、CPU11の出力端子BTHSW1及びBTHSW2から出力される電圧制御信号は、それぞれ駆動回路13を介してFETQ2,Q3のゲートに供給される。またCPU11の出力端子LOSW1,LOSW2から出力されるロー側制御信号は、それぞれ駆動回路14を介してFETQ4,Q5のゲートに供給される。
The other end of the solenoid L1 is connected to one end of the resistor R1 through the FET Q4, and the other end of the solenoid L2 is connected to one end of the resistor R1 through the FET Q5.
The voltage control signal output from the output terminal BSHSW1 of the CPU 11 is supplied to the gate of the FET Q1 via the drive circuit 13, and the voltage control signals output from the output terminals BTHSW1 and BTHSW2 of the CPU 11 are respectively connected via the drive circuit 13. It is supplied to the gates of the FETs Q2 and Q3. The low-side control signals output from the output terminals LOSW1 and LOSW2 of the CPU 11 are supplied to the gates of the FETs Q4 and Q5 via the drive circuit 14, respectively.

図3(a)及び(b)は、筒内燃料噴射弁4を開弁させるときにソレノイドL2に供給される駆動電圧VDD及び駆動電流IDDの推移を示し、同図(c)は筒内噴射実行フラグFDINJの推移を示すタイムチャートである。時刻tISD〜tIEDの期間TIDCMDが開弁指令信号が出力される期間に相当する(以下「筒内噴射指令期間TIDCMD」という)。   FIGS. 3A and 3B show changes in the drive voltage VDD and the drive current IDD supplied to the solenoid L2 when the in-cylinder fuel injection valve 4 is opened, and FIG. 3C shows in-cylinder injection. It is a time chart which shows transition of execution flag FDINJ. A period TIDCMD from time tISD to tIED corresponds to a period during which the valve opening command signal is output (hereinafter referred to as “in-cylinder injection command period TIDCMD”).

時刻tISDからtSWDまでの期間TVS2においては、FETQ1がオンされて第2電源電圧VS2がソレノイドL2に供給される(過励磁制御が実行される)。時刻tSWDからtIEDまでの期間TVS1においては、FETQ1がオフされ、筒内燃料噴射弁4の開弁状態を保持するための保持電流値IHLDDが目標電流値ICMDDと一致するように、FETQ2がオンオフデューティ制御される(保持制御が実行される)。FETQ5は筒内噴射指令期間TIDCMD中オンされ、FETQ4はオフ状態が維持される。したがって、ソレノイドL2にのみ駆動電流が供給される。   In a period TVS2 from time tISD to tSWD, the FET Q1 is turned on and the second power supply voltage VS2 is supplied to the solenoid L2 (overexcitation control is executed). In the period TVS1 from time tSWD to tIED, the FET Q1 is turned off, and the FET Q2 is turned on / off so that the holding current value IHLDD for maintaining the in-cylinder fuel injection valve 4 in the open state coincides with the target current value ICMDD. Controlled (holding control is executed). The FET Q5 is turned on during the in-cylinder injection command period TIDCMD, and the FET Q4 is kept off. Therefore, the drive current is supplied only to the solenoid L2.

図4(a)及び(b)は、ポート燃料噴射弁3を開弁させるときにソレノイドL1に供給される駆動電圧VDP及び駆動電流IDPの推移を示し、同図(c)はポート噴射実行フラグFPINJの推移を示すタイムチャートである。時刻tISP〜tIEPの期間TIPCMDが開弁指令信号が出力される期間に相当する(以下「ポート噴射指令期間TIPCMD」という)。   FIGS. 4A and 4B show transitions of the drive voltage VDP and the drive current IDP supplied to the solenoid L1 when the port fuel injection valve 3 is opened, and FIG. 4C shows the port injection execution flag. It is a time chart which shows transition of FPINJ. A period TIPCMD from time tISP to tIEP corresponds to a period during which the valve opening command signal is output (hereinafter referred to as “port injection command period TIPCMD”).

ポート燃料噴射弁3に駆動には第1電源電圧VS1のみが適用され、時刻tISPからtSWPまでの期間においては、FETQ3がオンされて第1電源電圧VS1がソレノイドL1に供給される(過励磁制御が実行される)。時刻tSWPからtIEPまでの期間においては、ポート燃料噴射弁3の開弁状態を保持するための保持電流値IHLDPが目標電流値ICMDPと一致するように、FETQ3がオンオフデューティ制御される(保持制御が実行される)。FETQ4はポート噴射指令期間TIPCMD中オンされ、FETQ5はオフ状態が維持される。したがって、ソレノイドL1にのみ駆動電流が供給される。   Only the first power supply voltage VS1 is applied to drive the port fuel injection valve 3. During the period from time tISP to tSWP, the FET Q3 is turned on and the first power supply voltage VS1 is supplied to the solenoid L1 (overexcitation control). Is executed). During the period from time tSWP to tIEP, the FET Q3 is ON / OFF duty controlled so that the holding current value IHLDP for holding the open state of the port fuel injection valve 3 coincides with the target current value ICMDP (holding control is performed). Executed). The FET Q4 is turned on during the port injection command period TIPCMD, and the FET Q5 is kept off. Therefore, the drive current is supplied only to the solenoid L1.

本実施形態では、ポート燃料噴射弁3と筒内燃料噴射弁4は、開弁期間が重複しないように制御され、保持電流値IHLDD及びIHLDPは、ともに電流検出端子VIDINに入力される電圧値VIDによって検出される。   In the present embodiment, the port fuel injection valve 3 and the in-cylinder fuel injection valve 4 are controlled so that the valve opening periods do not overlap, and the holding current values IHLDD and IHLDP are both voltage values VID input to the current detection terminal VIDIN. Detected by.

図5は、エンジン運転状態に応じて算出される燃料噴射指令信号に応じてポート燃料噴射弁3及び筒内燃料噴射弁4を駆動し、燃料噴射を実行する処理のフローチャートである。この処理はCPU11で実行される。   FIG. 5 is a flowchart of a process for driving the port fuel injection valve 3 and the in-cylinder fuel injection valve 4 in accordance with the fuel injection command signal calculated in accordance with the engine operating state and executing fuel injection. This process is executed by the CPU 11.

ステップS11では、筒内噴射実行フラグFDINJが「1」であるか否かを判別し、その答が肯定(YES)であるときは、時刻tISDからtSWDの期間において筒内燃料噴射弁4の過励磁制御を実行し(ステップS15)、次いで時刻tSWDからtIEDの期間において筒内燃料噴射弁4の保持制御を実行する(ステップS16)。ステップS15及びS16により、筒内燃料噴射弁4による燃料噴射が実行される。   In step S11, it is determined whether or not the in-cylinder injection execution flag FDINJ is “1”. If the answer to step S11 is affirmative (YES), the in-cylinder fuel injection valve 4 is in excess during the period from time tISD to tSWD. Excitation control is executed (step S15), and then holding control of the in-cylinder fuel injection valve 4 is executed during the period from time tSWD to tIED (step S16). By steps S15 and S16, fuel injection by the in-cylinder fuel injection valve 4 is executed.

ステップS11の答が否定(NO)であるときは、ポート噴射実行フラグFPINJが「1」であるか否かを判別する(ステップS12)。この答が肯定(YES)であるときは、時刻tISPからtSWPの期間においてポート燃料噴射弁3の過励磁制御を実行し(ステップS13)、次いで時刻tSWPからtIEPの期間においてポート燃料噴射弁3の保持制御を実行する(ステップS14)。ステップS13及びS14により、ポート燃料噴射弁3による燃料噴射が実行される。   If the answer to step S11 is negative (NO), it is determined whether or not a port injection execution flag FPINJ is “1” (step S12). If this answer is affirmative (YES), overexcitation control of the port fuel injection valve 3 is executed during the period from time tISP to tSWP (step S13), and then the port fuel injection valve 3 is operated during the period from time tSWP to tIEP. Holding control is executed (step S14). By steps S13 and S14, fuel injection by the port fuel injection valve 3 is executed.

以上のように本実施形態では、ポート燃料噴射弁3に供給される駆動電流IDP及び筒内燃料噴射弁4に供給される駆動電流IDDが共通の電流検出用抵抗R1及びCPU11によって検出され、ポート燃料噴射弁3の開弁状態保持のための保持電流値IHLDPを目標電流値ICMDPに一致させる保持制御(デューティフィードバック制御)が行われる。ポート燃料噴射弁3に供給される駆動電流IDPは、筒内燃料噴射弁4の駆動電流IDDを検出するために使用される電流検出用抵抗R1を用いて行われるため、駆動電流IDPを検出するための抵抗及びCPU11の入力端子を追加する必要がなく、コストの増加を回避することができる。また、ポート燃料噴射弁3についても検出保持電流値IHLDPに応じてFETQ3をオンオフデューティ制御するデューティフィードバック制御が行われるので、FETQ3を常時オンする場合に比べて消費電力を低減することができる。   As described above, in the present embodiment, the drive current IDP supplied to the port fuel injection valve 3 and the drive current IDD supplied to the in-cylinder fuel injection valve 4 are detected by the common current detection resistor R1 and the CPU 11, and the port Holding control (duty feedback control) is performed so that the holding current value IHLDP for holding the opened state of the fuel injection valve 3 matches the target current value ICMDP. Since the drive current IDP supplied to the port fuel injection valve 3 is performed using the current detection resistor R1 used to detect the drive current IDD of the in-cylinder fuel injection valve 4, the drive current IDP is detected. Therefore, it is not necessary to add a resistor and an input terminal of the CPU 11, and an increase in cost can be avoided. In addition, since the port fuel injection valve 3 is also subjected to duty feedback control for on / off duty control of the FET Q3 in accordance with the detected holding current value IHLDP, power consumption can be reduced as compared with the case where the FET Q3 is always on.

本実施形態では、ポート燃料噴射弁3が第1燃料噴射弁に相当し、筒内燃料噴射弁4が第2燃料噴射弁に相当し、FETQ4及びソレノイドL1が第1駆動回路を構成し、FETQ1,Q2,Q5及びソレノイドL2が第2駆動回路を構成し、抵抗R1及びCPU11が電流検出手段を構成し、CPU11が燃料噴射制御手段、第1駆動制御手段、及び第2駆動制御手段を構成する。   In this embodiment, the port fuel injection valve 3 corresponds to a first fuel injection valve, the in-cylinder fuel injection valve 4 corresponds to a second fuel injection valve, the FET Q4 and the solenoid L1 constitute a first drive circuit, and the FET Q1 , Q2, Q5 and solenoid L2 constitute a second drive circuit, resistor R1 and CPU 11 constitute current detection means, and CPU 11 constitutes fuel injection control means, first drive control means and second drive control means. .

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では4気筒機関の燃料噴射制御装置に本発明を適用した例を示したが、4気筒機関に限らず、3,5,6,8気筒など種々の機関の燃料噴射制御装置に適用可能である。また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの燃料噴射制御装置にも適用が可能である。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, an example in which the present invention is applied to a fuel injection control device for a four-cylinder engine has been described. Applicable to the device. The present invention can also be applied to a fuel injection control device such as a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.

1 内燃機関
2 吸気通路
3 ポート燃料噴射弁(第1燃料噴射弁)
4 筒内燃料噴射弁(第2燃料噴射弁)
11 CPU(電流検出手段、燃料噴射制御手段、第1駆動制御手段、第2駆動制御手段)
12 昇圧回路(第2駆動回路)
L1 ソレノイド(第1駆動回路)
L2 ソレノイド(第2駆動回路)
Q3,Q4 電界効果トランジスタ(第1駆動回路)
Q1,Q2,Q5 電界効果トランジスタ(第2駆動回路)
R1 抵抗(電流検出手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake passage 3 Port fuel injection valve (1st fuel injection valve)
4 In-cylinder fuel injection valve (second fuel injection valve)
11 CPU (current detection means, fuel injection control means, first drive control means, second drive control means)
12 Booster circuit (second drive circuit)
L1 solenoid (first drive circuit)
L2 solenoid (second drive circuit)
Q3, Q4 Field effect transistor (first drive circuit)
Q1, Q2, Q5 Field effect transistor (second drive circuit)
R1 resistance (current detection means)

Claims (1)

内燃機関の吸気通路内へ燃料を噴射する第1燃料噴射弁と、前記機関の燃焼室内へ燃料を噴射する第2燃料噴射弁とを備える内燃機関の燃料噴射制御装置において、
前記第1燃料噴射弁を開閉駆動する第1駆動回路と、
前記第2燃料噴射弁を開閉駆動する第2駆動回路と、
前記第1及び第2駆動回路に接続され、前記第1燃料噴射弁の駆動電流値及び前記第2燃料噴射弁の駆動電流値を検出可能な電流検出手段と、
前記第1及び第2燃料噴射弁による燃料噴射制御を行う燃料噴射制御手段とを備え、
該燃料噴射制御手段は、
検出される前記第1燃料噴射弁の駆動電流値である第1駆動電流値に応じて、前記第1駆動回路を介して前記第1燃料噴射弁の駆動制御を行う第1駆動制御手段と、
検出される前記第2燃料噴射弁の駆動電流値である第2駆動電流値に応じて、前記第2駆動回路を介して前記第2燃料噴射弁の駆動制御を行う第2駆動制御手段とを有し、
前記第1燃料噴射弁の開弁期間と、前記第2燃料噴射弁の開弁期間とが重複しないように前記燃料噴射制御を行い、
前記第1駆動制御手段は、前記第1駆動電流値に応じて、前記第1燃料噴射弁の開弁後の開弁状態保持のための保持電流値が第1目標値と一致するように前記第1燃料噴射弁の駆動電圧のデューティフィードバック制御を行い、
前記第2駆動制御手段は、前記第2駆動電流値に応じて、前記第2燃料噴射弁の開弁後の開弁状態保持のための保持電流値が第2目標値と一致するように前記第2燃料噴射弁の駆動電圧のデューティフィードバック制御を行うことを特徴とする内燃機関の燃料噴射制御装置。
In a fuel injection control device for an internal combustion engine, comprising: a first fuel injection valve that injects fuel into an intake passage of the internal combustion engine; and a second fuel injection valve that injects fuel into a combustion chamber of the engine.
A first drive circuit for opening and closing the first fuel injection valve;
A second drive circuit for opening and closing the second fuel injection valve;
Current detection means connected to the first and second drive circuits and capable of detecting a drive current value of the first fuel injection valve and a drive current value of the second fuel injection valve;
Fuel injection control means for performing fuel injection control by the first and second fuel injection valves,
The fuel injection control means includes
First drive control means for performing drive control of the first fuel injection valve via the first drive circuit according to a detected first drive current value that is a drive current value of the first fuel injection valve;
Second drive control means for performing drive control of the second fuel injection valve via the second drive circuit in accordance with a detected second drive current value that is a drive current value of the second fuel injection valve. Have
Performing the fuel injection control so that the opening period of the first fuel injection valve and the opening period of the second fuel injection valve do not overlap,
In accordance with the first drive current value, the first drive control means is configured so that a holding current value for holding the valve open state after the opening of the first fuel injection valve coincides with a first target value. Perform duty feedback control of the drive voltage of the first fuel injection valve,
In accordance with the second drive current value, the second drive control means is configured so that a holding current value for holding the valve open state after the second fuel injection valve is opened matches a second target value. A fuel injection control device for an internal combustion engine, which performs duty feedback control of a drive voltage of a second fuel injection valve.
JP2012156302A 2012-07-12 2012-07-12 Fuel injection control device of internal combustion engine Pending JP2014020207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156302A JP2014020207A (en) 2012-07-12 2012-07-12 Fuel injection control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156302A JP2014020207A (en) 2012-07-12 2012-07-12 Fuel injection control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014020207A true JP2014020207A (en) 2014-02-03

Family

ID=50195413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156302A Pending JP2014020207A (en) 2012-07-12 2012-07-12 Fuel injection control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2014020207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078340A (en) * 2015-10-19 2017-04-27 株式会社デンソー Electronic control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078340A (en) * 2015-10-19 2017-04-27 株式会社デンソー Electronic control device

Similar Documents

Publication Publication Date Title
US20120194961A1 (en) Injector Drive Circuit
JP6199227B2 (en) Fuel injection control device for internal combustion engine
US20180156148A1 (en) Injection control unit
CN108138712B (en) Vehicle control device
US10837392B2 (en) Injection control device
KR102410965B1 (en) ignition device
JP5890744B2 (en) Electromagnetically driven valve control device
JP2014020207A (en) Fuel injection control device of internal combustion engine
JP7165044B2 (en) fuel injector drive
JP7135809B2 (en) Injection control device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
JP6708187B2 (en) Ignition device
EP1669577B1 (en) Inductive load driver with overcurrent detection
JP5426622B2 (en) Boost control device for fuel injection valve
JP5886685B2 (en) Fuel supply control device for internal combustion engine
WO2013094540A1 (en) Fuel injection control device
US11225925B2 (en) Injection control device
US20200200114A1 (en) Method of controlling injector driving circuit
JP5889129B2 (en) Fuel injection device for internal combustion engine
JP6811153B2 (en) Fuel injection valve drive circuit
JP2012246879A (en) Fuel injection valve drive control device
JP2020096125A (en) Solenoid drive device
JP2016200242A (en) Drive control device of solenoid valve
US10957474B2 (en) Injection control device
JP2013174200A (en) Drive device for fuel injection valve