JP2012246879A - Fuel injection valve drive control device - Google Patents

Fuel injection valve drive control device Download PDF

Info

Publication number
JP2012246879A
JP2012246879A JP2011120712A JP2011120712A JP2012246879A JP 2012246879 A JP2012246879 A JP 2012246879A JP 2011120712 A JP2011120712 A JP 2011120712A JP 2011120712 A JP2011120712 A JP 2011120712A JP 2012246879 A JP2012246879 A JP 2012246879A
Authority
JP
Japan
Prior art keywords
current
fuel injection
injection valve
supply current
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011120712A
Other languages
Japanese (ja)
Inventor
Fumiaki Nasu
文明 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011120712A priority Critical patent/JP2012246879A/en
Publication of JP2012246879A publication Critical patent/JP2012246879A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve drive control device capable of effectively suppressing the generation of a high-rising current caused by a holding current resulting from the remaining energy of a fuel injection valve after a current supplied to the fuel injection valve is sharply lowered to the holding current from a peak current.SOLUTION: When a supply current 20B reaches Ip, all of first, second and third switching elements 2, 4 and 6 are turned off, the supply current is sharply lowered to a holding-current lower limit threshold L, and when the supply current is lowered to value lower than the holding-current lower limit threshold L, the holding current 20B is raised by carrying electricity to the second and third switching elements 4, 6 while turning off the first switching element 2. After that, when the supply current reaches a holding-current upper limit threshold H, the first and second switching elements 2, 4 are turned off, and when the supply current 20B exceeds the holding-current upper limit threshold H even if peak post-processing for lowering the supply current 20B is performed by carrying electricity to the third switching element 6, the third switching element 6 is turned off until the supply current 20B is lowered to the holding-current lower limit threshold L.

Description

本発明は、自動車の燃料供給系等に使用される燃料噴射弁駆動制御装置に関する。   The present invention relates to a fuel injection valve drive control device used in a fuel supply system of an automobile.

自動車用エンジンの技術分野においては、筒内(燃焼室内)に直接燃料を噴射する筒内噴射式エンジンの実用化が進んでいる。この筒内噴射式エンジンでは、特に希薄燃焼による排気エミッション特性や燃費の向上が課題となっている。   In the technical field of automobile engines, in-cylinder injection engines that inject fuel directly into the cylinder (combustion chamber) have been put into practical use. In this in-cylinder engine, improvement of exhaust emission characteristics and fuel consumption due to lean combustion are particularly problematic.

筒内直接噴射型燃料噴射弁を制御する従来の制御装置は、バッテリ電圧よりも高い電圧に昇圧する昇圧回路を設け、昇圧回路により発生させた昇圧電圧により、短期間に燃料噴射弁への供給電流を上昇させる方式を採用するものが多い。   A conventional control device for controlling a direct injection type fuel injection valve in a cylinder is provided with a booster circuit that boosts the voltage to a voltage higher than the battery voltage, and the booster voltage generated by the booster circuit supplies the fuel injector in a short time. Many employ a method of increasing the current.

代表的な電流波形は、通電初期のピーク電流通電期間に昇圧電圧を用い、燃料噴射弁供給電流を予め定められたピーク電流まで短時間に上昇させる。このピーク電流は、吸気ポートに噴射する方式の燃料噴射弁供給電流と比較して、5〜20倍程度大きい。   A typical current waveform uses a boosted voltage during a peak current energization period in the initial energization, and raises the fuel injection valve supply current to a predetermined peak current in a short time. This peak current is about 5 to 20 times larger than the fuel injection valve supply current of the method of injecting into the intake port.

ピーク電流の通電期間が終了した後は、燃料噴射弁へのエネルギー供給源は、昇圧電圧からバッテリ電源へ移行する。ピーク電流に比べて1/2〜1/3程度の第1の保持停止電流で制御される第1の保持電流を経て、更に、その2/3〜1/2程度の第2保持停止電流で制御される第2保持電流へと移行する。ピーク電流と第1の保持電流によって、燃料噴射弁は開弁し、燃料を気筒内に噴射する。   After the energization period of the peak current ends, the energy supply source to the fuel injection valve shifts from the boosted voltage to the battery power source. Through the first holding current controlled by the first holding / stopping current of about 1/2 to 1/3 of the peak current, and further with the second holding / stopping current of about 2/3 to 1/2 Transition to the controlled second holding current. The fuel injection valve is opened by the peak current and the first holding current, and the fuel is injected into the cylinder.

噴射終了時は、燃料噴射弁の閉弁を速やかに行うため、燃料噴射弁へ供給(通電)する電流(以下供給電流と称す)の電流降下を急峻に行い、供給電流を遮断する必要がある。   At the end of injection, in order to quickly close the fuel injection valve, it is necessary to sharply drop the current supplied (energized) to the fuel injection valve (hereinafter referred to as supply current) and to cut off the supply current. .

このように、燃料噴射弁を駆動するには大きなエネルギーを必要とするため、燃料噴射弁及びその駆動回路の発熱を抑えるために、いろいろな駆動電流パターンが存在する。   As described above, since a large amount of energy is required to drive the fuel injection valve, various drive current patterns exist in order to suppress heat generation of the fuel injection valve and its drive circuit.

例えば特許文献1に所載のように、ピーク電流から保持電流へ切り換える際、電流を急峻に立ち下げて保持電流にするパターンや、ピーク電流から第1の保持電流へは還流電流を使いゆっくり切り換え、第1の保持電流から第2の保持電流へは電流を急峻に立ち下げて切り換えるパターン等、組み合わせを変えると非常に多くのパターンが存在する。   For example, as described in Patent Document 1, when switching from the peak current to the holding current, the current is sharply lowered to change to the holding current, or the switching current is slowly switched from the peak current to the first holding current. When the combination is changed, such as a pattern in which the current is sharply lowered and switched from the first holding current to the second holding current, there are a great many patterns.

特開2010−106847号公報JP 2010-106847 A

ここで、上記特許文献1に所載のような燃料噴射弁駆動電流パターンで駆動すると、ピーク電流から保持電流に急峻に切り換えた直後は、燃料噴射弁の残留エネルギーにより、目標とする保持電流より高くなる、盛り上がり電流が発生する。   Here, when driving with the fuel injection valve driving current pattern as described in Patent Document 1, immediately after the sharp change from the peak current to the holding current, due to the residual energy of the fuel injection valve, the target holding current A rising swell current is generated.

このように、供給電流をピーク電流から保持電流に急峻に立ち下げた直後に発生する盛り上がり電流は、バッテリ電圧や周囲温度等、いろんな要因でばらつくため、燃料噴射弁を流れる電流は不安定となり、燃料噴射弁の噴射特性にも影響を与えてしまう。   In this way, the rising current generated immediately after the supply current sharply falls from the peak current to the holding current varies due to various factors such as battery voltage and ambient temperature, so the current flowing through the fuel injection valve becomes unstable, This also affects the injection characteristics of the fuel injection valve.

例えば、アイドル付近の燃料噴射量が少ない領域では、ピーク電流から保持電流に切り換わった直後位で、燃料噴射弁を閉弁するような噴射時間となる。このとき、燃料噴射弁の残留エネルギーにより燃料噴射弁を流れる電流が不安定となると、閉弁にかかる時間もそれに比例してばらつくため、燃料噴射量もそれに応じてばらつく。   For example, in a region where the fuel injection amount is small near the idle, the injection time is such that the fuel injection valve is closed immediately after switching from the peak current to the holding current. At this time, if the current flowing through the fuel injection valve becomes unstable due to the residual energy of the fuel injection valve, the time required to close the valve also varies in proportion thereto, so the fuel injection amount varies accordingly.

つまり、燃料噴射弁の噴射時間をTi、閉弁にかかる時間のばらつきをΔTcとすると、燃料噴射量ばらつきはΔTc/Tiであらわすことができ、燃料噴射弁噴射時間Tiが大きくなると閉弁ばらつきΔTcの影響は小さくなるが、Tiが小さくなると、閉弁ばらつきΔTcの影響が大きくなる。   That is, assuming that the injection time of the fuel injection valve is Ti and the variation in time required for closing the valve is ΔTc, the variation in the fuel injection amount can be expressed as ΔTc / Ti, and the variation in the closing time ΔTc when the fuel injection valve injection time Ti is increased. However, when Ti becomes small, the influence of valve closing variation ΔTc becomes large.

更に、燃料噴射弁噴射時間Tiの小さい領域で、燃料噴射弁の残留エネルギーにより燃料噴射弁に流れる電流が不安定になるため、閉弁ばらつきΔTcが大きくなり、燃料噴射量ばらつきは更に大きくなる。   Further, in the region where the fuel injection valve injection time Ti is small, the current flowing through the fuel injection valve becomes unstable due to the residual energy of the fuel injection valve, so that the valve closing variation ΔTc increases and the fuel injection amount variation further increases.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、燃料噴射弁に供給する電流をピーク電流から保持電流に急峻に立ち下げた後において、燃料噴射弁の残留エネルギに起因して保持電流より高い盛り上がり電流が発生してしまうことを効果的に抑えることのできる燃料噴射弁駆動制御装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to reduce the residual energy of the fuel injection valve after the current supplied to the fuel injection valve has sharply dropped from the peak current to the holding current. Accordingly, it is an object of the present invention to provide a fuel injection valve drive control device capable of effectively suppressing the occurrence of a rising current higher than the holding current.

上記目的を達成すべく、本発明に係る燃料噴射弁駆動制御装置は、基本的には、バッテリ電圧を昇圧した昇圧電圧を用いて燃料噴射弁に電流を流すために、該燃料噴射弁の上流側に配在された第1のスイッチング素子と、前記バッテリ電圧を用いて前記燃料噴射弁に電流を流すために、該燃料噴射弁の上流側に配在された第2のスイッチング素子と、前記燃料噴射弁に流れる電流を制御するために、該燃料噴射弁の下流側に配在された第3のスイッチング素子と、を備え、前記燃料噴射弁に供給される電流がピーク電流閾値に達すると、前記第1、第2、及び第3のスイッチング素子の全てを遮断して、前記供給電流を保持電流下限閾値まで急峻に立ち下げ、前記供給電流が前記保持電流下限閾値より低下すると、前記第1のスイッチング素子を遮断したまま第2及び第3のスイッチング素子を通電させて、前記供給電流を上昇させ、その後、前記供給電流が保持電流上限閾値に達すると、前記第1及び第2のスイッチング素子を遮断するとともに、前記第3のスイッチング素子を通電して前記供給電流を低下させるピーク後処理を行うようにされ、前記ピーク後処理を行っても前記供給電流が前記保持電流上限閾値を越えている場合は、前記第3のスイッチング素子を前記供給電流が前記保持電流下限閾値に下がるまで遮断することを特徴としている。   In order to achieve the above object, the fuel injection valve drive control device according to the present invention basically includes a booster voltage obtained by boosting the battery voltage so that a current flows through the fuel injector. A first switching element arranged on the side, a second switching element arranged on the upstream side of the fuel injection valve in order to flow a current to the fuel injection valve using the battery voltage, A third switching element disposed on the downstream side of the fuel injection valve in order to control a current flowing through the fuel injection valve; and when the current supplied to the fuel injection valve reaches a peak current threshold When all of the first, second, and third switching elements are cut off, the supply current is sharply lowered to the holding current lower limit threshold, and the supply current falls below the holding current lower limit threshold, the first 1 switching element The second and third switching elements are energized while shutting off, and the supply current is increased. Thereafter, when the supply current reaches the holding current upper limit threshold, the first and second switching elements are shut off. In addition, if the third switching element is energized to perform the peak post-processing to decrease the supply current, and the supply current exceeds the holding current upper limit threshold even after the peak post-processing is performed The third switching element is cut off until the supply current falls to the holding current lower limit threshold value.

本発明に係る燃料噴射弁駆動制御装置では、従来の回路構成を変更せずに、電流制御処理内容を変えることで、燃料噴射弁の残留エネルギに起因して発生する盛り上がり電流を効果的に抑えることができる。そのため、燃料噴射量のばらつき等を抑えることができ、燃料噴射量制御精度を高く維持でき、費用対効果に優れたものとなる。
上記した以外の、課題、構成、及び効果は、以下の実施形態により明らかにされる。
In the fuel injection valve drive control device according to the present invention, the swell current generated due to the residual energy of the fuel injection valve is effectively suppressed by changing the current control processing content without changing the conventional circuit configuration. be able to. Therefore, variation in the fuel injection amount can be suppressed, the fuel injection amount control accuracy can be maintained high, and the cost effectiveness is excellent.
Problems, configurations, and effects other than those described above will be clarified by the following embodiments.

本発明に係る燃料噴射弁駆動制御装置の一実施形態(第1実施例、第2実施例及び従来例)の回路構成図。The circuit block diagram of one Embodiment (1st Example, 2nd Example, and a prior art example) of the fuel injection valve drive control apparatus which concerns on this invention. 従来の電流制御による燃料噴射弁供給電流等の変化を示すタイムチャート。The time chart which shows changes, such as a fuel injection valve supply current by the conventional electric current control. 本発明の第1実施例の電流制御による燃料噴射弁供給電流等の変化を示すタイムチャート。The time chart which shows the change of the fuel injection valve supply current etc. by the current control of 1st Example of this invention. 本発明の第2実施例の電流制御による燃料噴射弁供給電流等の変化を示すタイムチャート。The time chart which shows changes of fuel injection valve supply current etc. by current control of the 2nd example of the present invention.

図1は、本発明に係る燃料噴射弁駆動制御装置の一実施形態(第1実施例、第2実施例、及び従来例)の回路構成図であり、自動車用燃料噴射装置の1気筒分の回路を示している。図示回路構成自体は、従来のものと同じであるが、本発明実施例と従来例とでは、その電流制御処理内容が異なる。   FIG. 1 is a circuit configuration diagram of one embodiment (first embodiment, second embodiment, and conventional example) of a fuel injection valve drive control device according to the present invention, and corresponds to one cylinder of a fuel injection device for an automobile. The circuit is shown. Although the illustrated circuit configuration itself is the same as the conventional one, the contents of the current control processing are different between the embodiment of the present invention and the conventional example.

図1に示される燃料噴射弁駆動回路は、バッテリ1と、燃料噴射弁20と、バッテリ電圧1Aから高電圧100Aを発生する昇圧回路100と、燃料噴射弁20に燃料噴射弁駆動電流20Bを供給する燃料噴射弁通電回路200とを備えている。   The fuel injection valve drive circuit shown in FIG. 1 supplies the fuel injection valve drive current 20B to the battery 1, the fuel injection valve 20, the booster circuit 100 that generates the high voltage 100A from the battery voltage 1A, and the fuel injection valve 20. The fuel injection valve energizing circuit 200 is provided.

燃料噴射弁通電回路200は、高電圧100Aを燃料噴射弁20に印加するFET2(第1のスイッチング素子)と、FET2への電流逆流阻止用のダイオード3と、バッテリ電圧1Aを燃料噴射弁20に印加するFET4(第2のスイッチング素子)と、FET4への電流逆流阻止用のダイオード5と、燃料噴射弁供給電流20Bの下流用FET6(第3のスイッチング素子)と、FET6に流れる電流6Bを検出する抵抗7と、燃料噴射弁供給電流20Bを還流させるためのダイオード9と、FET6の遮断時に燃料噴射弁供給電流20Bを昇圧回路に回生するダイオード8と、回生時の電流を検出する抵抗10と、燃料噴射弁20を駆動する燃料噴射パルス(出力信号)201Aを発生する出力信号処理回路201と、供給される燃料噴射パルス(出力信号)201Aに基づいてゲート信号2A、4A、6Aを発生するゲート制御回路202とを備えている。   The fuel injection valve energization circuit 200 includes an FET 2 (first switching element) that applies a high voltage 100A to the fuel injection valve 20, a diode 3 for preventing a current backflow to the FET 2, and a battery voltage 1A to the fuel injection valve 20. FET 4 (second switching element) to be applied, diode 5 for preventing current backflow to FET 4, downstream FET 6 (third switching element) of fuel injection valve supply current 20B, and current 6B flowing through FET 6 are detected. A resistor 7 that recirculates the fuel injection valve supply current 20B, a diode 8 that regenerates the fuel injection valve supply current 20B to the booster circuit when the FET 6 is shut off, and a resistor 10 that detects the current during regeneration. , An output signal processing circuit 201 for generating a fuel injection pulse (output signal) 201A for driving the fuel injection valve 20, and fuel supplied It includes elevation pulse gate signals 2A on the basis of the (output signal) 201A, 4A, and a gate control circuit 202 for generating 6A.

以下、上述のように構成された燃料噴射弁駆動回路の動作を説明する。
図2は、従来の電流制御による、(A)燃料噴射パルス201Aと、(B)燃料噴射弁に供給される電流(供給電流と略すことがある)20Bと、(C)燃料噴射弁上流側電圧20Aと、(D)燃料噴射弁下流側電圧20Cの変化を示すタイムチャートである。
Hereinafter, the operation of the fuel injection valve drive circuit configured as described above will be described.
FIG. 2 shows (A) fuel injection pulse 201A, (B) current supplied to the fuel injection valve (sometimes abbreviated as supply current) 20B, and (C) upstream side of the fuel injection valve by conventional current control. It is a time chart which shows change of voltage 20A and (D) fuel injection valve downstream side voltage 20C.

燃料噴射パルス201AがLowからHighに変化すると(時点t1)、燃料噴射弁20にピーク電流を流すために、FET2とFET6をON(通電)させ燃料噴射弁20に高電圧100Aを印加して、供給電流20Bを流し始める。   When the fuel injection pulse 201A changes from Low to High (time t1), in order to flow the peak current to the fuel injection valve 20, the FET 2 and FET 6 are turned on (energized), and the high voltage 100A is applied to the fuel injection valve 20, The supply current 20B starts to flow.

供給電流20BがIp(ピーク電流閾値)に達すると(時点t2)、FET2、FET4、FET6をOFF(遮断)させ燃料噴射弁20へのエネルギーを遮断し供給電流20Bを急峻に立ち下げる。このとき、燃料噴射弁20から逆起電力が発生し、その逆起電力はダイオード8を介して昇圧回路100に回生する。この間、抵抗10を使って供給電流20Bをモニタし、保持電流L(保持電流下限閾値)に達するまでFET2、FET4、FET6のOFFを継続する。   When the supply current 20B reaches Ip (peak current threshold) (time point t2), the FET2, FET4, and FET6 are turned off (cut off) to cut off the energy to the fuel injection valve 20, and the supply current 20B falls sharply. At this time, a back electromotive force is generated from the fuel injection valve 20, and the back electromotive force is regenerated to the booster circuit 100 via the diode 8. During this time, the supply current 20B is monitored using the resistor 10, and the FET2, FET4, and FET6 are kept OFF until the holding current L (holding current lower limit threshold) is reached.

燃料噴射弁供給電流20Bが保持電流Lに達すると(時点t3)、FET4、FET6をONさせて、バッテリ電圧1Aを燃料噴射弁20に印加して燃料噴射弁供給電流20Bを増加させる。この時燃料噴射弁20には残留エネルギーがあるため、燃料噴射弁供給電流20Bは急激に増加する。   When the fuel injection valve supply current 20B reaches the holding current L (time t3), the FET 4 and FET 6 are turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the fuel injection valve supply current 20B. At this time, since the fuel injector 20 has residual energy, the fuel injector supply current 20B rapidly increases.

燃料噴射弁供給電流20Bが増加し保持電流H(保持電流上限閾値)に達すると、FET4をOFFさせ、FET6はONのままとし、ダイオード9を介して電流を還流させ燃料噴射弁供給電流を低下させる。しかし、燃料噴射弁20には残留エネルギーがあるため、電流は低下せずに増加してしまう(時点t3-t4)。   When the fuel injection valve supply current 20B increases and reaches the holding current H (holding current upper limit threshold value), the FET 4 is turned off, the FET 6 is kept on, the current is recirculated through the diode 9 and the fuel injection valve supply current is lowered. Let However, since there is residual energy in the fuel injection valve 20, the current increases without decreasing (time t3-t4).

残留エネルギーを消費すると、燃料噴射弁供給電流20Bは低下し保持電流Lに達するとFET4をONさせ、バッテリ電圧1Aを燃料噴射弁20に印加して燃料噴射弁供給電流20Bを増加させる。このとき、燃料噴射弁20には残留エネルギーが無いため、燃料噴射弁供給電流20Bはゆっくり上昇する。   When the residual energy is consumed, the fuel injection valve supply current 20B decreases, and when the holding current L is reached, the FET 4 is turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the fuel injection valve supply current 20B. At this time, since there is no residual energy in the fuel injection valve 20, the fuel injection valve supply current 20B rises slowly.

燃料噴射パルス201AがHighからLowに切り換わるまで(時点t7)、上記動作を繰り返し、燃料噴射パルス201AがHighからLowに切り換わると、FET2、FET4、FET6をOFFさせる。このとき発生する燃料噴射弁20の逆起電力は、ダイオード8を介し昇圧回路100へ回生し、燃料噴射弁供給電流20Bを急峻に立下げる。   The above operation is repeated until the fuel injection pulse 201A switches from High to Low (time t7). When the fuel injection pulse 201A switches from High to Low, the FET2, FET4, and FET6 are turned off. The back electromotive force of the fuel injection valve 20 generated at this time is regenerated to the booster circuit 100 via the diode 8, and the fuel injection valve supply current 20B falls sharply.

<第1実施例>
図3は、本発明第1実施例の電流制御による、(A)燃料噴射パルス201Aと、(B)燃料噴射弁に供給される電流20Bと、(C)燃料噴射弁上流側電圧20Aと、(D)燃料噴射弁下流側電圧20Cの変化を示すタイムチャートである。
<First embodiment>
FIG. 3 shows (A) the fuel injection pulse 201A, (B) the current 20B supplied to the fuel injection valve, (C) the fuel injection valve upstream voltage 20A, and the current control according to the current control of the first embodiment of the present invention. (D) It is a time chart which shows the change of the fuel injection valve downstream voltage 20C.

燃料噴射パルス201AがLowからHighに変化すると(時点t1)、燃料噴射弁20にピーク電流を流すために、FET2とFET6をONさせ燃料噴射弁20に高電圧100Aを印加して、燃料噴射弁供給電流20Bを流し始める。   When the fuel injection pulse 201A changes from Low to High (time point t1), the FET 2 and the FET 6 are turned on to apply a high voltage 100A to the fuel injection valve 20 in order to flow the peak current to the fuel injection valve 20, and the fuel injection valve The supply current 20B starts to flow.

供給電流20BがIpに達すると、FET2、FET4、FET6をOFFさせ燃料噴射弁20へのエネルギーを遮断し燃料噴射弁供給電流20Bを急峻に立下げる(時点t2)。このとき、燃料噴射弁20から逆起電力が発生し、その逆起電力はダイオード8を介して昇圧回路100に回生する。この間、抵抗10を使って燃料噴射弁供給電流20Bをモニタし、保持電流L(保持電流下限閾値)に達するまでFET2、FET4、FET6のOFFを継続する。   When the supply current 20B reaches Ip, the FET2, FET4, and FET6 are turned off, the energy to the fuel injection valve 20 is cut off, and the fuel injection valve supply current 20B falls sharply (time t2). At this time, a back electromotive force is generated from the fuel injection valve 20, and the back electromotive force is regenerated to the booster circuit 100 via the diode 8. During this time, the fuel injection valve supply current 20B is monitored using the resistor 10, and the FET2, FET4, and FET6 are kept OFF until the holding current L (holding current lower limit threshold) is reached.

供給電流20Bが保持電流Lに達すると(時点t3)、FET4、FET6をONさせて、バッテリ電圧1Aを燃料噴射弁20に印加して供給電流20Bを増加させる。この時燃料噴射弁20には残留エネルギーがあるため、供給電流20Bは急激に増加する。   When the supply current 20B reaches the holding current L (time point t3), the FET 4 and FET 6 are turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the supply current 20B. At this time, since the fuel injection valve 20 has residual energy, the supply current 20B rapidly increases.

供給電流20Bが増加し保持電流H(保持電流上限閾値)に達すると(時点t4)、FET4をOFFさせ、FET6はONのままとし、ダイオード9を介して電流を還流させ燃料噴射弁供給電流を低下させる。しかし、燃料噴射弁20には残留エネルギーがあり電流は低下せずに増加してしまう。   When the supply current 20B increases and reaches the holding current H (holding current upper limit threshold) (time t4), the FET 4 is turned off, the FET 6 is kept on, the current is circulated through the diode 9 and the fuel injection valve supply current is reduced. Reduce. However, the fuel injection valve 20 has residual energy, and the current increases without decreasing.

そこで、次のようなピーク後処理を行う。すなわち、燃料噴射弁20の残留エネルギーにより増加した燃料噴射弁供給電流20Bが、保持電流H(保持電流上限閾値)より高く設定された保持電流HH(保持電流制限値)に達すると(時点t5)、FET2、FET4、FET6をOFFさせることにより、残留エネルギーはダイオード8を介し昇圧回路100へ回生する。この間、抵抗10を使って燃料噴射弁供給電流20Bをモニタし、保持電流Lに達するまでFET2、FET4、FET6のOFFを継続する。   Therefore, the following peak post-processing is performed. That is, when the fuel injection valve supply current 20B increased by the residual energy of the fuel injection valve 20 reaches the holding current HH (holding current limit value) set higher than the holding current H (holding current upper limit threshold) (time point t5). By turning off FET2, FET4, and FET6, the residual energy is regenerated to the booster circuit 100 via the diode 8. During this time, the fuel injection valve supply current 20B is monitored using the resistor 10, and the FET2, FET4, and FET6 are kept OFF until the holding current L is reached.

供給電流20Bが保持電流Lに達すると、FET4、FET6をONさせて、バッテリ電圧1Aを燃料噴射弁20に印加して燃料噴射弁供給電流20Bを増加させる。   When the supply current 20B reaches the holding current L, the FET 4 and FET 6 are turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the fuel injection valve supply current 20B.

供給電流20Bが増加し保持電流Hに達すると、FET4をOFFさせ、FET6はONのままとし、ダイオード9を介して電流を還流させ燃料噴射弁供給電流を低下させる。   When the supply current 20B increases and reaches the holding current H, the FET 4 is turned off, the FET 6 is kept on, the current is recirculated through the diode 9 and the fuel injection valve supply current is lowered.

燃料噴射パルス201AがHighからLowに切り換わるまで、上記動作を繰り返し、燃料噴射パルス201AがHighからLowに切り換わると(時点t7)、FET2、FET4、FET6をOFFさせる。このとき発生する燃料噴射弁20の逆起電力は、D8を介し昇圧回路100へ回生し、燃料噴射弁供給電流20Bを急峻に立下げる。   The above operation is repeated until the fuel injection pulse 201A switches from High to Low, and when the fuel injection pulse 201A switches from High to Low (time t7), the FET2, FET4, and FET6 are turned off. The back electromotive force of the fuel injection valve 20 generated at this time is regenerated to the booster circuit 100 via D8, and the fuel injection valve supply current 20B falls sharply.

<第2実施例>
図4は、本発明第2実施例の電流制御による、(A)燃料噴射パルス201Aと、(B)燃料噴射弁に供給される電流20Bと、(C)燃料噴射弁上流側電圧20Aと、(D)燃料噴射弁下流側電圧20Cの変化を示すタイムチャートである。
<Second embodiment>
FIG. 4 shows (A) the fuel injection pulse 201A, (B) the current 20B supplied to the fuel injection valve, (C) the fuel injection valve upstream voltage 20A, and the current control according to the current control of the second embodiment of the present invention. (D) It is a time chart which shows the change of the fuel injection valve downstream voltage 20C.

燃料噴射パルス201AがLowからHighに変化すると(時点t1)、燃料噴射弁20にピーク電流を流すために、FET2とFET6をONさせ燃料噴射弁20に高電圧100Aを印加して、燃料噴射弁供給電流20Bを流し始める。   When the fuel injection pulse 201A changes from Low to High (time point t1), the FET 2 and the FET 6 are turned on to apply a high voltage 100A to the fuel injection valve 20 in order to flow the peak current to the fuel injection valve 20, and the fuel injection valve The supply current 20B starts to flow.

供給電流20BがIpに達すると、FET2、FET4、FET6をOFFさせ燃料噴射弁20へのエネルギーを遮断し燃料噴射弁供給電流20Bを急峻に立下げる(時点t2)。このとき、燃料噴射弁20から逆起電力が発生し、その逆起電力はダイオード8を介して昇圧回路100に回生する。この間、抵抗10を使って燃料噴射弁供給電流20Bをモニタし、保持電流L(保持電流下限閾値)に達するまでFET2、FET4、FET6のOFFを継続する。   When the supply current 20B reaches Ip, the FET2, FET4, and FET6 are turned off, the energy to the fuel injection valve 20 is cut off, and the fuel injection valve supply current 20B falls sharply (time t2). At this time, a back electromotive force is generated from the fuel injection valve 20, and the back electromotive force is regenerated to the booster circuit 100 via the diode 8. During this time, the fuel injection valve supply current 20B is monitored using the resistor 10, and the FET2, FET4, and FET6 are kept OFF until the holding current L (holding current lower limit threshold) is reached.

燃料噴射弁供給電流20Bが保持電流Lに達すると(t3)、FET4、FET6をONさせて、バッテリ電圧1Aを燃料噴射弁20に印加して燃料噴射弁供給電流20Bを増加させる。このとき燃料噴射弁20には残留エネルギーがあるため、燃料噴射弁供給電流20Bは急激に増加する。   When the fuel injection valve supply current 20B reaches the holding current L (t3), the FET 4 and FET 6 are turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the fuel injection valve supply current 20B. At this time, since there is residual energy in the fuel injection valve 20, the fuel injection valve supply current 20B increases rapidly.

供給電流20Bが増加し保持電流H(保持電流上限閾値)に達すると(時点t4)、FET4をOFFさせ、FET6はONのままとし、ダイオード9を介して電流を還流させ、燃料噴射弁供給電流を低下させる。しかし、燃料噴射弁20には残留エネルギーがあり電流は低下せずに増加してしまう。   When the supply current 20B increases and reaches the holding current H (holding current upper limit threshold) (time t4), the FET 4 is turned off, the FET 6 remains on, the current is recirculated through the diode 9, and the fuel injection valve supply current Reduce. However, the fuel injection valve 20 has residual energy, and the current increases without decreasing.

そこで、次のようなピーク後処理を行う。すなわち、燃料噴射弁20の残留エネルギーにより増加した供給電流20Bが、保持電流Hを超えた状態が所定時間(保持電流制限時間Ta=時点t4からt5までの期間)経過すると、FET2、FET4、FET6をOFFさせて、残留エネルギーをダイオード8を介し昇圧回路100へ回生する。この間、抵抗10を使って供給電流20Bをモニタし、保持電流Lに達するまでFET2、FET4、FET6のOFFを継続する。   Therefore, the following peak post-processing is performed. That is, when a predetermined time (holding current limit time Ta = period from time t4 to time t5) elapses when the supply current 20B increased by the residual energy of the fuel injection valve 20 exceeds the holding current H, FET2, FET4, FET6 Is turned off, and the residual energy is regenerated to the booster circuit 100 via the diode 8. During this time, the supply current 20B is monitored using the resistor 10, and the FET2, FET4, and FET6 are kept OFF until the holding current L is reached.

燃料噴射弁供給電流20Bが保持電流Lに達すると、FET4、FET6をONさせて、バッテリ電圧1Aを燃料噴射弁20に印加して燃料噴射弁供給電流20Bを増加させる。   When the fuel injection valve supply current 20B reaches the holding current L, the FET 4 and FET 6 are turned on, and the battery voltage 1A is applied to the fuel injection valve 20 to increase the fuel injection valve supply current 20B.

供給電流20Bが増加し保持電流Hに達すると、FET4をOFFさせ、FET6はONのままとし、D9を介して電流を還流させ燃料噴射弁供給電流を低下させる。
燃料噴射パルス201AがHighからLowに切り換わるまで(時点t7)、上記動作を繰り返し、燃料噴射パルス201AがHighからLowに切り換わると、FET2、FET4、FET6をOFFさせる。このとき発生する燃料噴射弁20の逆起電力は、D8を介し昇圧回路100へ回生し、燃料噴射弁供給電流20Bを急峻に立下げる。
When the supply current 20B increases and reaches the holding current H, the FET 4 is turned off, the FET 6 remains on, the current is recirculated through D9, and the fuel injection valve supply current is lowered.
The above operation is repeated until the fuel injection pulse 201A switches from High to Low (time t7). When the fuel injection pulse 201A switches from High to Low, the FET2, FET4, and FET6 are turned off. The back electromotive force of the fuel injection valve 20 generated at this time is regenerated to the booster circuit 100 via D8, and the fuel injection valve supply current 20B falls sharply.

以上の説明から理解されるように、本発明実施例では、従来の回路構成を変更せずに、電流制御処理内容を変えることで、燃料噴射弁の残留エネルギに起因して発生する盛り上がり電流を効果的に抑えることができる。そのため、燃料噴射量のばらつき等を抑えることができ、燃料噴射量制御精度を高く維持でき、費用対効果に優れたものとなる。   As can be understood from the above description, in the embodiment of the present invention, the swell current generated due to the residual energy of the fuel injection valve is changed by changing the current control processing content without changing the conventional circuit configuration. It can be effectively suppressed. Therefore, variation in the fuel injection amount can be suppressed, the fuel injection amount control accuracy can be maintained high, and the cost effectiveness is excellent.

1・・・バッテリ、1A・・・バッテリ電圧、2・・・高電圧印加用FET(第1のスイッチング素子)、2A、4A、6A・・・ゲート信号、3・・・逆流阻止ダイオード、4・・・バッテリ電圧印加用FET(第2のスイッチング素子)、5・・・逆流阻止ダイオード、6・・・下流側FET(第3のスイッチング素子)、6B・・・通電電流、7・・・電流検出抵抗、8・・・回生ダイオード、9・・・還流ダイオード、20・・・燃料噴射弁、20B・・・燃料噴射弁供給電流、100A・・・高電圧、100・・・昇圧回路、200・・・燃料噴射弁通電回路、201・・・出力信号処理回路、201A・・・燃料噴射パルス、202・・・ゲート制御回路、Ip・・・ピーク電流閾値、L・・・保持電流(保持電流下限閾値)、H・・・保持電流(保持電流上限閾値)、HH・・・保持電流制限値、Ta・・・保持電流制限時間   DESCRIPTION OF SYMBOLS 1 ... Battery, 1A ... Battery voltage, 2 ... High voltage application FET (1st switching element), 2A, 4A, 6A ... Gate signal, 3 ... Backflow prevention diode, 4 ... FET for battery voltage application (second switching element), 5 ... Backflow prevention diode, 6 ... Downstream side FET (third switching element), 6B ... Current flow, 7 ... Current detection resistor, 8 ... regenerative diode, 9 ... recirculation diode, 20 ... fuel injection valve, 20B ... fuel injection valve supply current, 100A ... high voltage, 100 ... booster circuit, DESCRIPTION OF SYMBOLS 200 ... Fuel injection valve electricity supply circuit, 201 ... Output signal processing circuit, 201A ... Fuel injection pulse, 202 ... Gate control circuit, Ip ... Peak current threshold value, L ... Holding current ( Holding current lower threshold) ... holding current (holding current upper threshold), HH ... holding current limit value, Ta ... holding current limit time

Claims (3)

バッテリ電圧を昇圧した昇圧電圧を用いて燃料噴射弁に電流を流すために、該燃料噴射弁の上流側に配在された第1のスイッチング素子と、前記バッテリ電圧を用いて前記燃料噴射弁に電流を流すために、該燃料噴射弁の上流側に配在された第2のスイッチング素子と、前記燃料噴射弁に流れる電流を制御するために、該燃料噴射弁の下流側に配在された第3のスイッチング素子と、を備え、前記燃料噴射弁に供給される電流がピーク電流閾値に達すると、前記第1、第2、及び第3のスイッチング素子の全てを遮断して、前記供給電流を保持電流下限閾値まで急峻に立ち下げ、前記供給電流が前記保持電流下限閾値より低下すると、前記第1のスイッチング素子を遮断したまま第2及び第3のスイッチング素子を通電させて、前記供給電流を上昇させ、その後、前記供給電流が保持電流上限閾値に達すると、前記第1及び第2のスイッチング素子を遮断するとともに、前記第3のスイッチング素子を通電して前記供給電流を低下させるピーク後処理を行うようにされた燃料噴射弁駆動制御装置であって、
前記ピーク後処理を行っても前記供給電流が前記保持電流上限閾値を越えている場合は、前記第3のスイッチング素子を前記供給電流が前記保持電流下限閾値に下がるまで遮断することを特徴とする燃料噴射弁駆動制御装置。
In order to flow a current to the fuel injection valve using the boosted voltage obtained by boosting the battery voltage, the first switching element disposed on the upstream side of the fuel injection valve and the fuel injection valve using the battery voltage A second switching element disposed on the upstream side of the fuel injection valve in order to flow an electric current; and a second switching element disposed on the downstream side of the fuel injection valve in order to control the current flowing in the fuel injection valve. A third switching element, and when the current supplied to the fuel injection valve reaches a peak current threshold, all of the first, second, and third switching elements are cut off to supply the supply current. When the supply current drops below the holding current lower limit threshold, the second and third switching elements are energized while the first switching element is cut off, and the supply current is reduced. After that, when the supply current reaches the holding current upper limit threshold, the first and second switching elements are shut off, and the third switching element is energized to decrease the supply current. A fuel injection valve drive control device configured to perform
If the supply current exceeds the holding current upper limit threshold even after the peak post-processing, the third switching element is shut off until the supply current falls to the holding current lower limit threshold. Fuel injection valve drive control device.
前記ピーク後処理を行っても前記供給電流が前記保持電流上限閾値より高く設定された保持電流制限値を越えた場合は、前記第1、第2及び第3のスイッチング素子の全てを遮断して、前記供給電流を低下させることを特徴とする請求項1に記載の燃料噴射弁駆動制御装置。   If the supply current exceeds the holding current limit value set higher than the holding current upper limit threshold even after the peak post-processing, all of the first, second and third switching elements are cut off. The fuel injection valve drive control device according to claim 1, wherein the supply current is reduced. 前記ピーク後処理を行っても前記供給電流が前記保持電流上限閾値を所定時間以上超えている場合は、前記第1、第2及び第3のスイッチング素子の全てを遮断して、前記供給電流を低下させることを特徴とする請求項1に記載の燃料噴射弁駆動制御装置。   If the supply current exceeds the holding current upper limit threshold for a predetermined time or more even after the peak post-processing, all of the first, second, and third switching elements are shut off, and the supply current is reduced. The fuel injection valve drive control device according to claim 1, wherein the fuel injection valve drive control device is lowered.
JP2011120712A 2011-05-30 2011-05-30 Fuel injection valve drive control device Withdrawn JP2012246879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120712A JP2012246879A (en) 2011-05-30 2011-05-30 Fuel injection valve drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120712A JP2012246879A (en) 2011-05-30 2011-05-30 Fuel injection valve drive control device

Publications (1)

Publication Number Publication Date
JP2012246879A true JP2012246879A (en) 2012-12-13

Family

ID=47467551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120712A Withdrawn JP2012246879A (en) 2011-05-30 2011-05-30 Fuel injection valve drive control device

Country Status (1)

Country Link
JP (1) JP2012246879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929793A (en) * 2014-03-17 2015-09-23 通用汽车环球科技运作有限责任公司 Method of operating a fuel injector
CN109642533A (en) * 2016-08-26 2019-04-16 日立汽车系统株式会社 The control device of fuel injection device
CN109838318A (en) * 2017-11-27 2019-06-04 丰田自动车株式会社 The control device and control method of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929793A (en) * 2014-03-17 2015-09-23 通用汽车环球科技运作有限责任公司 Method of operating a fuel injector
CN109642533A (en) * 2016-08-26 2019-04-16 日立汽车系统株式会社 The control device of fuel injection device
CN109838318A (en) * 2017-11-27 2019-06-04 丰田自动车株式会社 The control device and control method of internal combustion engine
CN109838318B (en) * 2017-11-27 2021-12-28 丰田自动车株式会社 Control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5470294B2 (en) Injector drive circuit
US9714626B2 (en) Drive device for fuel injection device
US8599530B2 (en) Electromagnetic valve driving circuit
JP4776651B2 (en) Internal combustion engine control device
JP4474423B2 (en) Internal combustion engine control device
JP4871245B2 (en) Internal combustion engine control device
JP5160581B2 (en) Injector drive device
JP5300787B2 (en) Internal combustion engine control device
US6766788B2 (en) Pre-charging strategy for fuel injector fast opening
JP5772788B2 (en) Fuel injection control device and fuel injection system
JP2013087717A (en) Solenoid valve driving device for fuel injection control device
JP4251201B2 (en) Injector drive device
JP6488015B2 (en) Booster device for injector drive
JP4876174B2 (en) Internal combustion engine control device
JP2012246879A (en) Fuel injection valve drive control device
JP2009024662A (en) Control device of electromagnetic load
CN108138712B (en) Vehicle control device
JP5659117B2 (en) Fuel injection device for internal combustion engine
JP2018031294A (en) Solenoid valve drive device
JP2012184686A (en) Engine control unit
JP2017046382A (en) Electromagnetic device drive unit
JP6502838B2 (en) Electromagnetic device drive device, electronic control device for vehicle, and vehicle
JP2016050550A (en) Fuel injection valve drive unit
JP2014020207A (en) Fuel injection control device of internal combustion engine
JP2013174200A (en) Drive device for fuel injection valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805