JP2013174200A - Drive device for fuel injection valve - Google Patents

Drive device for fuel injection valve Download PDF

Info

Publication number
JP2013174200A
JP2013174200A JP2012039711A JP2012039711A JP2013174200A JP 2013174200 A JP2013174200 A JP 2013174200A JP 2012039711 A JP2012039711 A JP 2012039711A JP 2012039711 A JP2012039711 A JP 2012039711A JP 2013174200 A JP2013174200 A JP 2013174200A
Authority
JP
Japan
Prior art keywords
fuel injection
injection valve
switching element
voltage
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012039711A
Other languages
Japanese (ja)
Inventor
Takao Fukuda
隆夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012039711A priority Critical patent/JP2013174200A/en
Publication of JP2013174200A publication Critical patent/JP2013174200A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such the problem that the withstand voltage of a boosting capacitor in a booster circuit is required to be equal to or higher than a feed voltage to a solenoid coil for driving a fuel injection valve, thus causing the upsizing of a drive circuit, and a diode for preventing a backward flow which prevents the backward flow of current from high voltage to a battery side or a diode for preventing the damage of a switching element by counter electromotive force of the solenoid coil for driving the fuel injection valve is required, thus causing the physical upsizing of the drive circuit.SOLUTION: A fuel injection solenoid valve is driven by supplying the voltage of a battery of a fuel injection device to the high voltage side of the solenoid coil for driving the fuel injection valve and supplying negative voltage generated in a step-down circuit to the low voltage side of the solenoid coil for driving the fuel injection valve to secure high voltage. As a result, the withstand voltage of a step-down capacitor in the step-down circuit is lowered by the amount of a battery voltage.

Description

本発明は内燃機関に燃料を供給する燃料噴射弁の駆動装置に係り、特に内燃機関の気筒内に直接的に燃料を噴射する燃料噴射弁の駆動装置に関するものである。   The present invention relates to a drive device for a fuel injection valve that supplies fuel to an internal combustion engine, and more particularly to a drive device for a fuel injection valve that injects fuel directly into a cylinder of the internal combustion engine.

自動車に代表されるように、その動力発生源としてガソリンや軽油等を燃料とする内燃機関(ガソリンエンジンやディーゼルエンジン)が使用されている。   As represented by automobiles, an internal combustion engine (gasoline engine or diesel engine) that uses gasoline, light oil, or the like as fuel is used as a power generation source.

そして、この内燃機関においては燃費や出力向上の目的で気筒内に直接的に燃料を噴射する燃料噴射弁が用いられている。このような気筒内に直接的に燃料を噴射する燃料噴射弁は、従来の方式(気筒に空気を供給する吸気管に燃料噴射弁を設けた方式)と比べて高圧に加圧した燃料を使用することが特徴となっている。   In this internal combustion engine, a fuel injection valve that directly injects fuel into the cylinder is used for the purpose of improving fuel efficiency and output. A fuel injection valve that directly injects fuel into such a cylinder uses fuel that has been pressurized to a higher pressure than the conventional method (method in which a fuel injection valve is provided in the intake pipe that supplies air to the cylinder). It is characterized by.

したがって、気筒内の圧縮圧力や高圧の燃料の圧力に抗して燃料噴射弁を開弁動作させるために、多くの電気的エネルギーを必要とする。また、燃料噴射弁の制御性能(応答性)の向上や高回転(高速度制御)へ対応するために、短時間にこの電気的エネルギーを燃料噴射弁に供給する必要がある。   Therefore, a large amount of electrical energy is required to open the fuel injection valve against the compression pressure in the cylinder and the pressure of high-pressure fuel. Further, in order to cope with improvement in control performance (responsiveness) of the fuel injection valve and high rotation (high speed control), it is necessary to supply this electric energy to the fuel injection valve in a short time.

一般に、このような燃料噴射弁を駆動する駆動装置は例えば特開2008−169762号公報(特許文献1)に示されており、昇圧回路を用いてバッテリ電圧よりも高い電圧を生成し、昇圧回路に接続されたスイッチング素子をオン/オフ駆動し、これによって得られる昇圧電圧を用いて燃料噴射弁の電磁コイルに電流を流して短時間に大電流を通電させることにより燃料噴射弁を駆動して気筒内に直接的に燃料を噴射することを実現している。   In general, a driving apparatus for driving such a fuel injection valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-169762 (Patent Document 1), and generates a voltage higher than a battery voltage using a booster circuit. The switching element connected to is turned on / off, and the fuel injection valve is driven by passing a current through the electromagnetic coil of the fuel injection valve using the boosted voltage obtained thereby to pass a large current in a short time. The fuel is directly injected into the cylinder.

特開2008−169762号公報JP 2008-169762 A

まず、本発明を説明する前に昇圧回路を用いた従来の燃料噴射弁の駆動装置の構成とその課題について図7乃至図12を用いて説明する。   First, before explaining the present invention, the configuration and problems of a conventional fuel injection valve driving device using a booster circuit will be described with reference to FIGS.

図7は従来の典型的な燃料噴射制御装置の燃料噴射弁を駆動するための駆動装置(駆動回路)を示している。   FIG. 7 shows a drive device (drive circuit) for driving a fuel injection valve of a typical conventional fuel injection control device.

電子制御ユニット(ECU;Electronic Control Unit)70は内燃機関に吸入される空気量、内燃機関の回転数、水温、及び空燃比等の内燃機関の運転動作情報から内燃機関の運転状況に合わせて燃焼室に噴射する適切な燃料噴射量を演算する機能を備えている。この電子制御ユニット70で演算された適切な燃料量は例えばパルス信号として制御回路60へ入力され、以下に説明する各スイッチング素子のオン/オフ状態を制御して燃料噴射弁への通電制御を行う。   An electronic control unit (ECU) 70 combusts according to the operation status of the internal combustion engine from the operation information of the internal combustion engine such as the amount of air taken into the internal combustion engine, the rotational speed of the internal combustion engine, the water temperature, and the air-fuel ratio. A function of calculating an appropriate fuel injection amount to be injected into the chamber is provided. An appropriate fuel amount calculated by the electronic control unit 70 is input to the control circuit 60 as a pulse signal, for example, and the energization control to the fuel injection valve is performed by controlling the ON / OFF state of each switching element described below. .

ここで、上述したように内燃機関の気筒内に燃料を直接的に噴射する内燃機関においては、気筒内に高圧燃料を噴射すると共に高応答性が要求されるため、燃料噴射弁の駆動用電磁コイルに高電圧を印加して大電流を流すことで弁体を開弁するようにしている。   Here, as described above, in an internal combustion engine that directly injects fuel into a cylinder of the internal combustion engine, high-pressure fuel is injected into the cylinder and high response is required. The valve element is opened by applying a high voltage to the coil to flow a large current.

このため、燃料噴射弁の駆動装置には、バッテリ電源1(ここでは14V電源としている)から高電圧を生成する昇圧回路30(いわゆる、DC-DCコンバータ)を有している。この昇圧回路30は昇圧コイル33、昇圧用スイッチング素子31、整流ダイオード32及び高電圧のエネルギーを蓄積するための昇圧用キャパシタ34で構成されている。   For this reason, the drive device for the fuel injection valve has a booster circuit 30 (so-called DC-DC converter) that generates a high voltage from the battery power supply 1 (14V power supply here). The booster circuit 30 includes a booster coil 33, a booster switching element 31, a rectifier diode 32, and a booster capacitor 34 for storing high voltage energy.

この昇圧回路30で昇圧動作させる時には昇圧用スイッチング素子31をオン-オフ操作することにより、昇圧コイル33に蓄積された高電圧のエネルギーをダイオード32により昇圧用キャパシタ34に蓄積し高電圧VHを生成する。例えば、ここではこの時の昇圧された電圧は「65V」とされている。   When the boosting circuit 30 performs a boosting operation, the boosting switching element 31 is turned on and off, whereby the high voltage energy stored in the boosting coil 33 is stored in the boosting capacitor 34 by the diode 32 to generate the high voltage VH. To do. For example, here, the boosted voltage at this time is “65V”.

燃料噴射弁の駆動用電磁コイル50の高電圧側には昇圧用キャパシタ34で生成した高電圧VHを供給するための高電圧側供給用スイッチング素子42と、保持電流を供給するためにバッテリ電圧と接続する保持電流駆動用スイッチング素子41が高電圧を印加した時にバッテリ側に電流が流れないようにするための逆流防止用のダイオード45を介して接続される。また、スイッチング素子41、42がオフした時に燃料噴射弁の駆動用電磁コイル50のフリーホイール電流を流すためのダイオード46も接続されている。   A high voltage side switching element 42 for supplying the high voltage VH generated by the boosting capacitor 34 to the high voltage side of the driving electromagnetic coil 50 of the fuel injection valve, and a battery voltage for supplying the holding current The holding current driving switching element 41 to be connected is connected via a backflow preventing diode 45 for preventing current from flowing to the battery side when a high voltage is applied. A diode 46 is also connected to allow a free wheel current of the driving electromagnetic coil 50 of the fuel injection valve to flow when the switching elements 41 and 42 are turned off.

駆動用電磁コイル50の低電圧側には電流を流すための燃料噴射弁の動作用スイッチング素子43と燃料噴射弁の駆動用電磁コイル50の低電圧側でのフリーホイール電流を流すためのダイオード44が接続されている。   A switching element 43 for operating the fuel injection valve for supplying a current to the low voltage side of the driving electromagnetic coil 50 and a diode 44 for supplying a freewheel current on the low voltage side of the driving electromagnetic coil 50 for the fuel injection valve. Is connected.

このような燃料噴射弁の駆動装置において駆動用電磁コイル50に通電する際の動作について説明する。図8は図7に示した従来の燃料噴射弁の駆動回路の動作タイミングチャートを示しており、燃料噴射弁の駆動停止状態から昇圧された高電圧を「期間A2」で示す時間だけ燃料噴射弁へ供給し、その後に高電圧の印加を「期間B2」で示す時間だけ停止し、更にバッテリ電源に切り換えて「期間C2」で示す時間だけバッテリ電圧を燃料噴射弁に供給し、その後に燃料噴射弁の開弁終了である「停止期間」までを表している。   An operation when the drive electromagnetic coil 50 is energized in such a fuel injection valve drive device will be described. FIG. 8 shows an operation timing chart of the drive circuit of the conventional fuel injection valve shown in FIG. 7, and the high voltage boosted from the drive stop state of the fuel injection valve for the time indicated by “period A2”. Then, the application of the high voltage is stopped for the time indicated by “period B2”, and then the battery power is switched to supply the battery voltage to the fuel injection valve for the time indicated by “period C2”. It represents the period until the “stop period” that is the end of valve opening.

この図8に示すタイミングチャートと合わせて駆動回路の動作を説明すると、図9においては「期間A2」の駆動回路の動作状態を表している。燃料噴射弁の開弁時には高電圧側供給用スイッチング素子42と燃料噴射弁の動作用スイッチング素子43をオンし、保持電流駆動用スイッチング素子41をオフすることにより「65V」の高電圧を燃料噴射弁の駆動用電磁コイル50の高圧側に印加する。この時、動作用スイッチング素子43がオンしているため燃料噴射弁の駆動用電磁コイル50の低圧側は「0V」である。したがって、この駆動用電磁コイル50の高圧側と低圧側の電圧差「65V」に対応して昇圧用キャパシタ34の耐圧を決める必要がある。そして、このキャパシタの耐圧を下げるのも課題の一つである。   The operation of the drive circuit will be described with reference to the timing chart shown in FIG. 8. In FIG. 9, the operation state of the drive circuit in “period A2” is shown. When the fuel injection valve is opened, the high-voltage side supply switching element 42 and the fuel injection valve operation switching element 43 are turned on, and the holding current drive switching element 41 is turned off to inject a high voltage of "65 V". Applied to the high voltage side of the solenoid coil 50 for driving the valve. At this time, since the operation switching element 43 is on, the low pressure side of the driving electromagnetic coil 50 of the fuel injection valve is “0 V”. Therefore, it is necessary to determine the withstand voltage of the boosting capacitor 34 corresponding to the voltage difference “65 V” between the high voltage side and the low voltage side of the driving electromagnetic coil 50. One of the problems is to reduce the withstand voltage of the capacitor.

この時、電流は昇圧用キャパシタ34から高電圧側供給用スイッチング素子42を介し燃料噴射弁の駆動用電磁コイル50に供給されて立ち上がり、その後に燃料噴射弁の駆動用電磁コイル50から燃料噴射弁の動作用スイッチング素子43を介しGNDへ流れる。また、ダイオード45、46によりこの経路以外へ電流が流れないように構成している。   At this time, the current is supplied from the boosting capacitor 34 via the high-voltage side supply switching element 42 to the driving electromagnetic coil 50 of the fuel injection valve and rises, and thereafter, the current is supplied from the driving electromagnetic coil 50 of the fuel injection valve to the fuel injection valve. The current flows to GND through the operation switching element 43. Further, the diodes 45 and 46 are configured so that no current flows outside this path.

特に、ダイオード45がない場合は保持電流駆動用スイッチング素子41内の保護用ダイオードを介しバッテリ1のバッテリ電圧VBと高電圧VHがデッドショートになる。このため、ダイオード45は必ず必要となる電子部品である。そして、このダイオード45をなくすのも課題の一つである。   In particular, when the diode 45 is not provided, the battery voltage VB and the high voltage VH of the battery 1 are dead-shorted via the protective diode in the holding current driving switching element 41. For this reason, the diode 45 is an indispensable electronic component. Also, eliminating the diode 45 is one of the problems.

次に、図10においては「期間B2」の駆動回路の動作状態を表している。燃料噴射弁の駆動用電磁コイル50に流れる電流が開弁電流(Ipeak)に達して高電圧側供給用スイッチング素子42をオフすると燃料噴射弁の駆動用電磁コイル50は逆起電力により電流を流し続けようとし、電流はダイオード46から燃料噴射弁の駆動用電磁コイル50及び燃料噴射弁の動作用スイッチング素子43と流れて立ち下がるようになる。   Next, FIG. 10 illustrates an operation state of the driving circuit in “period B2”. When the current flowing through the driving electromagnetic coil 50 of the fuel injection valve reaches the valve opening current (Ipeak) and the high voltage side supply switching element 42 is turned off, the driving electromagnetic coil 50 of the fuel injection valve causes a current to flow due to the counter electromotive force. In an attempt to continue, the current flows from the diode 46 to the driving electromagnetic coil 50 of the fuel injection valve and the switching element 43 for operating the fuel injection valve, and falls.

次に、図11においては「期間C2」の駆動回路の動作状態を表している。燃料噴射弁の駆動用電磁コイル50に流れる電流が保持電流1(Ihold1)、及び保持電流2(Ihold2)に達する毎に保持電流駆動用スイッチング素子41をオンして燃料噴射弁の駆動用電磁コイル50に電流を供給する。この時保持電流を一定にするため保持電流駆動用スイッチング素子41をスイッチングして立ち上がり状態と立ち下がり状態を繰り返すことで保持電流を平均としてほぼ一定に制御している。   Next, FIG. 11 illustrates an operation state of the driving circuit in “period C2”. Each time the current flowing through the driving electromagnetic coil 50 of the fuel injection valve reaches the holding current 1 (Ihold1) and the holding current 2 (Ihold2), the holding current driving switching element 41 is turned on to drive the fuel injection valve driving electromagnetic coil. 50 is supplied with current. At this time, in order to make the holding current constant, the holding current driving switching element 41 is switched and the rising state and the falling state are repeated, so that the holding current is controlled to be almost constant on average.

最後に、図12においては「停止期間」の駆動回路の動作状態を表している。すべてのスイッチング素子をオフすることで燃料噴射弁への電流の供給を停止する。燃料噴射弁の駆動用電磁コイル50の逆起電力により発生する電流はダイオード46、44を介して昇圧用キャパシタ34に回生され最終的に電流が流れなくなり燃料噴射弁の作動を停止する。   Finally, FIG. 12 shows the operating state of the drive circuit during the “stop period”. The supply of current to the fuel injection valve is stopped by turning off all the switching elements. The current generated by the back electromotive force of the driving electromagnetic coil 50 of the fuel injection valve is regenerated to the boosting capacitor 34 via the diodes 46 and 44, and finally the current does not flow and the operation of the fuel injection valve is stopped.

以上がこれまでに提案されていた、気筒内に直接的に燃料を噴射する燃料噴射弁の駆動装置の回路構成であった。   The above is the circuit configuration of the fuel injection valve driving apparatus that has been proposed so far and injects the fuel directly into the cylinder.

そして、上述したようにこの燃料噴射弁の駆動装置は噴射電磁弁に対して高電圧を印加して大電流を流すことで燃料噴射弁の弁体を開弁することが要求される。このため、バッテリ電圧から高電圧を生成する昇圧回路30が必要となるが、昇圧回路30で生成された高電圧は昇圧キャパシタ34などの電荷蓄積素子に蓄積される。この電荷蓄積素子には燃料噴射弁に印加する高電圧が蓄積されるため、その蓄積電圧以上の耐圧が必要となる。   As described above, the fuel injection valve drive device is required to open the valve body of the fuel injection valve by applying a high voltage to the injection electromagnetic valve to flow a large current. For this reason, a booster circuit 30 that generates a high voltage from the battery voltage is required, but the high voltage generated by the booster circuit 30 is stored in a charge storage element such as the boost capacitor 34. Since the high voltage applied to the fuel injection valve is stored in this charge storage element, a withstand voltage higher than the stored voltage is required.

一般に昇圧回路30の昇圧用キャパシタ34の耐圧は燃料噴射弁の駆動用電磁コイル50への供給電圧以上にする必要があり駆動装置、特に駆動回路の物理的な大型化を招いていた。また、昇圧された高電圧からバッテリ1側への電流の逆流を阻止する逆流防止用ダイオード45や各スイッチング素子41、42、43のオフ時に燃料噴射弁の駆動用電磁コイル50の逆起電力による各スイッチング素子の破壊を防ぐためのダイオード44、46が必要となり、これも駆動回路の物理的な大型化を招いていた。   Generally, the withstand voltage of the boosting capacitor 34 of the boosting circuit 30 needs to be equal to or higher than the supply voltage to the driving electromagnetic coil 50 of the fuel injection valve, which has caused a physical enlargement of the driving device, particularly the driving circuit. Further, the backflow prevention diode 45 for preventing the backflow of the current from the boosted high voltage to the battery 1 side and the back electromotive force of the electromagnetic coil 50 for driving the fuel injection valve when each of the switching elements 41, 42, 43 is turned off. The diodes 44 and 46 for preventing the destruction of each switching element are required, which also causes a physical enlargement of the drive circuit.

本発明の主たる目的は、燃料噴射弁の駆動用電磁コイルへ高電圧を供給する昇圧回路に使用されるキャパシタ等の電荷蓄積素子部品の小型化を図ることができる燃料噴射弁の駆動装置を提供することにある。   SUMMARY OF THE INVENTION The main object of the present invention is to provide a fuel injection valve drive device that can reduce the size of charge storage element components such as capacitors used in a booster circuit that supplies a high voltage to a drive electromagnetic coil of the fuel injection valve. There is to do.

本発明の他の目的は、逆流防止用ダイオード等の電子部品の部品点数を少なくして駆動回路の小型化を図ることができる燃料噴射弁の駆動装置を提供することにある。   Another object of the present invention is to provide a fuel injection valve drive device that can reduce the number of electronic components such as a backflow prevention diode and reduce the size of the drive circuit.

本発明の特徴は、燃料噴射弁の駆動用電磁コイルの高圧側にバッテリ電圧源を接続し、駆動用電磁コイルの低圧側に降圧回路で生成した負電圧電源を接続することで燃料噴射弁の駆動用電磁コイルに所望の電圧を供給する、ところにある。   A feature of the present invention is that a battery voltage source is connected to the high voltage side of the driving electromagnetic coil of the fuel injection valve, and a negative voltage power source generated by a step-down circuit is connected to the low voltage side of the driving electromagnetic coil. A desired voltage is supplied to the driving electromagnetic coil.

本発明によれば、燃料噴射弁の駆動用電磁コイルの両端にバッテリ電圧源と降圧回路の負電圧源を接続することによって、電荷蓄積素子においてはバッテリ電圧分の耐圧を下げることができるようになる。したがって、キャパシタ等の電荷蓄積素子部品の小型化を図ることが期待できる。   According to the present invention, by connecting the battery voltage source and the negative voltage source of the step-down circuit to both ends of the driving electromagnetic coil of the fuel injection valve, the withstand voltage corresponding to the battery voltage can be lowered in the charge storage element. Become. Therefore, it can be expected to reduce the size of charge storage element components such as capacitors.

本発明の一実施例になる燃料噴射弁の駆動装置である駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the drive circuit which is a drive device of the fuel injection valve which becomes one Example of this invention. 図1に示す駆動回路の動作タイミングを示す動作タイミングチャート図である。FIG. 2 is an operation timing chart showing the operation timing of the drive circuit shown in FIG. 1. 図2に示す動作タイミングで「期間A1」の駆動回路の動作状態を説明する動作説明図である。FIG. 3 is an operation explanatory diagram illustrating an operation state of the drive circuit in “period A1” at the operation timing illustrated in FIG. 2. 図2に示す動作タイミングでの「期間B1」の駆動回路の動作状態を説明する動作説明図である。FIG. 3 is an operation explanatory diagram illustrating an operation state of the drive circuit in “period B1” at the operation timing illustrated in FIG. 2. 図2に示す動作タイミングで「期間C1」の駆動回路の動作状態を説明する動作説明図である。FIG. 3 is an operation explanatory diagram for explaining the operation state of the drive circuit in “period C1” at the operation timing shown in FIG. 図2に示す動作タイミングで「停止期間」の駆動回路の動作状態を説明する動作説明図である。FIG. 3 is an operation explanatory diagram for explaining the operation state of the drive circuit in the “stop period” at the operation timing shown in FIG. 2. 従来の燃料噴射弁の駆動装置である駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the drive circuit which is the drive device of the conventional fuel injection valve. 図7に示す回路の動作タイミングを示す動作タイミングチャート図である。FIG. 8 is an operation timing chart showing the operation timing of the circuit shown in FIG. 7. 図8に示す動作タイミングで「期間A2」の駆動回路の動作状態を説明する動作説明図である。FIG. 9 is an operation explanatory diagram illustrating an operation state of the drive circuit in “period A2” at the operation timing illustrated in FIG. 8. 図8に示す動作タイミングでの「期間B2」の駆動回路の動作状態を説明する動作説明図である。FIG. 9 is an operation explanatory diagram illustrating an operation state of the drive circuit in “period B2” at the operation timing illustrated in FIG. 8. 図8に示す動作タイミングで「期間C2」の駆動回路の動作状態を説明する動作説明図である。FIG. 9 is an operation explanatory diagram illustrating an operation state of the drive circuit in “period C2” at the operation timing illustrated in FIG. 図8に示す動作タイミングで「停止期間」の駆動回路の動作状態を説明する動作説明図である。FIG. 9 is an operation explanatory diagram for explaining the operation state of the drive circuit in the “stop period” at the operation timing shown in FIG. 8.

以上で述べたように、昇圧回路の昇圧用キャパシタの耐圧は燃料噴射弁の駆動用電磁コイルへの供給電圧以上にする必要があり駆動装置、特に駆動回路の物理的な大型化を招いていた。また、昇圧された高電圧からバッテリ側への電流の逆流を阻止する逆流防止用ダイオードや各スイッチング素子のオフ時に燃料噴射弁の駆動用電磁コイルの逆起電力による各スイッチング素子の破壊を防ぐためのダイオードが必要となり、これも駆動回路の物理的な大型化を招いていた。   As described above, the withstand voltage of the boosting capacitor of the boosting circuit needs to be equal to or higher than the supply voltage to the driving electromagnetic coil of the fuel injection valve, resulting in a physical enlargement of the driving device, particularly the driving circuit. . Also, in order to prevent the destruction of each switching element due to the back electromotive force of the backflow prevention diode or the electromagnetic coil for driving the fuel injection valve when each switching element is turned off when the switching element is turned off. These diodes are required, and this also leads to physical enlargement of the drive circuit.

本発明はこのような燃料噴射弁の駆動装置の課題を解決するための技術を提案するもので、具体的には昇圧回路に変えて降圧回路を使用して燃料噴射弁の駆動用電磁コイルに必要な駆動電圧を確保するようにしたものである。以下、本発明の一実施例になる燃料噴射弁の駆動装置について詳細に説明する。   The present invention proposes a technique for solving the problem of such a fuel injection valve drive device. Specifically, the present invention provides a drive electromagnetic coil for a fuel injection valve using a step-down circuit instead of a step-up circuit. The required drive voltage is ensured. Hereinafter, a fuel injection valve driving apparatus according to an embodiment of the present invention will be described in detail.

図1は本発明の一実施例になる燃料噴射弁の駆動装置の具体的な回路構成を示している。ECU70や制御回路60は図7に示したものと実質同様であり、ECU70によって内燃機関の運転状態に応じた噴射燃料量を演算し、この演算結果によって制御回路60を経て各スイッチング素子の開閉を制御している。   FIG. 1 shows a specific circuit configuration of a fuel injection valve driving apparatus according to an embodiment of the present invention. The ECU 70 and the control circuit 60 are substantially the same as those shown in FIG. 7. The ECU 70 calculates the amount of injected fuel according to the operating state of the internal combustion engine, and opens and closes each switching element via the control circuit 60 according to the calculation result. I have control.

図1において、バッテリ電圧源1(ここでは14V電源としている)から降圧して負電圧を生成するための降圧回路10は、バッテリ電圧源1の正極に直列に接続された降圧用スイッチング素子11と降圧用ダイオード12、及びこれらの間に接続されてバッテリ電圧源1の負極に接続された降圧用コイル13、降圧用ダイオード12と接続されてバッテリ電圧源1の負極に接続された負電圧のエネルギーを蓄積するための降圧用キャパシタ14で構成されている。   In FIG. 1, a step-down circuit 10 for generating a negative voltage by stepping down from a battery voltage source 1 (here, 14 V power supply) includes a step-down switching element 11 connected in series to the positive electrode of the battery voltage source 1. The step-down diode 12, the step-down coil 13 connected between them and connected to the negative electrode of the battery voltage source 1, and the energy of the negative voltage connected to the negative electrode of the battery voltage source 1 connected to the step-down diode 12 Is constituted by a step-down capacitor 14 for accumulating.

つまり、降圧回路10は、少なくとも駆動用電磁コイル50の負電圧側供給用スイッチング素子22とバッテリ電圧源1の正極の間に直列に接続されたダイオード12及び降圧用スイッチング素子11と、ダイオード12と降圧用スイッチング素子11の間とバッテリ電圧源1の負極側と接続された降圧用コイル13と、ダイオード12と駆動用電磁コイル50の負電圧側供給用スイッチング素子22の間とバッテリ電圧源1の負極側と接続された降圧用キャパシタ14とより構成されている。降圧用スイッチング素子11は制御回路60からのスイッチング信号によって制御され、降圧回路10で降圧電圧(負電圧)を生成している。尚、例えば、ここではこの時の降圧された電圧は「−51V」とされている。   That is, the step-down circuit 10 includes at least the diode 12 and the step-down switching element 11 connected in series between the switching element 22 for supplying the negative voltage side of the driving electromagnetic coil 50 and the positive electrode of the battery voltage source 1, Between the step-down switching element 11 and the step-down coil 13 connected to the negative side of the battery voltage source 1, between the diode 12 and the switching element 22 for supplying the negative voltage side of the driving electromagnetic coil 50, and between the battery voltage source 1 The step-down capacitor 14 is connected to the negative electrode side. The step-down switching element 11 is controlled by a switching signal from the control circuit 60, and the step-down circuit 10 generates a step-down voltage (negative voltage). For example, the stepped down voltage at this time is “−51 V”.

燃料噴射弁の駆動用電磁コイル50の高電圧側はバッテリ電圧源1と接続するためのバッテリ電圧側供給用スイッチング素子21を介してバッテリ電圧源1の正極に接続されている。また、バッテリ電圧側供給用スイッチング素子21と駆動用電磁コイル50の高電圧側の間と、降圧回路10のダイオード12及び降圧用キャパシタ4とはダイオード24を介して接続されている。   The high voltage side of the driving electromagnetic coil 50 of the fuel injection valve is connected to the positive electrode of the battery voltage source 1 via the battery voltage side supply switching element 21 for connection to the battery voltage source 1. The battery voltage side supply switching element 21 and the high voltage side of the driving electromagnetic coil 50 are connected to the diode 12 and the step-down capacitor 4 of the step-down circuit 10 through a diode 24.

更にダイオード24は燃料噴射弁の駆動用コイル50の低電圧側に負電圧側供給用スイッチング素子22を介して接続されている。このダイオード24はバッテリ電圧側供給用スイッチング素子21や負電圧側供給用スイッチング素子22がオフされた時に燃料噴射弁の駆動用電磁コイル50のフリーホイール電流を流すためのダイオードである。   Furthermore, the diode 24 is connected to the low voltage side of the driving coil 50 of the fuel injection valve via the negative voltage side supply switching element 22. This diode 24 is a diode for allowing a free wheel current to flow in the driving electromagnetic coil 50 of the fuel injection valve when the battery voltage side supply switching element 21 and the negative voltage side supply switching element 22 are turned off.

そして、この降圧回路10のダイオード12及び降圧用キャパシタ4の接続点には燃料噴射弁の駆動用電磁コイル50の低電圧側が接続されてバッテリ電圧源1に対する負電圧供給源として利用されるように構成されている。   The low voltage side of the driving electromagnetic coil 50 of the fuel injection valve is connected to the connection point of the diode 12 and the step-down capacitor 4 of the step-down circuit 10 so that it can be used as a negative voltage supply source for the battery voltage source 1. It is configured.

駆動用電磁コイル50の低電圧側の負電圧VLを供給するための負電圧供給用スイッチング素子22の接続点とGNDの間には保持電流を流すための保持電流駆動用スイッチング素子23を介して負電圧がGNDに流れ込まないようにするための逆流防止用のダイオード25を介して接続されている。   Between the connection point of the negative voltage supply switching element 22 for supplying the negative voltage VL on the low voltage side of the drive electromagnetic coil 50 and the GND, a holding current drive switching element 23 for flowing a holding current is provided. The negative voltage is connected via a diode 25 for preventing backflow so as not to flow into GND.

尚、図1において各電気的或いは電子的な部品構成要素は実線で示した電気的な経路(例えば電気配線)で結ばれていることはいうまでもない。   In FIG. 1, it goes without saying that each electrical or electronic component component is connected by an electrical path (for example, electrical wiring) indicated by a solid line.

このような燃料噴射弁の駆動装置において駆動用電磁コイル50に通電する際の動作について説明する。図2は図1に示した本発明の一実施例になる燃料噴射弁の駆動回路の動作タイミングチャートを示しており、燃料噴射弁の駆動停止状態から「期間A1」で示す時間だけバッテリ電圧源1と駆動電磁コイル50の高圧側と接続して燃料噴射弁へ供給し、その後の電圧の印加を「期間B1」で示す時間だけ停止し、更にバッテリ電源に切り換えて「期間C1」で示す時間だけバッテリ電圧を燃料噴射弁に供給し、その後に燃料噴射弁の開弁終了である「停止期間」までを表している。   An operation when the drive electromagnetic coil 50 is energized in such a fuel injection valve drive device will be described. FIG. 2 shows an operation timing chart of the drive circuit for the fuel injection valve according to one embodiment of the present invention shown in FIG. 1, and the battery voltage source is set for the time indicated by “period A1” from the drive stop state of the fuel injection valve. 1 is connected to the high-voltage side of the drive electromagnetic coil 50 and supplied to the fuel injection valve. Thereafter, the application of the voltage is stopped for the time indicated by “period B1”, and further switched to the battery power source for the time indicated by “period C1”. Only the battery voltage is supplied to the fuel injection valve, and then the “stop period” that is the end of the fuel injection valve opening is shown.

この図2に示すタイミングチャートと合わせて本発明の一実施例になる駆動回路の動作を説明すると、図3においては「期間A1」の駆動回路の動作状態を表している。   The operation of the drive circuit according to an embodiment of the present invention will be described with reference to the timing chart shown in FIG. 2. In FIG. 3, the operation state of the drive circuit in “period A1” is shown.

「期間A1」においてはバッテリ電圧側供給用スイッチング素子21と負電圧側供給用スイッチング素子22をオンさせ、両者のアンド条件をとった時間だけ電圧を燃料噴射電磁弁駆動用コイル50に供給する。ここで、燃料噴射弁の駆動用電磁コイル50の両端の電圧はバッテリ電圧VB(14V)と負電圧VL(-51V)となり、駆動用電磁コイル50に加わる電圧VD=VB−VL=65Vとなる。つまり、駆動用電磁コイル50に印加される電圧は従来と同様に「65V」となる。   In the “period A1”, the battery voltage side supply switching element 21 and the negative voltage side supply switching element 22 are turned on, and the voltage is supplied to the fuel injection solenoid valve driving coil 50 for the time when both AND conditions are satisfied. Here, the voltages at both ends of the driving electromagnetic coil 50 of the fuel injection valve are the battery voltage VB (14 V) and the negative voltage VL (−51 V), and the voltage VD = VB−VL = 65 V applied to the driving electromagnetic coil 50. . That is, the voltage applied to the drive electromagnetic coil 50 is “65 V” as in the conventional case.

しかしながら、負電圧VLの電圧は燃料噴射弁の駆動に必要な電圧VD−バッテリ電圧VB=65V-14V=51Vとなるので、降圧用キャパシタ14の耐圧は従来の駆動回路を構成する昇圧回路の昇圧用キャパシタで必要であった「65V」よりバッテリ電圧VB分(14V)だけ少なくてすむことになる。   However, since the voltage of the negative voltage VL is VD−battery voltage VB = 65V−14V = 51V necessary for driving the fuel injection valve, the withstand voltage of the step-down capacitor 14 is boosted by the booster circuit constituting the conventional drive circuit. The battery voltage VB (14 V) is less than the “65 V” required for the capacitor.

このように、バッテリ電圧側供給用スイッチング素子21と負電圧供給用スイッチング素子22をオンすることにより両者のアンド条件の間だけ印加電圧VDが燃料噴射弁の駆動用電磁コイル50に供給される。このため電流はバッテリ電圧側供給用スイッチング素子21から駆動用電磁コイル50に供給されて立ち上がり、負電圧側供給用スイッチング素子22を介し降圧用キャパシタ14へ流れる。また、ダイオード25によりGNDから燃料噴射弁の駆動用電磁コイル50へ電流が流れこまないようにしている。   In this way, by turning on the battery voltage side supply switching element 21 and the negative voltage supply switching element 22, the applied voltage VD is supplied to the drive electromagnetic coil 50 of the fuel injection valve only during both AND conditions. Therefore, the current is supplied from the battery voltage side supply switching element 21 to the driving electromagnetic coil 50 and rises, and flows to the step-down capacitor 14 via the negative voltage side supply switching element 22. The diode 25 prevents a current from flowing from the GND to the driving electromagnetic coil 50 of the fuel injection valve.

次に、図4においては「期間B1」の駆動回路の動作状態を表している。燃料噴射弁の駆動用電磁コイル50に流れる電流が開弁電流(Ipeak)に達してバッテリ電圧側供給用スイッチング素子21をオフすると燃料噴射弁の駆動用電磁コイル50は逆起電力により電流を流し続けようとし、電流はダイオード24から燃料噴射弁の駆動用電磁コイル50及び負電圧供給用スイッチング素子22と流れて立ち下がるようになる。   Next, FIG. 4 illustrates an operation state of the driving circuit in “period B1”. When the current flowing through the driving electromagnetic coil 50 of the fuel injection valve reaches the valve opening current (Ipeak) and the battery voltage side supply switching element 21 is turned off, the driving electromagnetic coil 50 of the fuel injection valve causes a current to flow due to the counter electromotive force. In an attempt to continue, the current flows from the diode 24 to the electromagnetic coil 50 for driving the fuel injection valve and the switching element 22 for supplying the negative voltage to fall.

次に、図5においては「期間C1」の駆動回路の動作状態を表している。燃料噴射弁の駆動用電磁コイル50に流れる電流が保持電流1(Ihold1)、及び保持電流2(Ihold2)に達する毎にバッテリ電圧側供給用スイッチング素子21と保持電流駆動用スイッチング素子23をオンして燃料噴射弁の駆動用電磁コイル50に電流を供給する。この時、保持電流を平均してほぼ一定にするためバッテリ電圧側供給用スイッチング素子21と保持電流駆動用スイッチング素子23をスイッチングして立ち上がり状態と立ち下がり状態を繰り返すことで保持電流を制御している。   Next, FIG. 5 illustrates an operation state of the driving circuit in “period C1”. Each time the current flowing through the driving electromagnetic coil 50 of the fuel injection valve reaches the holding current 1 (Ihold1) and the holding current 2 (Ihold2), the battery voltage side supply switching element 21 and the holding current driving switching element 23 are turned on. Then, a current is supplied to the electromagnetic coil 50 for driving the fuel injection valve. At this time, the holding current is controlled by switching the battery voltage side supply switching element 21 and the holding current driving switching element 23 and repeating the rising state and the falling state in order to keep the holding current substantially constant. Yes.

最後に、図6においては「停止期間」の駆動回路の動作状態を表している。保持電流駆動用スイッチング素子23をオンし、バッテリ電圧側供給用スイッチング素子21、負電圧供給用スイッチング素子22をオフすることで燃料噴射弁の駆動用電磁コイル50への供給を停止する。   Finally, FIG. 6 shows the operating state of the drive circuit during the “stop period”. The holding current drive switching element 23 is turned on, and the battery voltage side supply switching element 21 and the negative voltage supply switching element 22 are turned off to stop the supply of the fuel injection valve to the drive electromagnetic coil 50.

燃料噴射電磁弁駆動用コイル50の逆起電力により発生する電流は保持電流駆動用スイッチング素子23とダイオード25、24を介して降圧用キャパシタ14に回生され最終的に電流が流れなくなり停止するようになる。   The current generated by the back electromotive force of the fuel injection solenoid valve driving coil 50 is regenerated to the step-down capacitor 14 via the holding current driving switching element 23 and the diodes 25 and 24 so that the current does not flow and stops. Become.

このように、本発明の一実施例によれば、降圧用キャパシタ14の耐圧を従来の昇圧回路のものより下げる、具体的にはバッテリ電圧VB分だけ下げることができ、また負電圧にすることでダイオード、具体的は図7で示したダイオード45を1個減らすことができるようになる。これにより駆動回路の大型化や駆動回路の構成部品数の増加を抑制することができる。   Thus, according to one embodiment of the present invention, the withstand voltage of the step-down capacitor 14 can be lowered from that of the conventional booster circuit, specifically, the battery voltage VB can be lowered, and the negative voltage can be set. Thus, the number of diodes, specifically, the diode 45 shown in FIG. 7 can be reduced by one. As a result, an increase in the size of the drive circuit and an increase in the number of components of the drive circuit can be suppressed.

以上説明したように、本発明によれば昇圧回路の代わりに降圧回路を用いるようにしたため、少なくともバッテリ電圧源の電圧分だけキャパシタの耐圧を下げることができるようになり駆動回路の物理的な大型化を抑制できる効果がある。   As described above, according to the present invention, since the step-down circuit is used instead of the step-up circuit, the withstand voltage of the capacitor can be lowered at least by the voltage of the battery voltage source, and the drive circuit is physically large. There is an effect that can be suppressed.

1…バッテリ、10…降圧回路、11…降圧用スイッチング素子、12…降圧用ダイオード、13…高圧用コイル、14…高圧用キャパシタ、21…バッテリ電圧側供給用スイッチング素子、22…負電圧側供給用スイッチング素子、23…保持電流駆動用スイッチング素子、24…ダイオード、25…ダイオード、60…制御回路、70…ECU。   DESCRIPTION OF SYMBOLS 1 ... Battery, 10 ... Step-down circuit, 11 ... Step-down switching element, 12 ... Step-down diode, 13 ... High voltage coil, 14 ... High voltage capacitor, 21 ... Battery voltage side supply switching element, 22 ... Negative voltage side supply Switching element, 23... Holding current driving switching element, 24. Diode, 25. Diode, 60. Control circuit, 70 ECU.

Claims (6)

内燃機関の運転状態に応じた燃料噴射量を制御手段によって演算し、バッテリ電源から前記内燃機関に燃料を噴射する燃料噴射弁の駆動用電磁コイルに燃料噴射量に応じた電流を選択的に流して前記燃料噴射弁を駆動する燃料噴射弁の駆動装置において、
前記燃料噴射弁の駆動用電磁コイルの高圧側がバッテリ電源に接続され、前記燃料噴射弁の駆動用電磁コイルの低圧側が前記バッテリ電源の電圧を降圧した降圧回路に接続され、前記駆動用電磁コイルの高圧側と前記バッテリ電源の間に前記バッテリ電源から前記駆動用電磁コイルに電流を流すバッテリ電圧側電圧供給用スイッチング素子を設け、前記駆動用電磁コイルの低圧側と前記降圧回路の間に前記駆動用電磁コイルから前記降圧回路に電流を流す負電圧側供給用スイッチング素子を設け、前記制御手段によって前記夫々のスイッチング素子を駆動制御することを特徴とする備えた燃料噴射弁の駆動装置。
A fuel injection amount corresponding to the operating state of the internal combustion engine is calculated by the control means, and a current corresponding to the fuel injection amount is selectively supplied to a driving electromagnetic coil of a fuel injection valve for injecting fuel from a battery power source to the internal combustion engine. In the fuel injection valve drive device for driving the fuel injection valve,
The high-voltage side of the driving electromagnetic coil of the fuel injection valve is connected to a battery power source, the low-voltage side of the driving electromagnetic coil of the fuel injection valve is connected to a step-down circuit that reduces the voltage of the battery power source, A battery voltage side voltage supply switching element is provided between the high voltage side and the battery power supply to pass a current from the battery power supply to the drive electromagnetic coil, and the drive is provided between the low voltage side of the drive electromagnetic coil and the step-down circuit. A fuel injection valve drive apparatus comprising: a negative voltage side supply switching element for supplying a current from an electromagnetic coil to the step-down circuit, and driving control of each of the switching elements by the control means.
請求項1に記載の燃料噴射弁の駆動装置において、
前記降圧回路は、少なくとも前記負電圧側供給用スイッチング素子と前記バッテリ電源の正極の間に直列に接続された降圧用ダイオード及び降圧用スイッチング素子と、前記降圧用ダイオードと前記降圧用スイッチング素子の間及び前記バッテリ電源の負極側と接続された降圧用コイルと、前記降圧用ダイオードと前記負電圧側供給用スイッチング素子の間と前記バッテリ電源の負極側と接続された降圧用キャパシタとより構成されていること特徴とする燃料噴射弁の駆動装置。
The fuel injection valve drive device according to claim 1,
The step-down circuit includes at least a step-down diode and a step-down switching element connected in series between the negative voltage side supply switching element and the positive electrode of the battery power source, and between the step-down diode and the step-down switching element. And a step-down coil connected to the negative side of the battery power source, a step-down capacitor connected between the step-down diode and the negative voltage side supply switching element and the negative side of the battery power source. A drive device for a fuel injection valve.
請求項2に記載の燃料噴射弁の駆動装置において、
前記降圧回路は前記バッテリ電源を負電圧状態に降下させる機能を備え、前記燃料噴射弁の前記駆動用電磁コイルの通電時の前記バッテリ電源の電圧と前記降圧回路の負電圧によって前記降圧回路の降圧用キャパシタの耐圧が決められていること特徴とする燃料噴射弁の駆動装置。
In the fuel injection valve drive device according to claim 2,
The step-down circuit has a function of dropping the battery power source to a negative voltage state, and the step-down circuit steps down the voltage of the battery power source when the drive electromagnetic coil of the fuel injection valve is energized and the negative voltage of the step-down circuit. A fuel injection valve drive device characterized in that the withstand voltage of the capacitor is determined.
請求項2に記載の燃料噴射弁の駆動装置において、
前記降圧回路の前記降圧用キャパシタ及び前記前記負電圧側供給用スイッチング素子の間と、前記駆動用電磁コイル及び前記バッテリ電圧側電圧供給用スイッチング素子の間を繋ぐ電気的な経路にはフリーホイール電流を流すためのダイオードが設けられていること特徴とする燃料噴射弁の駆動装置。
In the fuel injection valve drive device according to claim 2,
There is a free wheel current in an electrical path connecting the step-down capacitor and the negative voltage side supply switching element of the step-down circuit to the drive electromagnetic coil and the battery voltage side voltage supply switching element. A fuel injection valve drive device, characterized in that a diode for flowing the fuel is provided.
請求項2に記載の燃料噴射弁の駆動装置において、
前記燃料噴射弁の前記駆動用電磁コイルの低圧側には前記燃料噴射弁を開弁状態に保持する保持電流駆動用スイッチング素子が接続され、前記保持電流駆動用スイッチング素子は前記バッテリ電圧側供給用スイッチング素子と前記負電圧側供給用スイッチング素子によって前記駆動用電磁コイルに前記バッテリ電源の電圧と前記降圧回路の負電圧を印加した後に、前記駆動用電磁コイルに前記バッテリ電源の電圧を印加することを特徴とする燃料噴射弁の駆動装置。
In the fuel injection valve drive device according to claim 2,
A holding current driving switching element for holding the fuel injection valve in an open state is connected to a low pressure side of the driving electromagnetic coil of the fuel injection valve, and the holding current driving switching element is for supplying the battery voltage side Applying the voltage of the battery power source and the negative voltage of the step-down circuit to the driving electromagnetic coil by the switching element and the negative voltage side supply switching element, and then applying the voltage of the battery power source to the driving electromagnetic coil A fuel injection valve drive device.
請求項5に記載の燃料噴射弁の駆動装置において、
前記燃料噴射弁の前記駆動用電磁コイルの低圧側と前記保持電流駆動用スイッチング素子の間には逆流防止用のダイオードが介装されていることを特徴とする燃料噴射弁の駆動装置。
The fuel injection valve drive device according to claim 5,
A drive device for a fuel injection valve, characterized in that a backflow prevention diode is interposed between the low pressure side of the drive electromagnetic coil of the fuel injection valve and the holding current drive switching element.
JP2012039711A 2012-02-27 2012-02-27 Drive device for fuel injection valve Abandoned JP2013174200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039711A JP2013174200A (en) 2012-02-27 2012-02-27 Drive device for fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039711A JP2013174200A (en) 2012-02-27 2012-02-27 Drive device for fuel injection valve

Publications (1)

Publication Number Publication Date
JP2013174200A true JP2013174200A (en) 2013-09-05

Family

ID=49267302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039711A Abandoned JP2013174200A (en) 2012-02-27 2012-02-27 Drive device for fuel injection valve

Country Status (1)

Country Link
JP (1) JP2013174200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840116A (en) * 2018-10-19 2021-05-25 日立安斯泰莫株式会社 Electronic control device
CN115347220A (en) * 2022-08-08 2022-11-15 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) Fuel cell hydrogen multi-injector driving device and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289693A (en) * 1991-03-19 1992-10-14 Kijima:Kk Converter
JPH0866043A (en) * 1994-08-11 1996-03-08 Sawafuji Electric Co Ltd Power supply for vibration type compressor
JPH0956150A (en) * 1995-08-11 1997-02-25 Nippon Steel Corp Switching power supply
JP2001012285A (en) * 1999-06-29 2001-01-16 Denso Corp Electromagnetic load driving gear
JP2003007530A (en) * 2001-06-27 2003-01-10 Denso Corp Electromagnetic valve drive unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289693A (en) * 1991-03-19 1992-10-14 Kijima:Kk Converter
JPH0866043A (en) * 1994-08-11 1996-03-08 Sawafuji Electric Co Ltd Power supply for vibration type compressor
JPH0956150A (en) * 1995-08-11 1997-02-25 Nippon Steel Corp Switching power supply
JP2001012285A (en) * 1999-06-29 2001-01-16 Denso Corp Electromagnetic load driving gear
JP2003007530A (en) * 2001-06-27 2003-01-10 Denso Corp Electromagnetic valve drive unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840116A (en) * 2018-10-19 2021-05-25 日立安斯泰莫株式会社 Electronic control device
CN115347220A (en) * 2022-08-08 2022-11-15 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) Fuel cell hydrogen multi-injector driving device and control method
CN115347220B (en) * 2022-08-08 2024-07-26 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) Fuel cell hydrogen multi-connected injector driving device and control method

Similar Documents

Publication Publication Date Title
JP4871245B2 (en) Internal combustion engine control device
JP5160581B2 (en) Injector drive device
US8649151B2 (en) Injector drive circuit
US8081498B2 (en) Internal combustion engine controller
JP5023172B2 (en) Solenoid valve drive circuit
CN104018948A (en) Internal combustion engine controller
JP7107057B2 (en) Injection control device
JP6633093B2 (en) Vehicle control device
JP5926159B2 (en) Solenoid valve drive
JP2016160920A (en) Fuel injection control device
JP2010522839A (en) Drive control circuit and drive control method for piezoelectric element
JP2013174200A (en) Drive device for fuel injection valve
JP2013064363A (en) Fuel injection device of internal combustion engine
JP2009243418A (en) Injector drive circuit for fuel injection device of internal combustion engine
JP2018031294A (en) Solenoid valve drive device
JP2011217245A (en) Electromagnetic load control apparatus
JP2012122462A (en) Electromagnetic load control device
JP2019019778A (en) Electronic control device
JP5889129B2 (en) Fuel injection device for internal combustion engine
JP6733571B2 (en) Electronic control unit
JP2017046382A (en) Electromagnetic device drive unit
JP6022909B2 (en) Electromagnetic load control device
JP2012241685A (en) Electromagnetic load controller
JP6502838B2 (en) Electromagnetic device drive device, electronic control device for vehicle, and vehicle
JP2016050550A (en) Fuel injection valve drive unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150428