JPH09287507A - Throttle valve controller for internal combustion engine - Google Patents

Throttle valve controller for internal combustion engine

Info

Publication number
JPH09287507A
JPH09287507A JP8105899A JP10589996A JPH09287507A JP H09287507 A JPH09287507 A JP H09287507A JP 8105899 A JP8105899 A JP 8105899A JP 10589996 A JP10589996 A JP 10589996A JP H09287507 A JPH09287507 A JP H09287507A
Authority
JP
Japan
Prior art keywords
target
throttle valve
air
density
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8105899A
Other languages
Japanese (ja)
Other versions
JP3284395B2 (en
Inventor
Kenichi Machida
憲一 町田
Masayuki Yasuoka
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Unisia Jecs Corp filed Critical Nissan Motor Co Ltd
Priority to JP10589996A priority Critical patent/JP3284395B2/en
Publication of JPH09287507A publication Critical patent/JPH09287507A/en
Application granted granted Critical
Publication of JP3284395B2 publication Critical patent/JP3284395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitates a throttle valve control which corresponds to variation in the density of intake air and is highly accurate by correcting a target opening of a throttle valve set up on engine operating conditions on the basis of the presumed density of the intake air in case of controlling the opening of the throttle valve. SOLUTION: A control unit 13 first computes a target torque of an engine on accelerator control input expressed by an accelerator opening sensor 1 and a car speed expressed by a car speed sensor 2 during the operation of the car. Next a target fuel quantity and a target air/fuel ratio are computed on an engine target torque and an engine revolution speed through a map retrieval. Next the above target fuel quantity and air/fuel ratio are multiplied to compute a target intake air quantity into a cylinder, and the first, the second and the third coefficients of compensation are computed on the outputs of an atmospheric pressure sensor 11, of an intake temperature sensor 12 and of an EGR gas temperature sensor 24, and a target opening area computed on the engine revolution speed and the target air quantity is compensated by each coefficient of compensation to obtain the opening control quantity of the throttle valve 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関のスロッ
トル弁制御装置に関し、特にスロットル弁を目標空気量
が得られるように高精度に制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a throttle valve control device for an internal combustion engine, and more particularly to a technique for controlling a throttle valve with high accuracy so as to obtain a target air amount.

【0002】[0002]

【従来の技術】従来、機関の運転条件、例えばアクセル
操作量 (アクセルペダル踏込み量) あるいはそれと機関
回転速度とに基づいて、目標空気量が得られるようにス
ロットル弁の開度を電子制御するようにした技術があ
る。また、前記電子スロットル弁制御装置を備えたもの
で、機関の目標トルクを設定し、該目標トルクが得られ
るように機関への燃料供給量と目標空気量とを設定する
ようにした技術もある。
2. Description of the Related Art Conventionally, the opening of a throttle valve is electronically controlled so as to obtain a target air amount on the basis of an engine operating condition such as an accelerator operation amount (accelerator pedal depression amount) or the engine rotation speed. There is a technology that I did. Further, there is also a technique provided with the electronic throttle valve control device, in which a target torque of the engine is set, and a fuel supply amount and a target air amount to the engine are set so as to obtain the target torque. .

【0003】一方、機関運転条件に基づいて、空燃比を
広範囲に変化させつつ制御するものが知られている。
On the other hand, it is known that the air-fuel ratio is controlled while being varied over a wide range based on engine operating conditions.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
スロットル弁制御装置においては、吸入空気の密度によ
って同一のスロットル弁開度でも吸入空気量が変化する
ことを考慮していなかったため、高地走行時に大気圧が
減少して吸入空気の密度が小さくなってきたような場
合、目標空気量が得られるスロットル弁開度に速やかに
制御することができなかった。
However, the conventional throttle valve control device does not consider the fact that the intake air amount changes depending on the intake air density even if the throttle valve opening is the same. When the atmospheric pressure decreases and the density of the intake air decreases, it has not been possible to quickly control the throttle valve opening to obtain the target air amount.

【0005】このため、特に、目標トルクを設定して該
目標トルクが得られるように供給燃料量と空気量とを同
時に速やかに制御する方式を採用しても、該目標トルク
に速やかに制御することができず、該方式のメリット特
に過渡運転性能の向上を十分に引き出すことができなか
った。本発明は、このような従来の問題点に鑑みなされ
たもので、吸入空気の密度変化に対応して高精度にスロ
ットル弁制御を行えるようにすることを目的とする。
Therefore, even if a method of setting the target torque and rapidly controlling the supplied fuel amount and the air amount at the same time so as to obtain the target torque is adopted, the target torque is quickly controlled. However, the merit of the method, especially the improvement of the transient operation performance, cannot be sufficiently obtained. The present invention has been made in view of such conventional problems, and an object of the present invention is to enable highly accurate throttle valve control in response to changes in the density of intake air.

【0006】また、前記吸入空気の密度を高精度に推定
することにより、より高精度にスロットル弁制御を行え
るようにすることを目的とする。
Another object of the present invention is to make it possible to perform throttle valve control with higher accuracy by estimating the density of the intake air with high accuracy.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明は、図1に実線で示すように、機関運転条件に基
づいて吸気系に介装されたスロットル弁の開度を制御す
る内燃機関のスロットル弁制御装置において、吸入空気
の密度を推定する空気密度推定手段と、機関運転条件に
基づいて設定されるスロットル弁の目標開度を、前記推
定された吸入空気の密度に基づいて補正して制御するス
ロットル弁制御手段と、を含んで構成したことを特徴と
する。
Therefore, in the invention according to claim 1, as shown by the solid line in FIG. 1, the opening degree of the throttle valve interposed in the intake system is controlled based on the engine operating condition. In a throttle valve control device for an internal combustion engine, an air density estimating means for estimating the density of intake air, and a target opening degree of a throttle valve set based on engine operating conditions, based on the estimated intake air density. The throttle valve control means for correcting and controlling is included.

【0008】また、請求項2に係る発明は、前記空気密
度推定手段は、大気圧を検出又は推定し、該大気圧に基
づいて大気密度を推定するものであることを特徴とす
る。また、請求項3に係る発明は、前記空気密度推定手
段は、吸入空気の温度を検出する手段を含み、前記検出
又は推定された大気圧と前記検出された吸入空気温度と
に基づいて、吸入空気の密度を推定するものであること
を特徴とする。
The invention according to claim 2 is characterized in that the air density estimating means detects or estimates the atmospheric pressure and estimates the atmospheric density based on the atmospheric pressure. In the invention according to claim 3, the air density estimating means includes means for detecting a temperature of intake air, and the intake air is inhaled based on the detected or estimated atmospheric pressure and the detected intake air temperature. The feature is that the density of air is estimated.

【0009】また、請求項4に係る発明は、前記空気密
度推定手段は、少なくとも大気圧に基づいて推定される
吸入空気の密度を、EGR制御時にEGRガスによる温
度上昇に基づいて補正して推定するものであることを特
徴とする。また、請求項5に係る発明は、図1に一点鎖
線で示すように、アクセル操作量を検出するアクセル操
作量検出手段と、車速を検出する車速検出手段と、前記
検出されたアクセル操作量と車速とに基づいて機関の目
標トルクを設定する目標トルク設定手段と、機関回転速
度を検出する機関回転速度検出手段と、前記設定された
目標トルクと検出された機関回転速度とに基づいて機関
へ供給される目標燃料量を設定する目標燃料量設定手段
と、燃焼混合気の目標空燃比を設定する目標空燃比設定
手段と、前記設定された目標燃料量と目標空燃比とに基
づいて目標空気量を設定する目標空気量設定手段と、前
記設定された目標空気量と検出された機関回転速度とに
基づいて目標開度を設定する目標開度設定手段と、を含
んで構成されていることを特徴とする。
Further, in the invention according to claim 4, the air density estimating means estimates the density of the intake air estimated based on at least the atmospheric pressure by correcting the density of the intake air based on the temperature rise due to the EGR gas during the EGR control. It is characterized by being Further, the invention according to claim 5 is, as shown by the one-dot chain line in FIG. 1, accelerator operation amount detecting means for detecting an accelerator operation amount, vehicle speed detecting means for detecting a vehicle speed, and the detected accelerator operation amount. Target torque setting means for setting the target torque of the engine based on the vehicle speed, engine speed detecting means for detecting the engine speed, and to the engine based on the set target torque and the detected engine speed. Target fuel amount setting means for setting the target fuel amount to be supplied, target air-fuel ratio setting means for setting the target air-fuel ratio of the combustion mixture, and target air based on the set target fuel amount and target air-fuel ratio A target air amount setting means for setting an amount, and a target opening amount setting means for setting a target opening amount based on the set target air amount and the detected engine rotation speed are included. Special To.

【0010】[0010]

【発明の効果】請求項1に係る発明によれば、機関運転
条件に応じて設定されるスロットル弁の目標開度を、推
定された吸入空気の密度によって補正して制御すること
により、高地走行時等で吸入空気の密度が変化して同一
のスロットル弁開度に対する吸入空気量が変化する場合
でも、該吸入空気密度の変化による影響を補正して、目
標空気量が得られる開度に制御することができる。
According to the first aspect of the present invention, the target opening of the throttle valve, which is set according to the engine operating condition, is corrected by the estimated intake air density and controlled, so that the vehicle travels at high altitude. Even if the intake air density changes with time and the intake air amount changes with respect to the same throttle valve opening, the influence of the change in intake air density is corrected to control the opening to obtain the target air amount. can do.

【0011】また、請求項2に係る発明によれば、吸入
空気の密度は、大気圧変化による影響が最も大きいた
め、大気圧を検出又は推定することにより、吸入空気密
度を推定することができる。また、請求項3に係る発明
によれば、吸入空気の密度は、前記大気圧の他、吸入空
気の温度の変化によっても変化するので、大気圧に基づ
いて推定された吸入空気の密度を、検出された吸入空気
温度で補正して推定することにより、より高精度に推定
することができる。
Further, according to the second aspect of the present invention, since the density of the intake air is most affected by the change in the atmospheric pressure, the intake air density can be estimated by detecting or estimating the atmospheric pressure. . Further, according to the invention of claim 3, the density of the intake air changes depending on not only the atmospheric pressure but also the temperature of the intake air. Therefore, the density of the intake air estimated based on the atmospheric pressure is It is possible to perform the estimation with higher accuracy by correcting and estimating with the detected intake air temperature.

【0012】また、請求項4に係る発明によれば、EG
R制御時は、EGRガスが新気と共に吸入されて空気温
度が上昇することによって空気密度が減少する。したが
って、該EGRガスによる温度上昇に基づく補正を行う
ことにより、EGRによる影響を除去して吸入空気の密
度を精度良く推定することができる。
According to the invention of claim 4, EG
During R control, EGR gas is sucked together with fresh air and the air temperature rises, so that the air density decreases. Therefore, by performing the correction based on the temperature rise due to the EGR gas, the influence of EGR can be removed and the density of the intake air can be accurately estimated.

【0013】また、請求項5に係る発明によれば、機関
の目標トルク及び目標空燃比を設定して、該目標トルク
及び目標空燃比が満たされるようにスロットル弁開度を
制御するものにおいて、吸入空気密度による補正が行わ
れることにより、運転性能と排気浄化性能との両立性を
高地走行時等においても、可及的に高めることができ
る。
Further, according to the invention of claim 5, in which the target torque and the target air-fuel ratio of the engine are set and the throttle valve opening is controlled so that the target torque and the target air-fuel ratio are satisfied, By performing the correction based on the intake air density, the compatibility between the driving performance and the exhaust gas purification performance can be improved as much as possible even when traveling at high altitudes.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図2は、本発明の一実施形態のシステ
ム構成 (後述する各制御の実施形態に共通) を示す。ア
クセル操作量検出手段としてのアクセル開度センサ1
は、ドライバによって踏み込まれたアクセルペダルの踏
込み量を検出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows a system configuration (common to each control embodiment to be described later) of an embodiment of the present invention. Accelerator opening sensor 1 as accelerator operation amount detection means
Detects the amount of depression of the accelerator pedal depressed by the driver.

【0015】機関回転速度検出手段としてのクランク角
センサ2は、単位クランク角毎のポジション信号及び気
筒行程位相差毎の基準信号を発生し、前記ポジション信
号の単位時間当りの発生数を計測することにより、ある
いは前記基準信号発生周期を計測することにより、機関
回転速度を検出できる。エアフローメータ3は、機関4
への吸入空気量 (単位時間当りの吸入空気量=吸入空気
流量) を検出する。
The crank angle sensor 2 as an engine rotational speed detecting means generates a position signal for each unit crank angle and a reference signal for each cylinder stroke phase difference, and measures the number of generated position signals per unit time. Or by measuring the reference signal generation cycle, the engine speed can be detected. The air flow meter 3 is the engine 4
The amount of intake air (intake air amount per unit time = intake air flow rate) is detected.

【0016】水温センサ5は、機関の冷却水温度を検出
する。機関4には、燃料噴射信号によって駆動し、燃料
を直接燃焼室内に噴射供給する燃料噴射弁6、燃焼室に
装着されて点火を行う点火栓7が設けられる。該燃焼室
内への直接噴射方式により、層状燃焼によるリーン化が
可能となり、空燃比を広範囲に可変制御することができ
る。また、機関4の吸気通路8には、スロットル弁9が
介装され、該スロットル弁9の開度を電子制御可能なス
ロットル弁制御装置10が備えられている。また、吸気通
路8には、スロットル弁9の上流側に大気圧を検出する
大気圧センサ11及び吸入空気の温度を検出する吸気温度
センサ12が備えられる。なお、大気圧は機関運転条件か
ら推定してもよく、例えば、同一の目標トルクに対して
制御されるスロットル弁の開度を記憶しておき、開度変
化から大気圧を推定することが可能である。また、目標
燃料量を吸気圧の検出値に応じて算出する方式に適用す
る場合には、スロットル弁下流側に設けられる吸気圧セ
ンサの値を、機関の停止時やスロットル弁開度が所定値
以上のときの検出値を大気圧検出値として用いることが
できる。
The water temperature sensor 5 detects the cooling water temperature of the engine. The engine 4 is provided with a fuel injection valve 6 that is driven by a fuel injection signal and directly injects fuel into the combustion chamber, and a spark plug 7 that is mounted in the combustion chamber and ignites. By the direct injection method into the combustion chamber, leaning by stratified combustion becomes possible, and the air-fuel ratio can be variably controlled over a wide range. A throttle valve 9 is provided in the intake passage 8 of the engine 4, and a throttle valve control device 10 capable of electronically controlling the opening of the throttle valve 9 is provided. Further, the intake passage 8 is provided with an atmospheric pressure sensor 11 that detects the atmospheric pressure and an intake temperature sensor 12 that detects the temperature of the intake air upstream of the throttle valve 9. The atmospheric pressure may be estimated from the engine operating condition. For example, the opening of the throttle valve controlled for the same target torque may be stored and the atmospheric pressure can be estimated from the change in the opening. Is. In addition, when applying to the method of calculating the target fuel amount according to the detected value of the intake pressure, the value of the intake pressure sensor provided on the downstream side of the throttle valve is set to a predetermined value when the engine is stopped or the throttle valve opening degree is a predetermined value. The detected value in the above case can be used as the atmospheric pressure detected value.

【0017】さらに、車速を検出する車速センサ13が備
えられる。前記各種センサ類からの検出信号は、コント
ロールユニット14へ入力され、該コントロールユニット
14は、前記センサ類からの信号に基づいて検出される運
転状態に応じて前記スロットル弁制御装置10を介してス
ロットル弁9の開度を制御し、前記燃料噴射弁6を駆動
して燃料噴射量 (燃料供給量) を制御し、点火時期を設
定して該点火時期で前記点火栓7を点火させる制御を行
う。
Further, a vehicle speed sensor 13 for detecting the vehicle speed is provided. Detection signals from the various sensors are input to the control unit 14, and the control unit 14
Reference numeral 14 controls the opening of the throttle valve 9 via the throttle valve control device 10 according to the operating state detected based on the signals from the sensors and drives the fuel injection valve 6 to inject fuel. The amount (fuel supply amount) is controlled, the ignition timing is set, and the ignition plug 7 is ignited at the ignition timing.

【0018】また、機関1の排気通路21と吸気通路8と
を接続するEGR通路22と、該EGR通路22に介装され
るEGR弁23とが設けられ、前記コントロールユニット
13により、機関回転速度Neと機関負荷 (燃料噴射量等
で代表される) とで表される所定の領域でEGRを行
い、目標EGR率 (EGR量/吸入空気流量) が得られ
るようにEGR弁22の開度を制御する。また、前記EG
R弁23下流のEGR通路22に、EGRガス温度を検出す
るEGRガス温度センサ24が設けられ、後述するよう
に、EGR制御時には、EGRによる温度上昇分による
スロットル弁開度の補正を行う。
An EGR passage 22 connecting the exhaust passage 21 and the intake passage 8 of the engine 1 and an EGR valve 23 interposed in the EGR passage 22 are provided, and the control unit is provided.
With EGR, EGR is performed in a predetermined region represented by the engine rotation speed Ne and the engine load (represented by the fuel injection amount, etc.) to obtain the target EGR rate (EGR amount / intake air flow rate). The opening degree of the valve 22 is controlled. Also, the EG
An EGR gas temperature sensor 24 that detects the EGR gas temperature is provided in the EGR passage 22 downstream of the R valve 23, and as described later, during EGR control, the throttle valve opening degree is corrected by the temperature increase due to EGR.

【0019】次に、本発明に係るスロットル弁制御の一
実施形態を、図3及び図4のフローチャートに従って説
明する。ステップ1では、前記アクセル開度センサ1に
よって検出されたアクセル操作量 (アクセルペダル踏込
み量) Accと、車速センサ2によって車速VSPとに
基づいて、車両の目標駆動力を得るのに要求される機関
の目標トルクtTeを演算する。
Next, one embodiment of the throttle valve control according to the present invention will be described with reference to the flowcharts of FIGS. 3 and 4. In step 1, the engine required to obtain the target driving force of the vehicle based on the accelerator operation amount (accelerator pedal depression amount) Acc detected by the accelerator opening sensor 1 and the vehicle speed VSP by the vehicle speed sensor 2. The target torque tTe of is calculated.

【0020】ステップ2では、前記機関の目標トルクt
Teと、クランク角センサ2からの検出信号に基づいて
算出された機関回転速度Neとに基づいて、図示のよう
なマップからの検索等により、目標燃料量tQfを演算
する。ステップ3では、前記目標トルクtTeと、機関
回転速度Neとに基づいて、図示のようなマップからの
検索等により、目標空燃比tA/Fを演算する。
In step 2, the target torque t of the engine is
Based on Te and the engine rotation speed Ne calculated based on the detection signal from the crank angle sensor 2, the target fuel amount tQf is calculated by searching a map as shown in the figure or the like. In step 3, the target air-fuel ratio tA / F is calculated based on the target torque tTe and the engine rotation speed Ne by searching a map as shown in the figure.

【0021】ステップ4では、前記目標燃料量tQf
と、前記目標空燃比tA/Fとを乗算して、シリンダに
吸入される目標空気量tQaを算出する。ステップ5で
は、前記大気圧センサ11により検出された大気圧に基づ
いて、吸入空気密度に応じたスロットル弁開度を補正す
るための第1の補正係数K1を、図示のようなマップか
らの検索等により演算する。
In step 4, the target fuel amount tQf
And the target air-fuel ratio tA / F are multiplied to calculate the target air amount tQa taken into the cylinder. In step 5, based on the atmospheric pressure detected by the atmospheric pressure sensor 11, a first correction coefficient K1 for correcting the throttle valve opening degree according to the intake air density is retrieved from a map as shown in the figure. Etc.

【0022】ここで、補正係数K1は、図示のように大
気圧の増大に応じて空気密度が増大するため、スロット
ル弁開度を減少補正すべく、小さくなるように設定され
ている。ステップ6では、前記吸気温度センサ12によっ
て検出された吸入空気の温度に基づいて、スロットル弁
開度を補正するための第2の補正係数K1を、図示のよ
うなマップからの検索等により演算する。
Here, the correction coefficient K1 is set to be small in order to correct the throttle valve opening so that the air density increases as the atmospheric pressure increases, as shown in the figure. In step 6, a second correction coefficient K1 for correcting the throttle valve opening is calculated based on the temperature of the intake air detected by the intake air temperature sensor 12 by searching a map as shown in the figure or the like. .

【0023】ここで、補正係数K2は、図示のように吸
気温度が高くなるにつれて空気密度が減少するため、ス
ロットル弁開度を増大補正すべく、大きくなるように設
定されている。ステップ7では、前記EGRガス温度セ
ンサ24により検出されるEGRガス温度に基づいて、ス
ロットル弁開度のEGRガスによる温度上昇分を補正す
るための第3の補正係数K3を、図示のようなマップか
らの検索等により演算する。
Here, the correction coefficient K2 is set to be large in order to increase and correct the throttle valve opening because the air density decreases as the intake air temperature increases as shown in the figure. In step 7, based on the EGR gas temperature detected by the EGR gas temperature sensor 24, a third correction coefficient K3 for correcting the temperature increase amount of the throttle valve opening due to the EGR gas is set to the map as shown in the figure. Calculate by searching from.

【0024】ここで、EGRガス温度が高くなるにつれ
てEGRガスによる吸入空気の温度上昇分が増大して空
気密度が減少するため、スロットル弁開度を増大補正す
べく、大きくなるように設定されている。ステップ8で
は、前記機関回転速度Neと、前記目標空気量tQaと
に基づいて、図示のようなマップからの検索等により、
スロットル弁の目標開口面積tAaが演算する。
Here, as the EGR gas temperature rises, the temperature rise of the intake air due to the EGR gas increases and the air density decreases. Therefore, the throttle valve opening is set to be increased so as to be corrected. There is. In step 8, based on the engine speed Ne and the target air amount tQa, by a search from a map as shown,
The target opening area tAa of the throttle valve is calculated.

【0025】ステップ9では、前記目標開口面積tAa
に、前記のようにして設定された吸入空気の密度推定に
よるスロットル弁開度を補正するための第1の補正係数
K1、第2の補正係数K2、第3の補正係数K3を乗じ
て、補正目標開口面積tETCを算出する。ステップ10
では、前記補正目標開口面積tETCが得られるスロッ
トル弁の開度制御量tTVOを、図示のようなマップか
らの検索等により演算する。
In step 9, the target opening area tAa is set.
Is corrected by multiplying the first correction coefficient K1, the second correction coefficient K2, and the third correction coefficient K3 for correcting the throttle valve opening based on the intake air density estimation set as described above. The target opening area tETC is calculated. Step 10
Then, the opening control amount tTVO of the throttle valve that obtains the corrected target opening area tETC is calculated by a search or the like from a map as shown.

【0026】ステップ11では、このようにして求められ
た開度制御量tTVOの信号をスロットル弁制御装置10
に出力する。これにより、スロットル弁9が設定された
開度tTVOに制御され、目標空気量が得られる。この
ようにすれば、高地走行時等に吸入空気の密度が変化し
てきても、該密度に応じた補正を行うことにより、目標
空気量が高精度に補正され、該補正された空気量が得ら
れるスロットル弁開度に速やかに補正制御することがで
きる。
In step 11, the signal of the opening control amount tTVO thus obtained is sent to the throttle valve control device 10.
Output to As a result, the throttle valve 9 is controlled to the set opening degree tTVO and the target air amount is obtained. By doing this, even if the density of the intake air changes during high-altitude traveling, the target air amount is corrected with high accuracy by performing the correction according to the density, and the corrected air amount is obtained. The throttle valve opening can be rapidly corrected and controlled.

【0027】また、このようにして補正された目標空気
量を前記目標空燃比tA/Fで除することにより、燃料
量が設定される。その結果、常に目標空燃比tA/Fを
満たしつつ、目標トルクtTeが確保されるように空気
量と燃料量とを空気密度に応じて修正しつつ高精度に制
御することができ、機関の排気浄化性能と運転性能との
両立性を可及的に高めることができる。
Further, the fuel amount is set by dividing the target air amount thus corrected by the target air-fuel ratio tA / F. As a result, it is possible to control the air amount and the fuel amount according to the air density with high accuracy while always satisfying the target air-fuel ratio tA / F and to correct the target torque tTe. The compatibility between purification performance and operation performance can be improved as much as possible.

【0028】なお、本実施形態のように目標トルクを設
定するものでは、機関運転性能特に過渡運転性能をより
高めることができるが、本発明は、目標トルクを設定し
ないものに適用しても十分効果的である。また、目標空
燃比を可変制御するもの、特に直接燃料噴射式により空
燃比を広範囲に可変制御するものにおいて、実際の空燃
比を可変される目標空燃比に高精度に追従させることが
できる点で特に有利であるが、空燃比の制御範囲が限ら
れたものに適用しても十分効果的である。
It should be noted that in the case where the target torque is set as in the present embodiment, the engine operating performance, especially the transient operating performance can be further improved, but the present invention is sufficiently applicable to the case where the target torque is not set. It is effective. Further, in the case where the target air-fuel ratio is variably controlled, particularly in the case where the air-fuel ratio is variably controlled by a direct fuel injection system, the actual air-fuel ratio can follow the variable target air-fuel ratio with high accuracy. Although it is particularly advantageous, it is sufficiently effective when applied to a device having a limited air-fuel ratio control range.

【0029】また、本実施形態では、EGRガスによる
スロットル弁開度の補正分をEGRガス温度を検出して
設定したので、EGRガスによる吸入空気の温度上昇を
高精度に推定して、良好な補正を行うことができるが、
簡易的には、EGR制御時に一律の補正係数を乗じて補
正するような構成としてもよい。
Further, in the present embodiment, since the correction amount of the throttle valve opening degree by the EGR gas is set by detecting the EGR gas temperature, the temperature rise of the intake air due to the EGR gas is estimated with high accuracy, and it is favorable. You can make corrections,
In a simple manner, the EGR control may be performed by multiplying by a uniform correction coefficient for correction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】本発明の一実施形態のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.

【図3】同上実施形態のスロットル弁制御ルーチンの前
段を示すフローチャート。
FIG. 3 is a flowchart showing a preceding stage of a throttle valve control routine of the same embodiment.

【図4】同上のルーチンの後段を示すフローチャート。FIG. 4 is a flowchart showing a latter stage of the above-mentioned routine.

【符号の説明】[Explanation of symbols]

1 アクセル操作量センサ 2 クランク角センサ 3 エアフローメータ 4 機関 5 水温センサ 6 燃料噴射弁 9 スロットル弁 10 スロットル弁制御装置 11 大気圧センサ 12 吸気温度センサ 13 車速センサ 14 コントロールユニット 22 EGR通路 23 EGR弁 24 EGRガス温度センサ 1 accelerator operation amount sensor 2 crank angle sensor 3 air flow meter 4 engine 5 water temperature sensor 6 fuel injection valve 9 throttle valve 10 throttle valve control device 11 atmospheric pressure sensor 12 intake air temperature sensor 13 vehicle speed sensor 14 control unit 22 EGR passage 23 EGR valve 24 EGR gas temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/04 310 F02D 41/04 310Z 330 330A 45/00 312 45/00 312P 360 360E F02M 25/07 550 F02M 25/07 550R ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02D 41/04 310 310 F02D 41/04 310Z 330 330A 45/00 312 45/00 312P 360 360E F02M 25 / 07 550 F02M 25/07 550R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】機関運転条件に基づいて吸気系に介装され
たスロットル弁の開度を制御する内燃機関のスロットル
弁制御装置において、 吸入空気の密度を推定する空気密度推定手段と、 機関運転条件に基づいて設定されるスロットル弁の目標
開度を、前記推定された吸入空気の密度に基づいて補正
して制御するスロットル弁制御手段と、 を含んで構成したことを特徴とする内燃機関のスロット
ル弁制御装置。
1. A throttle valve control device for an internal combustion engine, which controls an opening of a throttle valve interposed in an intake system based on engine operating conditions, and air density estimating means for estimating a density of intake air; A throttle valve control means for correcting and controlling a target opening degree of a throttle valve set on the basis of the condition based on the estimated intake air density, and an internal combustion engine characterized by the following: Throttle valve control device.
【請求項2】前記空気密度推定手段は、大気圧を検出又
は推定し、該大気圧に基づいて大気密度を推定するもの
であることを特徴とする請求項1に記載の内燃機関のス
ロットル弁制御装置。
2. The throttle valve for an internal combustion engine according to claim 1, wherein the air density estimating means detects or estimates atmospheric pressure and estimates the atmospheric density based on the atmospheric pressure. Control device.
【請求項3】前記空気密度推定手段は、吸入空気の温度
を検出する手段を含み、前記検出又は推定された大気圧
と前記検出された吸入空気温度とに基づいて、吸入空気
の密度を推定するものであることを特徴とする請求項2
に記載の内燃機関のスロットル弁制御装置。
3. The air density estimating means includes means for detecting the temperature of intake air, and estimates the density of intake air based on the detected or estimated atmospheric pressure and the detected intake air temperature. 2. The method according to claim 2, wherein
A throttle valve control device for an internal combustion engine according to item 1.
【請求項4】前記空気密度推定手段は、少なくとも大気
圧に基づいて推定される吸入空気の密度を、EGR制御
時にEGRガスによる温度上昇に基づいて補正して推定
するものであることを特徴とする請求項1〜請求項3の
いずれか1つに記載の内燃機関のスロットル弁制御装
置。
4. The air density estimating means estimates at least the density of intake air estimated on the basis of atmospheric pressure by correcting it on the basis of a temperature rise due to EGR gas during EGR control. The throttle valve control device for an internal combustion engine according to any one of claims 1 to 3.
【請求項5】アクセル操作量を検出するアクセル操作量
検出手段と、 車速を検出する車速検出手段と、 前記検出されたアクセル操作量と車速とに基づいて機関
の目標トルクを設定する目標トルク設定手段と、 機関回転速度を検出する機関回転速度検出手段と、 前記設定された目標トルクと検出された機関回転速度と
に基づいて機関へ供給される目標燃料量を設定する目標
燃料量設定手段と、 燃焼混合気の目標空燃比を設定する目標空燃比設定手段
と、 前記設定された目標燃料量と目標空燃比とに基づいて目
標空気量を設定する目標空気量設定手段と、前記設定さ
れた目標空気量と検出された機関回転速度とに基づいて
目標開度を設定する目標開度設定手段と、 を含んで構成されていることを特徴とする請求項1〜請
求項4のいずれか1つに記載の内燃機関のスロットル弁
制御装置。
5. An accelerator operation amount detecting means for detecting an accelerator operation amount, a vehicle speed detecting means for detecting a vehicle speed, and a target torque setting for setting a target torque of an engine based on the detected accelerator operation amount and the vehicle speed. Means, an engine speed detecting means for detecting an engine speed, and a target fuel amount setting means for setting a target fuel amount to be supplied to the engine based on the set target torque and the detected engine speed. , Target air-fuel ratio setting means for setting a target air-fuel ratio of the combustion mixture, target air amount setting means for setting a target air amount based on the set target fuel amount and target air-fuel ratio, and the set 5. A target opening degree setting means for setting a target opening degree based on the target air amount and the detected engine rotation speed, and any one of claims 1 to 4. One A throttle valve control device for an internal combustion engine according to item 1.
JP10589996A 1996-04-25 1996-04-25 Throttle valve control device for internal combustion engine Expired - Lifetime JP3284395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10589996A JP3284395B2 (en) 1996-04-25 1996-04-25 Throttle valve control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10589996A JP3284395B2 (en) 1996-04-25 1996-04-25 Throttle valve control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09287507A true JPH09287507A (en) 1997-11-04
JP3284395B2 JP3284395B2 (en) 2002-05-20

Family

ID=14419742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10589996A Expired - Lifetime JP3284395B2 (en) 1996-04-25 1996-04-25 Throttle valve control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3284395B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153058A (en) * 1997-11-21 1999-06-08 Toyota Motor Corp Engine control device having idle intake pressure learning function
JPH11182302A (en) * 1997-12-19 1999-07-06 Unisia Jecs Corp Idling speed learning control device for electric control throttle type internal combustion engine
JPH11210558A (en) * 1998-01-30 1999-08-03 Mitsubishi Motors Corp Exhaust gas recirculation controller for cylinder injection type internal combustion engine
JP2000130226A (en) * 1998-10-21 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000145523A (en) * 1998-11-11 2000-05-26 Toyota Motor Corp Internal combustion engine
JP2000279866A (en) * 1999-03-31 2000-10-10 Matsushita Electric Ind Co Ltd Method and apparatus for applying viscous material
JP2001182545A (en) * 1998-05-27 2001-07-06 Cummins Engine Co Inc Control device and method for turbo-charger
CN100402822C (en) * 2004-10-08 2008-07-16 日产自动车株式会社 Fuel injection control of engine
WO2009107378A1 (en) * 2008-02-26 2009-09-03 本田技研工業株式会社 Controller for internal-combustion engine
DE102006043887B4 (en) * 2006-03-09 2012-08-09 Mitsubishi Electric Corp. Control device for an internal combustion engine
WO2014083937A1 (en) * 2012-11-27 2014-06-05 日産自動車株式会社 Vehicle control apparatus, and method of controlling same
KR20180068802A (en) * 2016-12-14 2018-06-22 현대자동차주식회사 Apparatus and method for controlling fuel injection
JP2018150919A (en) * 2017-03-15 2018-09-27 株式会社ケーヒン Driving force controller
JP2021055606A (en) * 2019-09-30 2021-04-08 株式会社Subaru Engine control device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153058A (en) * 1997-11-21 1999-06-08 Toyota Motor Corp Engine control device having idle intake pressure learning function
JPH11182302A (en) * 1997-12-19 1999-07-06 Unisia Jecs Corp Idling speed learning control device for electric control throttle type internal combustion engine
JPH11210558A (en) * 1998-01-30 1999-08-03 Mitsubishi Motors Corp Exhaust gas recirculation controller for cylinder injection type internal combustion engine
JP2001182545A (en) * 1998-05-27 2001-07-06 Cummins Engine Co Inc Control device and method for turbo-charger
JP2000130226A (en) * 1998-10-21 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000145523A (en) * 1998-11-11 2000-05-26 Toyota Motor Corp Internal combustion engine
JP2000279866A (en) * 1999-03-31 2000-10-10 Matsushita Electric Ind Co Ltd Method and apparatus for applying viscous material
CN100402822C (en) * 2004-10-08 2008-07-16 日产自动车株式会社 Fuel injection control of engine
DE102006043887B4 (en) * 2006-03-09 2012-08-09 Mitsubishi Electric Corp. Control device for an internal combustion engine
WO2009107378A1 (en) * 2008-02-26 2009-09-03 本田技研工業株式会社 Controller for internal-combustion engine
JP2009203815A (en) * 2008-02-26 2009-09-10 Honda Motor Co Ltd Control device for internal combustion engine
WO2014083937A1 (en) * 2012-11-27 2014-06-05 日産自動車株式会社 Vehicle control apparatus, and method of controlling same
RU2572958C1 (en) * 2012-11-27 2016-01-20 Ниссан Мотор Ко., Лтд. Device for control over vehicle and method to this end
JP6004003B2 (en) * 2012-11-27 2016-10-05 日産自動車株式会社 Vehicle control apparatus and control method thereof
US10071740B2 (en) 2012-11-27 2018-09-11 Nissan Motor Co., Ltd. Vehicle control apparatus, and method of controlling same
KR20180068802A (en) * 2016-12-14 2018-06-22 현대자동차주식회사 Apparatus and method for controlling fuel injection
JP2018150919A (en) * 2017-03-15 2018-09-27 株式会社ケーヒン Driving force controller
JP2021055606A (en) * 2019-09-30 2021-04-08 株式会社Subaru Engine control device

Also Published As

Publication number Publication date
JP3284395B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP3521632B2 (en) Control device for internal combustion engine
JP3284395B2 (en) Throttle valve control device for internal combustion engine
US8033267B2 (en) Control apparatus for an engine
US5016595A (en) Air-fuel ratio control device for internal combustion engine
WO2003038262A1 (en) Atmospheric pressure detection device of four-stroke engine and method of detecting atmospheric pressure
JP3483394B2 (en) Air-fuel ratio control device for internal combustion engine
US5775295A (en) Process for controlling a direct-injection internal combustion engine
JP3303274B2 (en) Control device for electronically controlled throttle internal combustion engine
JP3331118B2 (en) Throttle valve control device for internal combustion engine
JP3843492B2 (en) Engine intake control device
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JPH1162658A (en) Control device for internal combustion engine
JPH10184408A (en) Intake control device for engine
JP3511807B2 (en) Engine intake control device
JP2655145B2 (en) Control device for internal combustion engine
JPH09240322A (en) Controller for vehicular power train
JPH0577867B2 (en)
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JPH0415385B2 (en)
JPH0559994A (en) Control device for engine
JPH0612087B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2789970B2 (en) Vehicle air density determination device
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JP2932941B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11