JPH0415385B2 - - Google Patents

Info

Publication number
JPH0415385B2
JPH0415385B2 JP58149139A JP14913983A JPH0415385B2 JP H0415385 B2 JPH0415385 B2 JP H0415385B2 JP 58149139 A JP58149139 A JP 58149139A JP 14913983 A JP14913983 A JP 14913983A JP H0415385 B2 JPH0415385 B2 JP H0415385B2
Authority
JP
Japan
Prior art keywords
fuel
air
response
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58149139A
Other languages
Japanese (ja)
Other versions
JPS6040745A (en
Inventor
Toshimi Anho
Takashi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58149139A priority Critical patent/JPS6040745A/en
Publication of JPS6040745A publication Critical patent/JPS6040745A/en
Publication of JPH0415385B2 publication Critical patent/JPH0415385B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 (技術分野) この発明は、エンジンの燃料制御装置に関し、
より具体的には、空気系および燃料系の動特性に
起因する吸入空気量と燃料供給量の不均衡を補正
するようにしたエンジンの燃料制御装置に関す
る。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a fuel control device for an engine.
More specifically, the present invention relates to an engine fuel control device that corrects an imbalance between the amount of intake air and the amount of fuel supplied due to the dynamic characteristics of the air system and the fuel system.

(従来技術) 従来のエンジンの燃料制御装置としては、例え
ば第1図に示すごときものがある(特開昭53−
102416号、同55−35165号および同55−134718号
各公報)。
(Prior Art) As a conventional engine fuel control device, there is one shown in FIG.
102416, 55-35165, and 55-134718).

第1図において、1はエアクリーナ、2は吸気
管、3はスロツトルバルブ、4は吸気管2を通過
する空気量に対応した空気量信号S1を出力するエ
アフローメーター、5は後述する燃料噴射量信号
S3に応じた量の燃料を噴射する燃料噴射弁、6は
シリンダ、7はクランク軸の回転に同期したエン
ジン回転信号S2を出力する回転センサ、8は主と
して空気量信号S1とエンジン回転信号S2とからそ
の時の運転状態に対応した燃料噴射量を算出し、
その結果に応じた燃料噴射量信号S3を出力する演
算回路であり、演算回路8は例えばCPU、
RAM、ROM、I/O等からなるマイクロコン
ピユータで構成される。
In Fig. 1, 1 is an air cleaner, 2 is an intake pipe, 3 is a throttle valve, 4 is an air flow meter that outputs an air amount signal S1 corresponding to the amount of air passing through the intake pipe 2, and 5 is a fuel injection device, which will be described later. quantity signal
6 is a cylinder, 7 is a rotation sensor that outputs an engine rotation signal S 2 synchronized with the rotation of the crankshaft, and 8 is mainly an air amount signal S 1 and engine rotation. Calculates the fuel injection amount corresponding to the current operating condition from signal S 2 ,
It is an arithmetic circuit that outputs a fuel injection amount signal S3 according to the result, and the arithmetic circuit 8 is, for example, a CPU,
It consists of a microcomputer consisting of RAM, ROM, I/O, etc.

演算回路8では、エアフローメータ4で計測し
た空気量信号S1から得られる吸入空気量Qと、回
転センサ7で計測したエンジン回転信号S2から得
られるエンジン回転速度Nから、基本燃料噴射量
(基本燃料噴射パルス幅)Tpを、 Tp=K・Q/N (1) (但し、Kは係数)として求め、これに冷却水温
度や排気ガス成分濃度等による補正を付加して、
燃料噴射量Tiを決定し、これを燃料噴射量信号
S3として、燃料噴射弁5を駆動している。
The arithmetic circuit 8 calculates the basic fuel injection amount ( The basic fuel injection pulse width) Tp is determined as Tp=K・Q/N (1) (where K is a coefficient), and by adding corrections based on the cooling water temperature, exhaust gas component concentration, etc.,
Determine the fuel injection amount Ti and use this as the fuel injection amount signal
As S3 , the fuel injection valve 5 is driven.

しかしながら、このような従来のエンジンの燃
料制御装置においては、エアフローメータ4で計
測した空気量と実際にシリンダ6に吸入される空
気量との間、および燃料噴射弁5から吸気管2に
噴射される燃料噴射量と実際にシリンダ6に供給
される燃料量との間には、共に時間遅れその他の
動特性があり、従つて、エンジンの定常状態では
ほぼ正確な制御が可能ではあるが、過渡状態では
そのような動特性を考慮していないことに起因し
て、吸入空気量および燃料供給量に誤差が生じ、
そのため空燃比が目標値からズレてしまい、燃費
性能、排気浄化性能、運転性能の悪化や低下を来
たすという問題点があつた。
However, in such a conventional engine fuel control device, there is a difference between the amount of air measured by the air flow meter 4 and the amount of air actually taken into the cylinder 6, and the amount of air injected from the fuel injection valve 5 into the intake pipe 2. There are time delays and other dynamic characteristics between the amount of fuel injected and the amount of fuel actually supplied to the cylinder 6. Therefore, although almost accurate control is possible in the steady state of the engine, transient Due to the fact that such dynamic characteristics are not taken into account in the state, errors occur in the intake air amount and fuel supply amount,
As a result, the air-fuel ratio deviates from the target value, resulting in deterioration or decline in fuel efficiency, exhaust purification performance, and driving performance.

上記従来のエンジンの燃料制御装置の制御方式
は、現在エンジンにおいて最も広く用いられてい
る制御方式であるが、この制御方式は、運転者が
アクセルペダルに連結されたスロツトルバルブ3
を開閉して先ず空気量を選定し、この空気量を適
当な方法(例えば上述したごとく可変ベーン式エ
アフローメータ4)で検出し、検出した空気量に
応じて次に燃料噴射量を決定するもので、空気優
先形の燃料制御方式である。
The control method of the conventional engine fuel control device described above is the most widely used control method for engines at present.
Opening and closing, first selecting the amount of air, detecting this air amount using an appropriate method (for example, variable vane air flow meter 4 as described above), and then determining the fuel injection amount according to the detected air amount. This is an air-priority fuel control system.

この方式をさらに詳しく説明すると、第2図A
のごとくにエアフローメータ4の出力から空気量
が得られ、この空気量に応じて第2図Bのごとく
に燃料噴射量が演算される。この燃料噴射量は、
演算時間の遅れ等を無視すると、第2図Aの空気
量の動きとほぼ一致して変化する。また、第2図
Aの空気量に対して、実際にシリンダ6に吸入さ
れる空気量は第2図CのQ1のように変化し、こ
の空気形の応答を表わす動特性モデルをGa(z)とす
る。また、第2図Bの燃料噴射量に対して、実際
にシリンダ6に供給される燃料量は第2図Cの
T1のごとくに変化し、この燃料系の応答を表わ
す動特性モデルをGf(z)とする。
To explain this method in more detail, Figure 2A
The air amount is obtained from the output of the air flow meter 4, and the fuel injection amount is calculated according to this air amount as shown in FIG. 2B. This fuel injection amount is
Ignoring calculation time delays, etc., the air amount changes almost in accordance with the movement of the air amount shown in FIG. 2A. In addition, with respect to the air amount shown in Fig. 2A, the amount of air actually taken into the cylinder 6 changes as shown in Q 1 in Fig. 2C, and the dynamic characteristic model representing the response of this air shape is G a (z) . Furthermore, with respect to the fuel injection amount shown in Fig. 2B, the amount of fuel actually supplied to the cylinder 6 is shown in Fig. 2C.
Let G f(z) be a dynamic characteristic model that changes as T 1 and represents the response of this fuel system.

仮にGa(z)とGf(z)が同じであれば、シリンダ6に
吸入された混合気の空然比は、過渡状態において
も一定に保たれる。しかし実際には両者は一致し
ないため、第2図Dに示すように空然比のズレが
生じ、このため前述したように、燃費性能その他
の性能に悪影響が出る訳である。
If G a(z) and G f(z) are the same, the air-air ratio of the air-fuel mixture sucked into the cylinder 6 will be kept constant even in a transient state. However, in reality, the two do not match, resulting in a difference in the air-to-air ratio as shown in FIG. 2D, which adversely affects fuel efficiency and other performances as described above.

さらに、この動特性モデルGa(z)、Gf(z)は運転条
件に応じて変化するため、ある運転状態では空気
系の応答が燃料系の応答より早く、従つて、スロ
ツトルバルブ3を開くと空燃比がリーンになる。
また、別の運転状態では燃料系の応答が空気系よ
り早くなり、従つて、スロツトルバルブ3を開く
と空燃比がリツチになるというような事態が生じ
る。
Furthermore, since the dynamic characteristic models G a(z) and G f(z) change depending on the operating conditions, the response of the air system is faster than the response of the fuel system under certain operating conditions, and therefore the throttle valve 3 When opened, the air-fuel ratio becomes lean.
Furthermore, in other operating conditions, the response of the fuel system is faster than that of the air system, so that when the throttle valve 3 is opened, the air-fuel ratio becomes rich.

このような現在一般的な空気優先形の燃料制御
方式に対して、第3図に示すような、燃料優先形
の制御方式によるエンジンの燃料制御装置も知ら
れている(米国特許第3771504号明細書および特
開昭56−107925号公報参照)。
In contrast to the currently common air-priority type fuel control system, an engine fuel control device using a fuel-priority type control system as shown in FIG. 3 is also known (US Pat. No. 3,771,504). (Refer to Japanese Patent Application Laid-open No. 107925/1983).

第3図において、運転者がアクセルペダル9を
操作すると、その操作量がポテンシヨンメータ1
0により電圧に変換されて、演算回路11に入力
される。この演算回路11は例えば、CPU、
RAM、ROM、I/O等からなるマイクロコン
ピユータで構成される。演算回路11はポテンシ
ヨメータ10からの入力に応じて先ず燃料噴射量
を演算し、噴射弁駆動回路12に信号を送る。噴
射弁駆動回路12はその演算結果に応じた時間だ
け燃料噴射弁13を開いて、燃料を吸気管14に
噴射し、エンジンへ供給する。
In FIG. 3, when the driver operates the accelerator pedal 9, the amount of operation is reflected on the potentiometer 1.
0, it is converted into a voltage and input to the arithmetic circuit 11. This arithmetic circuit 11 includes, for example, a CPU,
It consists of a microcomputer consisting of RAM, ROM, I/O, etc. The calculation circuit 11 first calculates the fuel injection amount according to the input from the potentiometer 10, and sends a signal to the injection valve drive circuit 12. The injection valve drive circuit 12 opens the fuel injection valve 13 for a time corresponding to the calculation result, injects fuel into the intake pipe 14, and supplies the fuel to the engine.

さらに演算回路11は、噴射した燃料量に見合
つた空気量に相当するスロツトルバルブ開度信号
をスロツトル駆動回路15に出力し、スロツトル
駆動回路15はスロツトルバルブ16を駆動す
る。また、スロツトルバルブ16の前後差圧を差
圧計17で計測し、スロツトルバルブ開度信号を
補正する。
Furthermore, the arithmetic circuit 11 outputs a throttle valve opening signal corresponding to the amount of air commensurate with the amount of injected fuel to the throttle drive circuit 15, and the throttle drive circuit 15 drives the throttle valve 16. Further, the differential pressure across the throttle valve 16 is measured by a differential pressure gauge 17, and the throttle valve opening signal is corrected.

しかしながら、このような燃料優先形の制御方
式による燃料制御装置においても、空気系および
燃料系の動特性を考慮していないので、前述した
空気優先形の制御方式の場合と同様に、過渡状態
では空燃比のズレを生じ、燃費性能その他の性能
の悪化や低下を来たす。
However, even in a fuel control system based on such a fuel-priority type control system, the dynamic characteristics of the air system and fuel system are not taken into account. This causes a discrepancy in the air-fuel ratio, leading to deterioration or decline in fuel efficiency and other performance.

(発明の目的) この発明はこのような従来の問題点に着目して
なされたもので、エンジンの運転が過渡状態にあ
つても、燃料供給量および吸入空気量を最適に
し、空燃比を目標値に一致させるようにして、燃
費性能、排気浄化性能および運転性能を向上させ
ることを目的とする。
(Purpose of the Invention) This invention was made by focusing on these conventional problems, and even when the engine is in a transient state, it can optimize the fuel supply amount and intake air amount to achieve the target air-fuel ratio. The purpose is to improve fuel efficiency, exhaust purification performance, and driving performance by matching the values.

(発明の構成) そこでこの発明のエンジンの燃料制御装置の特
徴は、燃料系および空気系の動特性を表わす(記
述する)モデルを個別に持ち、該モデルに基づい
て求めたシリンダに実際に吸入される混合気の空
燃比が目標値に一致するように、燃料供給量およ
びスロツトルバルブ開度のいずれか一方または双
方を制御するようにし、さらに、空気系の応答と
燃料系の応答のどちらが速いかに応じて、燃料優
先形制御または空気優先形制御のいずれかを行な
うようにしたことにある。
(Structure of the Invention) Therefore, the feature of the engine fuel control device of the present invention is that it has separate models representing (describing) the dynamic characteristics of the fuel system and the air system, and that it actually inhales into the cylinder determined based on the models. Either or both of the fuel supply amount and throttle valve opening are controlled so that the air-fuel ratio of the air-fuel mixture matches the target value, and the response of the air system or the fuel system is controlled. Depending on the speed, either fuel priority control or air priority control is performed.

(実施例) 以下、この発明の実施例を図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第4図は、エンジンの運転条件と燃料系および
空気系の応答の関係を示す図であるが、同図にお
いて、エンジン回転速度が低くかつスロツトルバ
ルブ開度が小さい(従つて負荷が小さい)領域
B1では、燃料系の応答が空気系の応答より速く、
従つて空気優先形で制御する方が有利である。ま
た、エンジン回転速度とスロツトルバルブ開度
(負荷)のいずれか一方または双方が高い領域B3
では、空気系の応答が燃料系の応答より速く、燃
料優先系で制御する方が有利である。なお、両者
の中間の領域B2は、両方の系の応答がほぼ等価
な遷移領域である。
Fig. 4 is a diagram showing the relationship between engine operating conditions and the response of the fuel system and air system. In the figure, the engine speed is low and the throttle valve opening is small (therefore, the load is small). region
In B 1 , the fuel system response is faster than the air system response;
Therefore, it is more advantageous to control with air priority. Also, region B 3 where either or both of the engine speed and throttle valve opening (load) are high.
In this case, the response of the air system is faster than the response of the fuel system, and it is advantageous to control with the fuel priority system. Note that the region B2 between the two is a transition region where the responses of both systems are approximately equivalent.

この発明のエンジンの燃料制限装置の構成は、
第3図に示すものと概略同じであるが、マイクロ
コンピユータにより構成される演算回路11の中
で実行されるルーチンに特徴がある。
The configuration of the engine fuel restriction device of this invention is as follows:
Although it is roughly the same as the one shown in FIG. 3, it is characterized by the routine executed in the arithmetic circuit 11 constituted by a microcomputer.

第5図はそのルーチンのフローチヤートであ
る。
FIG. 5 is a flowchart of the routine.

第5図において、先ずステツプ20でポテンシヨ
メータ10の電圧からアクセルペダルの踏込み量
Accを読み込む。ステツプ21ではその時点のエン
ジン回転速度と負荷(例えばスロツトルバルブ開
度)から第4図に従つて運転状態が領域B1〜B3
のいずれかにあるかを判定する。運転状態が遷移
領域B2にある場合には、ステツプ22でアクセル
ペダルの踏み込み量Accおよびその他のパラメー
タより、燃料噴射量Tiとスロツトルバルブ開度
θを計算し、次のステツプ31で噴射弁駆動回路1
2およびスロツトル駆動回路15の各駆動回路に
出力する。この場合に空気系の応答(動特性また
は伝達特性)と燃料系の応答はほぼ等しい遷移領
域であるため、モデルを使つた計算は必要でな
い。
In FIG. 5, first, in step 20, the amount of depression of the accelerator pedal is determined from the voltage of potentiometer 10.
Load Acc. In step 21, the operating state is determined from the engine speed and load (e.g. throttle valve opening) at that point in the range B1 to B3 according to FIG.
Determine whether it is in either of the following. If the operating state is in the transition region B2 , the fuel injection amount Ti and throttle valve opening θ are calculated from the accelerator pedal depression amount Acc and other parameters in step 22, and the injection valve opening degree θ is calculated in the next step 31. Drive circuit 1
2 and throttle drive circuit 15. In this case, the response of the air system (dynamic characteristics or transfer characteristics) and the response of the fuel system are in approximately the same transition region, so calculations using a model are not necessary.

ステツプ21で運転状態が空気系の応答の方が燃
料系の応答より速い領域B3であると判定された
場合は、燃料優先形制御を行なう。すなわち、ス
テツプ23でアクセルペダル9の踏込み量Accおよ
びその他のパラメータから先ず燃料噴射量Ti計
算する。次にステツプ24で、この燃料噴射量Ti
と燃料系の動特性(伝達特性)モデルGf(z)から、
シリンダに供給される燃料供給量fcylを計算し、
次いでステツプ25でシリンダに吸入される混合気
の空燃比acyl/fcylが所望の値になるように、シリ
ンダに吸入される空気量acylを決定し、ステツプ
26でこの吸入空気量acylと空気系の動特性モデル
Ga(z)からスロツトルバルブ開度θを決定し、ステ
ツプ31で各駆動回路に出力する。
If it is determined in step 21 that the operating state is in region B3 where the response of the air system is faster than the response of the fuel system, fuel priority control is performed. That is, in step 23, the fuel injection amount Ti is first calculated from the depression amount Acc of the accelerator pedal 9 and other parameters. Next, in step 24, this fuel injection amount Ti
From the fuel system dynamic characteristics (transfer characteristics) model G f(z) ,
Calculate the fuel supply amount f cyl supplied to the cylinder,
Next , in step 25, the air amount a cyl taken into the cylinder is determined so that the air-fuel ratio a cyl /f cyl of the air-fuel mixture taken into the cylinder becomes the desired value, and step 25 is performed.
26, this intake air amount a cyl and the air system dynamic characteristic model
The throttle valve opening degree θ is determined from G a(z) and outputted to each drive circuit in step 31.

より具体的には、例えば動特性モデルGf(z)
Ga(z)を、 Gf(z)=d1z-1+e1z-2/1+b1z-1+c1z-2 (2) Ga(z)=d2z-1+e2z-2/1+b2z-1+c2z-2 (3) のように定義すると、シリンダに供給される燃料
供給量fcylは、 fcyl(n)=b1Ti(n−1)+c1Ti(n−2) −d1fcyl(n−1)−e1fcyl(n−2) (4) (但し、nは今回、n−1は前回、n−2は
前々回の各制御周期を示す)で計算され、スロツ
トルバルブ開度θは、 θ(n)=1/d2{fcyl(n+1)+b2fcyl(n) +c2fcyl(n−1)−e2θ(n−1)} (5) により計算される。なお、(5)式中、次回のfcyl(n
+1)1は例えば、 fcyl(n+1)=2fcyl(n)−fcyl(n−1) (6) のように今回と前回の値から予測したものを使え
ばよい。
More specifically, for example, the dynamic characteristic model G f(z) and
G a(z) , G f(z) =d 1 z -1 +e 1 z -2 /1+b 1 z -1 +c 1 z -2 (2) G a(z) =d 2 z -1 +e 2 Defining as z -2 /1+b 2 z -1 +c 2 z -2 (3), the amount of fuel supplied to the cylinder f cyl is f cyl (n) = b 1 Ti (n-1) + c 1 Ti(n-2) -d 1 f cyl (n-1)-e 1 f cyl (n-2) (4) (However, n is this time, n-1 is the previous time, and n-2 is each time before the previous time. The throttle valve opening θ is calculated as follows: θ(n)=1/d 2 {f cyl (n+1)+b 2 f cyl (n) +c 2 f cyl (n-1)−e 2 θ(n-1)} (5). In addition, in formula (5), the next f cyl (n
+1) 1 can be predicted from the current and previous values, for example, f cyl (n+1) = 2f cyl (n) - f cyl (n-1) (6).

ステツプ21で運転状態が燃料系の応答の方が速
い領域B1であると判定された場合は、空気優先
形制御を行なう。すなわち、ステツプ27でアクセ
ルペダル9の踏込み量Accおよびその他のパラメ
ータから先ずスロツトルバルブ開度θを計算し、
次にステツプ28でこのスロツトルバルブ開度θと
空気系の動特性モデルGa(z)から、シリンダに吸入
される空気量acylを計算し、ステツプ29で空燃比
acyl/fcylが所望の値になるように燃料供給量fcyl
決定しステツプ30でこの燃料供給量fcylと燃料系
の動特性モデルGf(z)から燃料噴射量Tiを計算し、
ステツプ31で各駆動回路に出力する。
If it is determined in step 21 that the operating condition is in region B1 where the response of the fuel system is faster, air priority control is performed. That is, in step 27, the throttle valve opening degree θ is first calculated from the depression amount Acc of the accelerator pedal 9 and other parameters.
Next, in step 28, the air amount a cyl taken into the cylinder is calculated from this throttle valve opening θ and the air system dynamic characteristic model G a(z) , and in step 29, the air-fuel ratio is calculated.
The fuel supply amount f cyl is determined so that a cyl /f cyl becomes the desired value, and in step 30, the fuel injection amount Ti is calculated from this fuel supply amount f cyl and the fuel system dynamic characteristic model G f(z). ,
In step 31, it is output to each drive circuit.

なお上記実施例では、空気系の動特性モデル
Ga(z)と燃料系の動特性モデルGf(z)を個別に有する
場合を説明したが、演算の過程では、例えば空気
優先系制御の場合、2つのモデルを組み合わせた
新しいモデルG(z)=Ga(z)/Gf(z)を用いれば、1つ
の動特性モデルで表わす(記述する)ことができ
ることは言うまでもない。
In addition, in the above example, the dynamic characteristics model of the air system is
Although we have explained the case where G a(z) and the fuel system dynamic characteristic model G f(z) are separately provided, in the process of calculation, for example, in the case of air priority system control, a new model G ( It goes without saying that by using z) = G a(z) /G f(z) , it is possible to express (describe) with one dynamic characteristic model.

(発明の効果) 以上説明したように、この発明のエンジンの燃
料制御装置によれば、演算回路の中に燃料系と空
気系の動特性モデルを個別に持ち、スロツトル動
作に応答するシリンダ吸入空気量と燃料噴射量
(パルス幅)の変動に応答するシリンダ燃料供給
量の比(シリンダに吸入される混合気の空燃比)
が所望の値となるように、スロツトルバルブ開度
および燃料噴射量のいずれか一方あるいは双方を
制御する構成としたため、エンジンの広い運転領
域に亘つて過渡時にも空燃比を最適に制御でき、
従つて燃費性能、排気浄化性能および運転性能を
改善できるという効果が得られる。
(Effects of the Invention) As explained above, the engine fuel control device of the present invention has separate dynamic characteristic models of the fuel system and air system in the calculation circuit, and controls the cylinder intake air in response to throttle operation. ratio of the cylinder fuel supply amount (air-fuel ratio of the air-fuel mixture drawn into the cylinder) in response to variations in the fuel injection amount (pulse width) and the fuel injection amount (pulse width)
Since the configuration controls either or both of the throttle valve opening and the fuel injection amount so that
Therefore, the effect of improving fuel efficiency, exhaust purification performance, and driving performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエンジンの燃料制御装置の構成
図、第2図は第1図の装置における種々の信号の
タイムチヤート、第3図は従来の別の装置および
この発明のエンジンの燃料制御装置の概略の構成
を示すブロツク図、第4図はエンジンの運転条件
と燃料系および空気系の応答の関係を示す図、第
5図はこの発明の動作を説明するフローチヤート
である。 9…アクセルペダル、10…ポテンシヨメー
タ、11…演算回路、12…噴射弁駆動回路、1
3…燃料噴射弁、15…スロツトル駆動回路、1
6…スロツトルバルブ、Ti…燃料噴射量、θ…
スロツトルバルブ開度、Ga(z),Gf(z)…動特性モデ
ル、fcyl…燃料供給量、Acyl…吸入空気量。
FIG. 1 is a configuration diagram of a conventional engine fuel control device, FIG. 2 is a time chart of various signals in the device of FIG. 1, and FIG. 3 is a diagram of another conventional device and an engine fuel control device of the present invention. FIG. 4 is a diagram showing the relationship between engine operating conditions and responses of the fuel system and air system, and FIG. 5 is a flowchart illustrating the operation of the present invention. 9... Accelerator pedal, 10... Potentiometer, 11... Arithmetic circuit, 12... Injection valve drive circuit, 1
3... Fuel injection valve, 15... Throttle drive circuit, 1
6...Throttle valve, Ti...Fuel injection amount, θ...
Throttle valve opening, G a(z) , G f(z) ...dynamic characteristic model, f cyl ...fuel supply amount, A cyl ...intake air amount.

Claims (1)

【特許請求の範囲】 1 運転者のアクセルペダル操作、エンジン回転
速度、車速、ギヤ位置および負荷トルクのうちの
少なくとも1つの信号に応答して燃料噴射量を決
定する燃料メータリング手段と、前記信号のうち
の少なくとも1つの信号に応答してスロツトルバ
ルブ開度を決定するスロツトル制御手段とを有す
るエンジンの燃料制御装置において、 前記燃料メータリング手段からの出力とシリン
ダに実際に供給される燃料供給量fcylの間の動特
性を表わすモデルGf(z)と、前記スロツトル制御手
段の出力とシリンダに実際に吸入される空気量
acylの間の動特性を表わすモデルGa(z)とを予め記
憶している記憶手段と、 エンジンの運転状態から燃料系の応答と空気系
の応答のどちらが速い運転領域であるかを判定す
る判定手段と、 該判定手段により空気系の応答の方が燃料系の
応答より速い領域と判定した場合には、前記燃料
メータリング装置により先ず所望量の燃料をエン
ジンに供給し、次いで前記動特性モデルGa(z)およ
びGf(z)に基づいて所定の空燃比を得るためのスロ
ツトルバルブ開度を決定して前記スロツトル制御
手段によりスロツトルを制御する燃料優先形制御
を行ない、一方、前記判定手段により燃料系の応
答の方が空気系の応答より速い領域と判定した場
合には、前記スロツトル制御手段により先ず所定
のスロツトルバルブ開度を決定し、次いで前記動
特性モデルGa(z)およびGf(z)に基づいて所定の空燃
比を得るための燃料噴射量を前記燃料メータリン
グ手段により制御する空気優先形制御を行なう制
御手段と、 を備えたことを特徴とするエンジンの燃料制御装
置。
[Scope of Claims] 1. Fuel metering means that determines the fuel injection amount in response to at least one signal of the driver's accelerator pedal operation, engine rotation speed, vehicle speed, gear position, and load torque, and the signal and a throttle control means for determining a throttle valve opening in response to at least one signal of the output from the fuel metering means and the fuel supply actually supplied to the cylinder. A model G f(z) representing the dynamic characteristics between the amount f cyl , the output of the throttle control means, and the amount of air actually taken into the cylinder.
a storage means that stores in advance a model G a(z) representing the dynamic characteristics between a and cyl , and determines whether the response of the fuel system or the response of the air system is faster in the operating region based on the operating state of the engine. and a determining means for supplying a desired amount of fuel to the engine by the fuel metering device if the determining means determines that the response of the air system is faster than the response of the fuel system, and then the fuel metering device supplies a desired amount of fuel to the engine, and then The throttle valve opening degree for obtaining a predetermined air-fuel ratio is determined based on the characteristic models G a(z) and G f(z), and the throttle is controlled by the throttle control means to perform fuel priority control; If the determination means determines that the response of the fuel system is faster than the response of the air system, the throttle control means first determines a predetermined throttle valve opening, and then the dynamic characteristic model G a (z) and G f(z) to control the amount of fuel injection to obtain a predetermined air-fuel ratio using the fuel metering means, and a control means for performing air-priority control. Engine fuel control device.
JP58149139A 1983-08-17 1983-08-17 Fuel control device in engine Granted JPS6040745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149139A JPS6040745A (en) 1983-08-17 1983-08-17 Fuel control device in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149139A JPS6040745A (en) 1983-08-17 1983-08-17 Fuel control device in engine

Publications (2)

Publication Number Publication Date
JPS6040745A JPS6040745A (en) 1985-03-04
JPH0415385B2 true JPH0415385B2 (en) 1992-03-17

Family

ID=15468604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149139A Granted JPS6040745A (en) 1983-08-17 1983-08-17 Fuel control device in engine

Country Status (1)

Country Link
JP (1) JPS6040745A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930396C2 (en) * 1989-09-12 1993-11-04 Bosch Gmbh Robert METHOD FOR ADJUSTING AIR AND FUEL AMOUNTS FOR A MULTI-CYLINDRICAL INTERNAL COMBUSTION ENGINE
JPH086626B2 (en) * 1990-05-09 1996-01-29 本田技研工業株式会社 Fail-safe device for intake throttle control device
JP2559641Y2 (en) * 1991-06-17 1998-01-19 三洋電機株式会社 Washing machine
DE4214179C1 (en) * 1992-04-30 1993-05-06 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208143A (en) * 1983-05-13 1984-11-26 Hitachi Ltd Control device for internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208143A (en) * 1983-05-13 1984-11-26 Hitachi Ltd Control device for internal-combustion engine

Also Published As

Publication number Publication date
JPS6040745A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
EP0239095B1 (en) A control system and method for internal combustion engines
JPH10288108A (en) Fuel system for internal combustion engine
US5235949A (en) Method and arrangement for controlling the fuel metered in a diesel engine
JP3284395B2 (en) Throttle valve control device for internal combustion engine
JPH0415385B2 (en)
JP3483394B2 (en) Air-fuel ratio control device for internal combustion engine
JP3843492B2 (en) Engine intake control device
JP3013401B2 (en) Control system for vehicle engine
JPH1162658A (en) Control device for internal combustion engine
JPH10184408A (en) Intake control device for engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP2847855B2 (en) Control system for vehicle engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JP2847851B2 (en) Control device for internal combustion engine for vehicles
JP3028851B2 (en) Fuel injection control device
JPH09287506A (en) Throttle valve controller for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JPH04298661A (en) Output control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPS6338652A (en) Air-fuel ratio control device for internal combustion engine
JPH02196147A (en) Fuel supply controller for internal combustion engine
JPH02185635A (en) Device for controlling internal combustion engine
JPH01106955A (en) Control device for fuel feeding of internal combustion engine