JPH0413543B2 - - Google Patents

Info

Publication number
JPH0413543B2
JPH0413543B2 JP58016150A JP1615083A JPH0413543B2 JP H0413543 B2 JPH0413543 B2 JP H0413543B2 JP 58016150 A JP58016150 A JP 58016150A JP 1615083 A JP1615083 A JP 1615083A JP H0413543 B2 JPH0413543 B2 JP H0413543B2
Authority
JP
Japan
Prior art keywords
amount
fuel
intake air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58016150A
Other languages
Japanese (ja)
Other versions
JPS59145357A (en
Inventor
Toshimi Anho
Takashi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58016150A priority Critical patent/JPS59145357A/en
Priority to US06/576,474 priority patent/US4562814A/en
Priority to EP84101131A priority patent/EP0115868B1/en
Priority to DE8484101131T priority patent/DE3483653D1/en
Publication of JPS59145357A publication Critical patent/JPS59145357A/en
Publication of JPH0413543B2 publication Critical patent/JPH0413543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は内燃機関の燃料制御装置に関し、特に
空気系および燃料系の動特性に起因する吸入空気
量と燃料供給量との不均衡を補正する技術に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a fuel control device for an internal combustion engine, and in particular to correcting an imbalance between the amount of intake air and the amount of fuel supplied due to the dynamic characteristics of the air system and fuel system. Regarding technology.

(従来技術) 従来の燃料制御装置としては、例えば第1図に
示すごときものがある(特開昭53−102416、同55
−35165、同55−134718等)。
(Prior art) As a conventional fuel control device, there is, for example, the one shown in FIG.
-35165, 55-134718, etc.)

第1図において、1はエアクリーナ、2は吸気
管、3は絞り弁、4は吸気管2を通過する空気量
に対応すた空気量信号S1を出力するエアフロー
メータ、5は後述の燃料噴射量信号S3に応じた
量の燃料を噴射する燃料噴射弁、6はシリンダ、
7はクランク軸の回転に同期した回転信号S2を
出力する回転センサ、8は主として空気量信号S
1と回転信号S2からそのときの運転状態に対応
した燃料噴射量を算出し、その結果に応じた燃料
噴射量信号S3を出力する演算装置であり、例え
ばCPU、RAM、ROM、I/O等からなるマイ
クロコンピユータで構成されている。
In FIG. 1, 1 is an air cleaner, 2 is an intake pipe, 3 is a throttle valve, 4 is an air flow meter that outputs an air amount signal S1 corresponding to the amount of air passing through the intake pipe 2, and 5 is a fuel injection amount, which will be described later. a fuel injection valve that injects an amount of fuel according to the signal S3; 6 is a cylinder;
7 is a rotation sensor that outputs a rotation signal S2 synchronized with the rotation of the crankshaft, and 8 is mainly an air amount signal S.
1 and rotation signal S2, and outputs a fuel injection amount signal S3 according to the result, such as a CPU, RAM, ROM, I/O, etc. It consists of a microcomputer consisting of.

上記の装置における燃料噴射量の演算は次のよ
うにして行なわれる。
The calculation of the fuel injection amount in the above device is performed as follows.

すなわちエアフローメータ4で計測した空気量
信号S1によつて得られる吸入空気量をQ、回転
信号S2から得られる内燃機関の回転速度をN、
係数をKとした場合に、燃料噴射量(燃料噴射パ
ルス幅)Tpは下記(1)式によつて算出される。
That is, the intake air amount obtained from the air amount signal S1 measured by the air flow meter 4 is Q, the rotation speed of the internal combustion engine obtained from the rotation signal S2 is N,
When the coefficient is K, the fuel injection amount (fuel injection pulse width) Tp is calculated by the following equation (1).

Tp=KQ/N …(1) なお上記の係数Kは、内燃機関の温度等に応じ
た補正を付加するための係数である。
Tp=KQ/N (1) The above coefficient K is a coefficient for adding correction according to the temperature of the internal combustion engine, etc.

上記(1)式に示すように、燃料噴射量は主と
して吸入空気量と回転速度とに応じて設定され、
それに温度や排気ガス成分濃度等による補正を付
加したものが実際の燃料噴射量となる。
As shown in equation (1) above, the fuel injection amount is set mainly depending on the intake air amount and rotation speed,
The actual fuel injection amount is obtained by adding corrections based on temperature, exhaust gas component concentration, etc.

しかし従来の装置においては、エアフローメー
タの空気量信号S1をそのまま吸入空気量を示す
信号として用い、また噴射した燃料は時間遅れな
しに全てシリンダに吸入されるものとして制御し
ている。
However, in the conventional device, the air amount signal S1 of the air flow meter is used as it is as a signal indicating the intake air amount, and control is performed so that all the injected fuel is taken into the cylinder without any time delay.

すなわち従来の装置においては、空気量はエア
フローメータの測定値そのものであり、燃料量は
吸気管に噴射する燃料であつて実際にシリンダに
吸入される空気量や燃料量について制御している
ものではなかつた。
In other words, in conventional devices, the air amount is the measured value of the air flow meter itself, and the fuel amount is the fuel injected into the intake pipe, and does not control the amount of air or fuel actually taken into the cylinder. Nakatsuta.

そのため定常状態では正確な制御が可能である
が、過渡状態時には空気系と燃料系の動特性に起
因する誤差が生じ、そのため空燃比が目標値から
ずれてしまい、燃費性能、排気浄化性能、運転性
能等に悪影響を及ぼすという問題があつた。
Therefore, accurate control is possible in a steady state, but in a transient state, errors occur due to the dynamic characteristics of the air system and fuel system, which causes the air-fuel ratio to deviate from the target value, resulting in poor fuel efficiency, exhaust purification performance, and operational performance. There was a problem that it had a negative effect on performance, etc.

(発明の目的) 本発明は上記の問題を解決するためになされた
ものであり、シリンダにおける実際の吸入空気量
(以下、単に吸入空気量と記す)と燃料供給量と
に良く対応した正確な制御を行なうことの出来る
燃料制御装置を提供することを目的とする。
(Objective of the Invention) The present invention was made to solve the above problem, and is an accurate method that corresponds well to the actual amount of intake air in the cylinder (hereinafter simply referred to as the amount of intake air) and the amount of fuel supplied. An object of the present invention is to provide a fuel control device that can perform control.

(発明の概要) 上記の目的を達成するため本発明においては、
予め測定して記憶しておいた空気系の動特性Ga
とセンサで検出した空気量信号とから実際の吸入
空気量を演算し、さらに過去と今回の吸入空気量
から次回の吸入空気量を予測演算し、それらの吸
入空気量から今回と次回の要求燃料量を演算し、
さらに燃料系の動特性Gfと上記の要求燃料量か
ら実際に供給すべき燃料量Ff(n)を演算するよ
うに構成している。
(Summary of the invention) In order to achieve the above object, the present invention includes:
Dynamic characteristics Ga of the air system measured and memorized in advance
The actual intake air amount is calculated from the air amount signal detected by the sensor, and the next intake air amount is predicted from the past and current intake air amounts, and the current and next required fuel is calculated from these intake air amounts. Calculate the amount,
Furthermore, the fuel system is configured to calculate the amount of fuel Ff(n) to actually be supplied from the dynamic characteristic Gf of the fuel system and the above-mentioned required fuel amount.

(発明の実施例) 以下、実施例に基づいて本発明を詳細に説明す
る。
(Examples of the Invention) The present invention will be described in detail below based on Examples.

まず第2図に基づいて空気系と燃料系の動特性
について詳細に説明する。
First, the dynamic characteristics of the air system and fuel system will be explained in detail based on FIG.

例えば、絞り弁を第2図のAのように開閉した
場合に、フラツプ式の空気流量計(エアフローメ
タ等)は、Bに示すような信号を出力する。
For example, when a throttle valve is opened and closed as shown in A in FIG. 2, a flap-type air flow meter (such as an air flow meter) outputs a signal as shown in B.

この時、吸入空気量はCの破線C1のように変
化する。
At this time, the intake air amount changes as shown by the broken line C1 of C.

一方、燃料は空気流量計の信号Bに応じて、ほ
ぼ無視できる遅れ時間で噴射される。しかし噴射
された燃料は、空気とは異つた動特性をもつてい
るため、シリンダに実際に吸入される燃料量は実
線C2のようになり、吸入空気量の変化とは一致
しなくなる。
On the other hand, fuel is injected with a substantially negligible delay time in response to signal B from the air flow meter. However, since the injected fuel has dynamic characteristics different from those of air, the amount of fuel actually drawn into the cylinder is as shown by the solid line C2, which does not match the change in the amount of intake air.

そのため空燃比は、Dに示すようになり、目標
値(例えば理論空燃比)からずれてしまう。
Therefore, the air-fuel ratio becomes as shown in D and deviates from the target value (for example, the stoichiometric air-fuel ratio).

第3図は上記の動特性を示す系統図である。第
3図において、エアフローメータの出力Aa(n)
に対して吸入空気量Ac(n)は、空気系の動特性
を記述する伝達関数Ga(z)を用いて、 Ac(z)=Ga(z)Aa(z) …(2) と表わすことが出来る。ただし(2)式におい
て、(n)は制御周期を示し、nは今回、n−1
は前回、n+1は次回の制御周期を示す。また
Ac(z)、Aa(z)はそれぞれAc(n)、Aa(n)
のz変換である。
FIG. 3 is a system diagram showing the above dynamic characteristics. In Figure 3, air flow meter output Aa(n)
In contrast, the intake air amount Ac(n) can be expressed as Ac(z)=Ga(z)Aa(z)...(2) using the transfer function Ga(z) that describes the dynamic characteristics of the air system. I can do it. However, in equation (2), (n) indicates the control period, and n is this time, n-1
indicates the previous control cycle, and n+1 indicates the next control cycle. Also
Ac(z) and Aa(z) are Ac(n) and Aa(n) respectively
is the z-transform of

また固定のアルゴリズムTp=KAa/Nで計算
された噴射パルス幅Tpによつて噴射された燃料
量Ff(n)に対するシリンダの実際の吸入燃料量
Fc(n)は、燃料系の動特性を記述する伝達関数
Gf(z)を用いて、 Fc(z)=Gf(z)Ff(z) …(3) と表わすことが出来る。ただしFc(z)、Ff(z)
はそれぞれFc(n)、Ff(n)のz変換である。
Also, the actual intake fuel amount of the cylinder relative to the fuel amount Ff(n) injected by the injection pulse width Tp calculated by the fixed algorithm Tp = KAa/N
Fc(n) is a transfer function that describes the dynamic characteristics of the fuel system
Using Gf(z), it can be expressed as Fc(z)=Gf(z)Ff(z)...(3). However, Fc(z), Ff(z)
are the z-transforms of Fc(n) and Ff(n), respectively.

上記の(2)、(3)式において、Ga(z)とGf
(z)とが同一でない場合は、過渡状態において
シリンダ内における吸入空気量と燃料量との割合
が変化して空燃比が目標値からずれることにな
る。
In the above equations (2) and (3), Ga(z) and Gf
If (z) are not the same, the ratio between the amount of intake air and the amount of fuel in the cylinder changes in a transient state, and the air-fuel ratio deviates from the target value.

本発明は上記の問題を解決したものであり、以
下詳細に説明する。
The present invention solves the above problems and will be described in detail below.

第4図は本発明の一実施例図であり、第1図と
同符号は同一物を示す。
FIG. 4 is a diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same parts.

第4図において、9は演算装置であり、吸入空
気量演算部10、燃料演算部11、記憶部12,
13から構成されている。なおこの構成は演算装
置9の内容を機能別に示したものであり、実際に
は、例えばマイクロコンピユータで構成する。
In FIG. 4, numeral 9 denotes a calculation device, including an intake air amount calculation section 10, a fuel calculation section 11, a storage section 12,
It consists of 13. Note that this configuration shows the contents of the arithmetic unit 9 by function, and in reality, it is configured by, for example, a microcomputer.

吸入空気量演算部10は、エアフローメータ4
から与えられる空気量信号S1と予め実験で求め
て記憶部12に記憶しておいた空気系の動特性か
ら実際の吸入空気量を算出し、その値に対応した
吸入空気量信号S4を出力する。
The intake air amount calculation unit 10 includes an air flow meter 4
The actual intake air amount is calculated from the air amount signal S1 given from the air amount signal S1 and the dynamic characteristics of the air system that have been determined in advance through experiments and stored in the storage unit 12, and an intake air amount signal S4 corresponding to the calculated value is output. .

燃料演算部11は、上記の吸入空気量信号S4
からその時の要求燃料量を算出し、更にその要求
燃料量と予め実験で求めて記憶部13に記憶して
おいた燃料系の動特性から実際に噴射すべき燃料
量を算出し、その値に対応した燃料供給量信号S
5を出力する。
The fuel calculation unit 11 receives the above-mentioned intake air amount signal S4.
The required fuel amount at that time is calculated from the above, and the actual amount of fuel to be injected is calculated from the required fuel amount and the dynamic characteristics of the fuel system that have been determined in advance through experiments and stored in the storage unit 13. Corresponding fuel supply amount signal S
Outputs 5.

この燃料供給量信号S5によつて燃料噴射弁5
を制御すれば、過渡状態時においてもシリンダの
実際の吸入空気量と燃料量とに対応した制御を行
なうことが出来るので、常に空気量と燃料量との
均衡を保ち、空燃比を目標値に維持することが出
来る。
The fuel injection valve 5 is controlled by this fuel supply amount signal S5.
By controlling this, it is possible to perform control corresponding to the actual intake air amount and fuel amount of the cylinder even during transient conditions, so the balance between the air amount and fuel amount is always maintained and the air-fuel ratio is kept at the target value. can be maintained.

次に演算装置9の演算について、第5図のフロ
ーチヤートに基づいて詳細に説明する。
Next, the calculations of the calculation device 9 will be explained in detail based on the flowchart of FIG.

第5図において、まずP1においては、エアフ
ローメータ4の空気量信号S1を読込み、その値
をAa(n−1)とする。なおn−1は1回前の制
御周期における値であることを示す。
In FIG. 5, first at P1, the air amount signal S1 of the air flow meter 4 is read and its value is set as Aa(n-1). Note that n-1 indicates a value in the previous control cycle.

次にP2で、今回の制御周期における吸入空気
量の値Ac(n)を演算する。この演算は次のよう
にして行なう。
Next, in P2, the intake air amount value Ac(n) in the current control cycle is calculated. This calculation is performed as follows.

内燃機関の吸気系(エアフローメータ、吸気管
等)における空気系の動特性は、例えば2次のパ
ルス伝達関数 Ga(z)=d1z-1+e1z-2/1+b1z-1+c1z-2 …(4) で良く記述することが出来る。
The dynamic characteristics of the air system in the intake system of an internal combustion engine (air flow meter, intake pipe, etc.) are expressed, for example, by the second-order pulse transfer function Ga(z)=d 1 z -1 +e 1 z -2 /1+b 1 z -1 +c 1 z -2 …(4) can be well described.

そして上記のAa(n−1)、2回前の値Aa(n
−2)、吸入空気量の1回前および2回前の値Ac
(n−1)、Ac(n−2)と上記(4)式から今回
の吸入空気量の値Ac(n)は、下記の(5)式の
ようになる。
Then, the above Aa (n-1), the value Aa (n
-2), the value Ac of the intake air amount before the first and second time
(n-1), Ac(n-2), and the above equation (4), the current intake air amount value Ac(n) is determined by the following equation (5).

Ac(n)=d1Aa(n−1)+e1Aa(n−2) −b1Ac(n−1)+c1Ac(n−2) …(5) したがつて上記の係数b1,c1,d1,e1を予め実
験で求めておけば、Ac(n)を演算で求めること
が出来る。
Ac(n)=d 1 Aa(n-1)+e 1 Aa(n-2) -b 1 Ac(n-1)+c 1 Ac(n-2)...(5) Therefore, the above coefficient b 1 , c 1 , d 1 , and e 1 are determined in advance through experiments, Ac(n) can be determined by calculation.

次にP3においては、次回の吸入空気量の値
Ac(n+1)を予測演算する。
Next, in P3, the value of the next intake air amount
Predictively calculate Ac(n+1).

この値は、例えば外挿式を用いて、今回と前回
の吸入空気量の値から Ac(n+1)=2Ac(n)−Ac(n−1) と求めることが出来る。なおAc(n+1)の予測
演算が必要な理由については後述する。
This value can be determined as Ac(n+1)=2Ac(n)-Ac(n-1) from the current and previous intake air amounts using an extrapolation formula, for example. Note that the reason why the predictive calculation of Ac(n+1) is necessary will be described later.

次にP4において、P2で求めた吸入空気量
Ac(n)を用いて、下記(6)式から今回の要求
燃料量Fc(n)を演算する。
Next, in P4, the intake air amount obtained in P2
Using Ac(n), the current required fuel amount Fc(n) is calculated from equation (6) below.

Fc(n)=KAc(n)/N …(6) 上記の要求燃料量Fc(n)は実際の吸入空気量
に対応して実際にシリンダ内で必要とされる燃料
量である。
Fc(n)=KAc(n)/N (6) The above required fuel amount Fc(n) is the amount of fuel actually required within the cylinder corresponding to the actual intake air amount.

次にP5で、P3で求めたAc(n+1)を用い
て、次回の要求燃料量Fc(n+1)を下記(7)
式から算出する。
Next, in P5, using Ac (n+1) obtained in P3, calculate the next required fuel amount Fc (n+1) as shown below (7).
Calculate from the formula.

Fc(n+1)=KAc(n+1)/N …(7) 次にP6では、上記の要求燃料量をシリンダに
供給するために実際に噴射すべき燃料量Ff(n)
を算出する。
Fc(n+1)=KAc(n+1)/N...(7) Next, in P6, the amount of fuel Ff(n) that should actually be injected in order to supply the above required fuel amount to the cylinder.
Calculate.

例えば、燃料系の動特性Gf(z)は下記(8)
式で示される。
For example, the dynamic characteristic Gf(z) of the fuel system is as follows (8)
It is shown by the formula.

Gf(z)=d2z-1+e2z-2/1+b2z-1+c2z-2 =(d2+e2z-1/1+b2z-1+c2z-2)Z-1 …(8) 上記(8)式において、大かつこで括つた分数
形の部分は、動特性の曲線部分に相当し、かつこ
外のz-1の部分が1サンプル遅れ時間に相当する。
なお、1サンプル遅れ時間とは、上記(8)式の
値が最初に立ち上がり始めるまでの所定の遅れ時
間である。実際の燃料系の動特性においては、噴
射弁駆動信号が立ち上がつた時点からシリンダ内
の燃料量が増加し始める時点までに、燃料噴射弁
の作動遅れ時間と噴射された燃料がシリンダ内に
到達するまでの遅れ時間との和の遅れ時間が存在
するので、上記(8)式のように最初に遅れ時間
を有する近似式を用いると実際の動特性を良く近
似することが出来る。なお、上記(8)式は2次
遅れ系の式を示すが、2次以上の系であれば動特
性を良く近似することが出来る。
Gf(z)=d 2 z -1 +e 2 z -2 /1+b 2 z -1 +c 2 z -2 = (d 2 +e 2 z -1 /1+b 2 z -1 +c 2 z -2 )Z -1 ...(8) In the above equation (8), the fractional part enclosed in brackets corresponds to the curve part of the dynamic characteristics, and the part z -1 outside the brackets corresponds to one sample delay time.
Note that the one-sample delay time is a predetermined delay time until the value of the above equation (8) starts to rise for the first time. In the dynamic characteristics of an actual fuel system, from the time when the injector drive signal rises until the time when the amount of fuel in the cylinder starts to increase, the activation delay time of the fuel injector and the amount of injected fuel in the cylinder are determined. Since there is a delay time that is the sum of the delay time until reaching the point, the actual dynamic characteristics can be well approximated by using an approximation equation that first has a delay time, such as the above equation (8). Note that the above equation (8) shows the equation of a second-order lag system, but the dynamic characteristics can be well approximated if the system is a second-order or higher order system.

燃料系の動特性Gfを上記(8)式とすれば、
今回噴射すべき燃料量Ff(n)は下記(9)式の
ようになる。
If the dynamic characteristic Gf of the fuel system is given by the above equation (8), then
The amount of fuel Ff(n) to be injected this time is expressed by the following equation (9).

Ff(n)=1/d2[Fc(n+1)+b2Fc(n) +c2Fc(n−1)−e2Ff(n−1)] …(9) したがつて上記の係数b2,c2,d2,e2を予め実
験で求めておけば、Ff(n)を演算で求めること
が出来る。
Ff(n)=1/d 2 [Fc(n+1)+b 2 Fc(n) +c 2 Fc(n-1)−e 2 Ff(n-1)] …(9) Therefore, the above coefficient b 2 , c 2 , d 2 , and e 2 are determined in advance through experiments, Ff(n) can be determined by calculation.

次にP7で、上記のようにして求めた実際に噴
射すべき燃料量Ff(n)に応じて燃料噴射弁5を
駆動して燃料噴射を行なう。
Next, in P7, fuel injection is performed by driving the fuel injection valve 5 according to the amount of fuel Ff(n) to actually be injected, which has been determined as described above.

上記のように制御すれば、常にシリンダ内の吸
入空気量と燃料量との均衡を保つことが出来るの
で、過渡状態時においても空燃比を常に目標値に
維持することが出来る。
By controlling as described above, it is possible to always maintain a balance between the amount of intake air and the amount of fuel in the cylinder, so that the air-fuel ratio can always be maintained at the target value even in a transient state.

なおP3において、Ac(n+1)を予測演算し
たのは、P5でFc(n+1)を演算するためであ
り、またFc(n+1)はP6でFf(n)を求める
ために必要になつたものである。
Note that the reason why Ac(n+1) was predictively calculated in P3 was to calculate Fc(n+1) in P5, and Fc(n+1) was needed to calculate Ff(n) in P6. be.

また必要に応じて更に先の予測演算も可能なこ
とは言うまでもない。
It goes without saying that prediction calculations further ahead are also possible if necessary.

また上記の実施例においては、吸入空気量を計
測するセンサとしてエアフローメータを用いた場
合を例示したが、可変ベーン式、熱線式、カルマ
ン渦式等の空気流量計を用いても良い。
Further, in the above embodiment, an air flow meter is used as a sensor for measuring the amount of intake air, but a variable vane type, hot wire type, Karman vortex type, or other type of air flow meter may be used.

また直後に吸入空気量を測定せず、吸入負圧や
絞り弁開度等から吸入空気量を推定する方式の場
合でも上記と同様に本発明を適用することが出来
る。
Furthermore, the present invention can be applied in the same manner as described above even in the case of a method in which the intake air amount is estimated from the intake negative pressure, the throttle valve opening, etc. without immediately measuring the intake air amount.

なお空気系及び燃料系の動特性Ga(z),Gf
(z)は、内燃機関の回転に同期した方式で記述
する方が実際的であり、したがつて第5図の演算
も回転同期で行なう方が好ましい。
In addition, the dynamic characteristics Ga(z) and Gf of the air system and fuel system
It is more practical to describe (z) in synchronization with the rotation of the internal combustion engine, and therefore it is preferable to perform the calculation in FIG. 5 in rotation synchronization.

また上記の動特性は、内燃機関や燃料供給系の
形式によつて異なり、更に内燃機関の運転領域に
よつても異なる場合があるので、必要に応じて複
数個持つ方が望ましい。
Furthermore, since the above-mentioned dynamic characteristics vary depending on the type of internal combustion engine and fuel supply system, and may also vary depending on the operating range of the internal combustion engine, it is preferable to have a plurality of them as necessary.

(発明の効果) 以上説明したごとく本発明によれば、予め測定
して記憶しておいた空気系と燃料系の動特性を考
慮してシリンダに実際に吸入される吸入空気量と
燃料量とを制御するように構成しているので、加
減速時のような過渡状態時においても空燃比の目
標値からのずれを小さくすることが出来、それに
よつて排気浄化性能、燃費性能、運転性能等を向
上させることが出来る。特に、燃料系の動特性
Gfを用い、そのために必要な次回の吸入空気量
を予測演算する手段を用いたことにより、内燃機
関の実際の動作に良く適応した制御を行なうこと
の出来る制御装置を実用化することが出来る、と
いう効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the amount of intake air and the amount of fuel actually taken into the cylinder are determined by taking into account the dynamic characteristics of the air system and fuel system that have been measured and stored in advance. Since it is configured to control the air-fuel ratio, it is possible to reduce the deviation from the target value of the air-fuel ratio even during transient conditions such as during acceleration and deceleration, thereby improving exhaust purification performance, fuel efficiency, driving performance, etc. can be improved. In particular, the dynamic characteristics of the fuel system
By using Gf and a means of predicting and calculating the next intake air amount required for that purpose, it is possible to put into practical use a control device that can perform control that is well adapted to the actual operation of the internal combustion engine. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の一例図、第2図は第1図の
装置の特性例図、第3図は動特性を示す系統図、
第4図は本発明の一実施例図、第5図は本発明の
演算を示すフローチヤートの一実施例図である。 符号の説明、1……エアクリーナ、2……吸気
管、3……絞り弁、4……エアフローメータ、5
……燃料噴射弁、6……シリンダ、7……回転セ
ンサ、8,9……演算装置、10……吸入空気量
演算部、11……燃料演算部、12,13……記
憶部。
Fig. 1 is an example diagram of a conventional device, Fig. 2 is an example characteristic diagram of the device shown in Fig. 1, and Fig. 3 is a system diagram showing dynamic characteristics.
FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a flowchart diagram showing an embodiment of the calculation of the present invention. Explanation of symbols, 1... Air cleaner, 2... Intake pipe, 3... Throttle valve, 4... Air flow meter, 5
. . . Fuel injection valve, 6 .

Claims (1)

【特許請求の範囲】 1 内燃機関の吸入空気量に関連する空気量信号
を出力するセンサと、上記空気量信号およびその
他の機関運転変数から内燃機関の要求燃料量を算
出してそれに対応した燃料信号を出力する演算手
段と、上記の燃料信号に応じた量の燃料を内燃機
関に供給する燃料供給手段とを備えた内燃機関の
燃料制御装置において、 上記空気量信号とシリンダに実際に吸入される
吸入空気量との間の動特性Gaを記憶しておき、
上記空気量信号と空気系の動特性Gaとから今回
の吸入空気量を算出し、さらに過去の吸入空気量
と今回の吸入空気量から次回の吸入空気量を予測
する演算手段と、 上記燃料信号とシリンダに実際に吸入される燃
料量との間の1サンプル遅れ付きで所定次数遅れ
系(所定次数は2以上)の動特性Gfを記憶して
おき、上記の今回および次回の吸入空気量を用い
て内燃機関の今回の要求燃料量Fc(n)と次回の
要求燃料量Fc(n+1)を算出し、それらの要求
燃料量と燃料系の動特性Gfとから今回供給すべ
き燃料量Ff(n)を算出し、その値に対応した燃
料供給量信号を出力する演算手段と、 を備え、上記燃料供給量信号によつて上記燃料供
給手段を制御するように構成したことを特徴とす
る内燃機関の燃料制御装置。
[Scope of Claims] 1. A sensor that outputs an air amount signal related to the intake air amount of an internal combustion engine, and a sensor that calculates a required fuel amount of the internal combustion engine from the air amount signal and other engine operating variables, and provides fuel corresponding to the amount of fuel required for the internal combustion engine. In a fuel control device for an internal combustion engine, comprising a calculation means for outputting a signal and a fuel supply means for supplying an amount of fuel to the internal combustion engine according to the above fuel signal, Memorize the dynamic characteristic Ga between the amount of intake air and
a calculation means for calculating the current intake air amount from the air amount signal and the dynamic characteristic Ga of the air system, and further predicting the next intake air amount from the past intake air amount and the current intake air amount; The dynamic characteristics Gf of a predetermined order lag system (the predetermined order is 2 or more) with a one sample delay between and the amount of fuel actually taken into the cylinder are memorized, and the current and next intake air amounts mentioned above are calculated. The current required fuel amount Fc(n) and the next required fuel amount Fc(n+1) of the internal combustion engine are calculated using the above-described method, and the fuel amount to be supplied this time Ff( n) and a calculation means for outputting a fuel supply amount signal corresponding to the value, and the internal combustion engine is configured to control the fuel supply means based on the fuel supply amount signal. Engine fuel control system.
JP58016150A 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine Granted JPS59145357A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58016150A JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine
US06/576,474 US4562814A (en) 1983-02-04 1984-02-02 System and method for controlling fuel supply to an internal combustion engine
EP84101131A EP0115868B1 (en) 1983-02-04 1984-02-03 System and method for contolling fuel supply to an internal combustion engine
DE8484101131T DE3483653D1 (en) 1983-02-04 1984-02-03 METHOD AND SYSTEM FOR CONTROLLING THE FUEL SUPPLY IN AN INTERNAL COMBUSTION ENGINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016150A JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59145357A JPS59145357A (en) 1984-08-20
JPH0413543B2 true JPH0413543B2 (en) 1992-03-10

Family

ID=11908472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016150A Granted JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59145357A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103003B2 (en) * 1984-12-27 1994-12-14 日産自動車株式会社 Fuel injection amount control device
JPH07113340B2 (en) * 1985-07-18 1995-12-06 三菱自動車工業 株式会社 Fuel control device for internal combustion engine
JPH081142B2 (en) * 1986-04-28 1996-01-10 マツダ株式会社 Engine air-fuel ratio control device
JPS6320020U (en) * 1986-07-24 1988-02-09
JPS63314339A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Air-fuel ratio controller
JP2600698B2 (en) * 1987-07-29 1997-04-16 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JP2600697B2 (en) * 1987-07-29 1997-04-16 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JP2022126306A (en) * 2021-02-18 2022-08-30 いすゞ自動車株式会社 Fresh intake air amount calculation device and fresh intake air amount calculation method for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614836A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Controlling device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614836A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Controlling device for internal combustion engine

Also Published As

Publication number Publication date
JPS59145357A (en) 1984-08-20

Similar Documents

Publication Publication Date Title
EP0115868B1 (en) System and method for contolling fuel supply to an internal combustion engine
JPS63215848A (en) Fuel injection amount control method and device for internal combustion engine
JP2819937B2 (en) Fuel injection amount calculation device for internal combustion engine
JPS582444A (en) Air-fuel ratio control
JPH01244138A (en) Fuel injection control device for engine for automobile
JPH0413543B2 (en)
JP3543337B2 (en) Signal processing device
JPH07293297A (en) Fuel control for internal combustion engine, device therefor and vehicle using it
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPH06323181A (en) Method and device for controlling fuel in internal combustion engine
JPS5937245A (en) Air-fuel ratio controlling apparatus for engine
JPH0523815Y2 (en)
JP2721967B2 (en) Fuel injection control device for internal combustion engine
JPS61258942A (en) Fuel injection controller for engine
JPH0242160A (en) Intake air quantity estimating device for internal combustion engine
JP2658246B2 (en) Fuel injection amount control device for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JP4044978B2 (en) Engine air-fuel ratio control device
JPS62265449A (en) Engine controller
JPH0368221B2 (en)
JPS61272451A (en) Controller for internal-combustion engine
JPH06257497A (en) Fuel injection control device for engine and its method
JPH0510490B2 (en)
JPS6355340A (en) Air-fuel ratio controller for internal combustion engine
JPS6045753A (en) Fuel controller of internal-combustion engine