JPS6355340A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPS6355340A
JPS6355340A JP20069286A JP20069286A JPS6355340A JP S6355340 A JPS6355340 A JP S6355340A JP 20069286 A JP20069286 A JP 20069286A JP 20069286 A JP20069286 A JP 20069286A JP S6355340 A JPS6355340 A JP S6355340A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20069286A
Other languages
Japanese (ja)
Other versions
JP2501566B2 (en
Inventor
Hiroshi Miwakeichi
三分一 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61200692A priority Critical patent/JP2501566B2/en
Publication of JPS6355340A publication Critical patent/JPS6355340A/en
Application granted granted Critical
Publication of JP2501566B2 publication Critical patent/JP2501566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the accuracy of feedback control and to prevent fluctuation of torque, by applying delay correction onto a current output from an air-fuel ratio sensor and calculating an air-fuel ratio in current combustion stroke then shifting a target air-fuel ratio corresponding to an operating condition to same combustion timing. CONSTITUTION:A control unit 21 operates a basic fuel injection based on the values detected through an air flow meter 14 and a crank angle sensor 17, and makes feedback control to a target air-fuel ratio being determined according to rotation, basic fuel injection quantity and water temperature based on a value detected through a wide range O2 sensor 19. The value detected through the O2 sensor 19 is corrected in the primary delay system based on a current value and a preceding value so as to calculate the air-fuel ratio of mixture gas in current combustion stroke. The target air-fuel ratio being set according to the rotation, basic fuel injection quantity and water temperature is shifted so as to match its phase with that of an output from the O2 sensor thus calculating an air-fuel ratio feedback correction coefficient.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車エンジンの空燃比を制御する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for controlling the air-fuel ratio of an automobile engine.

(従来の技術) 近時、自動車等エンジンに対する要求が高度化しており
、排出ガス低減、高出力、低燃費等の互いに相反する課
題について何れも高レベルでその達成が求められる傾向
にある。
(Prior Art) In recent years, the demands placed on engines such as automobiles have become more sophisticated, and there is a tendency for mutually contradictory issues such as reduced exhaust gas, high output, and low fuel consumption to be achieved at a high level.

これらの課題に対応するため、超希薄空燃比下における
燃焼制御が試みられており、例えばそのようなものとし
ては「内燃機関、23巻12号J 1984年10月号
 33〜40頁 山海堂発行に記載の希薄燃焼装置があ
る。この装置では、リッチからリーンまで空燃比を広範
囲に検出可能なリーンセンサの出力に基づいて超希薄空
燃比領域まで空燃比のフィードバック制御を行って上記
要求を達成しようとしている。
In order to address these issues, combustion control under ultra-lean air-fuel ratios has been attempted, such as "Internal Combustion Engine, Vol. 23, No. 12 J, October 1984 issue, pp. 33-40, published by Sankaido. There is a lean burn device described in .This device achieves the above requirements by performing feedback control of the air-fuel ratio up to the ultra-lean air-fuel ratio region based on the output of a lean sensor that can detect air-fuel ratios over a wide range from rich to lean. Trying to.

この場合、定常走行においては理論空燃比一定の特性と
異なり、一部の加速領域においてもリーンな空燃比を目
標値としている。例えば、通常の加速域では空燃比22
.5、定常走行域では空燃比21゜5、アイドリング時
は空燃比15.5としている。また、全負荷状態では出
力空燃比12〜13を用い車両動力性能を確保しようと
する。このようなリーン空燃比に移行するにつれてNO
xは極めて減少する傾向にあり、近時におけるNOxO
xエミッション減化に沿うものである。しかし、一方に
おいて、排出ガス規制を満足するためのNOxの排出レ
ベルと許容できるトルク変動レベルの両者を満足できる
空燃比適合可能領域は狭(、精密な空燃比制御が必要と
なっている。
In this case, unlike the characteristic where the stoichiometric air-fuel ratio is constant during steady driving, a lean air-fuel ratio is set as the target value even in some acceleration regions. For example, in the normal acceleration range, the air-fuel ratio is 22
.. 5. The air-fuel ratio is 21°5 in the steady running range, and 15.5 during idling. Further, in a full load state, an output air-fuel ratio of 12 to 13 is used to ensure vehicle power performance. As we move to such a lean air-fuel ratio, NO.
x tends to decrease significantly, and in recent years NOxO
This is in line with the reduction of x emissions. However, on the other hand, the air-fuel ratio adaptability range that satisfies both the NOx emission level to satisfy exhaust gas regulations and the allowable torque fluctuation level is narrow (and precise air-fuel ratio control is required).

(発明が解決しようとする問題点) しかしながら、このような従来の空燃比制御装置にあっ
ては、希薄燃焼により上述した相応の効果が得られるも
のの、空燃比センサの応答遅れを考慮に容れていない構
成となっていたため、空燃比の検出に誤差が生じて空燃
比制御の精度が低下するおそれがある。特に、運転条件
によって空燃比が変動するような場合にはこのような検
出誤差が顕著なものとなる。その結果、制御精度が低下
して、目標空燃比よりもリッチあるいはリーン側で運転
されることになり、排気エミッション特性°の悪化やト
ルク変動等の運転性の低下を招来する。
(Problems to be Solved by the Invention) However, in such conventional air-fuel ratio control devices, although the above-mentioned effects can be obtained by lean combustion, they do not take into account the response delay of the air-fuel ratio sensor. Therefore, there is a risk that an error may occur in the detection of the air-fuel ratio and the accuracy of the air-fuel ratio control may be reduced. In particular, such detection errors become significant when the air-fuel ratio varies depending on operating conditions. As a result, control accuracy decreases and the engine is operated at a richer or leaner side than the target air-fuel ratio, resulting in deterioration of exhaust emission characteristics and deterioration of drivability such as torque fluctuation.

(発明の目的) そこで本発明は、空燃比センサの現出力を所定の遅れ補
正演算により補正して、今回の燃焼行程における混合気
の空燃比を算出するとともに、目標空燃比の値をシフト
させて、今回の燃焼行程における混合気の空燃比に対し
て同一の燃焼タイミングとなるように両者の燃焼位相を
合わせることにより、空燃比のフィードバック制御の精
度を高めて排気エミッションや運転性をより一層向上さ
せることを目的としている。
(Objective of the Invention) Therefore, the present invention corrects the current output of the air-fuel ratio sensor using a predetermined delay correction calculation to calculate the air-fuel ratio of the air-fuel mixture in the current combustion stroke, and also shifts the value of the target air-fuel ratio. By aligning the combustion phases of the two so that the combustion timing is the same for the air-fuel ratio of the air-fuel mixture in the current combustion stroke, the accuracy of feedback control of the air-fuel ratio is improved and exhaust emissions and drivability are further improved. The purpose is to improve.

(問題点を解決するための手段) 本発明による内燃機関の空燃比制御装置は上記目的達成
のため、その基本概念図を第1図に示すように、吸入混
合気の空燃比を検出する空燃比検出手段aと、エンジン
の運転状態を検出する運転状態検出手段すと空燃比検出
手段aの現出力を所定の遅れ補正演算により補正して、
今回の燃焼行程における混合気の空燃比を算出する補正
手段Cと、エンジンの運転状態に基づいて目標空燃比を
設定する目標設定手段dと、目標設定手段dにより設定
された目標空燃比の値をシフトさせて、補正手段Cによ
り算出される今回の燃焼行程における混合気の空燃比に
対して同一の燃焼タイミングとなるように両者の燃焼位
相を合わせる位相合せ手段eと、燃焼位相を合わせたと
きの目標空燃比および補正手段Cの算出空燃比に基づい
て空燃比をフィードバック補正する制御値を演算する制
御手段fと、制御手段fの出力に基づいて吸入空気ある
いは燃料の供給量を変えて空燃比を操作する操作手段g
と、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the air-fuel ratio control device for an internal combustion engine according to the present invention has an air-fuel ratio control system for detecting the air-fuel ratio of an intake air-fuel mixture, as shown in FIG. correcting the current output of the fuel ratio detecting means a, the operating state detecting means for detecting the operating state of the engine, and the air-fuel ratio detecting means a by a predetermined delay correction calculation;
A correction means C that calculates the air-fuel ratio of the air-fuel mixture in the current combustion stroke, a target setting means d that sets a target air-fuel ratio based on the operating state of the engine, and a value of the target air-fuel ratio set by the target setting means d. and a phasing means e which shifts the combustion phases of the two so that the air-fuel ratio of the air-fuel mixture in the current combustion stroke calculated by the correction means C has the same combustion timing. A control means f calculates a control value for feedback correcting the air-fuel ratio based on the target air-fuel ratio and the calculated air-fuel ratio of the correction means C; Operating means g for controlling the air-fuel ratio
It is equipped with.

(作用) 本発明では、空燃比センサの現出力が所定の遅れ補正演
算により補正され、今回の燃焼行程における混合気の空
燃ヰが演算されるとともに、目標空燃比の値がシフトさ
れ、今回の燃焼行程における混合気の空燃比に対して同
一のタイミングとなるように両者の燃焼位相を合わせら
れる。そして、燃焼位相を合わせたときの目標空燃比お
よび補正演算により補正された空燃比に基づいて空燃比
を゛フィードバック、補正する制御値が適切に演算され
る。したがって、空燃比のフィードバック制御が精度よ
く実行され、排気エミッション特性の悪化やトルク変動
等の運転性の低下が防止される。
(Function) In the present invention, the current output of the air-fuel ratio sensor is corrected by a predetermined delay correction calculation, the air-fuel ratio of the air-fuel mixture in the current combustion stroke is calculated, and the value of the target air-fuel ratio is shifted. The combustion phases of both can be matched so that the timing is the same for the air-fuel ratio of the mixture in the combustion stroke. Then, a control value for feeding back and correcting the air-fuel ratio is appropriately calculated based on the target air-fuel ratio when the combustion phases are matched and the air-fuel ratio corrected by the correction calculation. Therefore, feedback control of the air-fuel ratio is executed with high accuracy, and deterioration of exhaust emission characteristics and deterioration of drivability such as torque fluctuation are prevented.

(実施例)    。(Example) .

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第2〜6図は本発明の第1実施例を示す図である。まず
、構成を説明する。第2図において、1はエンジンであ
り、吸入空気は吸気管2を通して各気筒に供給され、燃
料は燃料タンク3から燃料ポンプ4により、燃料フィル
タ5、燃料ダンパ6および燃料供給管7を経て噴射信号
Siに基づきインジェクタ(操作手段)8により噴射さ
れる。
2 to 6 are diagrams showing a first embodiment of the present invention. First, the configuration will be explained. In FIG. 2, 1 is an engine, intake air is supplied to each cylinder through an intake pipe 2, and fuel is injected from a fuel tank 3 by a fuel pump 4 through a fuel filter 5, a fuel damper 6, and a fuel supply pipe 7. The injector (operating means) 8 injects based on the signal Si.

また、燃料の温度Tfは燃料供給管7に配設された燃料
温度センサ9により検出され、余剰燃料は燃圧レギュレ
ータ10を介して燃料リターンパイプ11を経て燃料タ
ンク3に戻される。そして、気筒内の混合気は点火プラ
グ12の放電作用によって着火、爆発し、排気となって
排気管13を通して排出される。
Further, the fuel temperature Tf is detected by a fuel temperature sensor 9 disposed in the fuel supply pipe 7, and surplus fuel is returned to the fuel tank 3 via a fuel pressure regulator 10 and a fuel return pipe 11. Then, the air-fuel mixture in the cylinder is ignited and exploded by the discharge action of the spark plug 12, and is discharged as exhaust through the exhaust pipe 13.

吸入空気量の流量Qaはエアフローメータ14により検
出され、吸気管2の絞弁15によって制御される。絞弁
15の開度Cvは絞弁開度センサ16により検出され、
エンジン1の回転数Nはクランク角センサ17により検
出される。またウォータジャケットを流れる冷却水の温
度Twは水温センサ18により検出される。さらに、排
気中の酸素濃度は酸素センサ(空燃比検出手段)19に
より検出され、酸素センサ19はその出力Viがリッチ
からリーン領域まで広範囲な空燃比に対して一義的に変
化するタイプのもの等が用いられる。
The flow rate Qa of the amount of intake air is detected by an air flow meter 14 and controlled by a throttle valve 15 in the intake pipe 2. The opening Cv of the throttle valve 15 is detected by the throttle valve opening sensor 16,
The rotation speed N of the engine 1 is detected by a crank angle sensor 17. Further, the temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor 18. Further, the oxygen concentration in the exhaust gas is detected by an oxygen sensor (air-fuel ratio detection means) 19, and the oxygen sensor 19 is of a type whose output Vi changes uniquely over a wide range of air-fuel ratios from rich to lean regions. is used.

上記エアフローメータ14、絞弁開度センサ16および
クランク角センサ17は運転状at&出手段20を構成
しており、運転状態検出手段20、燃料温度センサ9、
水温センサ18および酸素センサ19からの出力はコン
トロールユニット21に入力される。コントロールユニ
ット21は補正手段、目標設定手段、位相合せ手段およ
び制御手段としての機能を有し、第3図に詳細を示すよ
うに、CPU22、ROM23、RAM24、A/D変
換器25およびI10ポートにより構成され、これらは
コモンバス27により互いに接続される。A/D変換器
25はアナログ信号として入力される各信号Qa、Tf
、Twおよび■iをディジタル信号に変換し、CPU2
2の指示に従って所定の時期にCPU22あるいはRA
M24に出力する。CPU22はROM23に書き込ま
れているプログラムに従って必要とする外部データを取
り込んだり、またRAM24と間でデータの授受を行っ
たりしなから空燃比制御に必要な処理値を演算処理し、
必要に応じて処理したデータをI10ボート26へ出力
する。I10ボート26にはセンサ群16.17からの
信号が入力されるとともに、I10ボート26からは噴
射信号Siが出力される。ROM23はCPU22にお
ける演算プログラムを格納しており、RAM24は演算
に使用するデータをマツプ゛等の形で記憶している。な
お、RAM24の一部は、例えば不揮発性メモリにより
構成され、その記憶内容(学習値等)を演算停止後も保
持する。
The air flow meter 14, the throttle valve opening sensor 16, and the crank angle sensor 17 constitute an operating state at & output means 20, and the operating state detecting means 20, the fuel temperature sensor 9,
Outputs from the water temperature sensor 18 and oxygen sensor 19 are input to the control unit 21. The control unit 21 has functions as a correction means, a target setting means, a phasing means, and a control means, and as shown in detail in FIG. These are connected to each other by a common bus 27. The A/D converter 25 receives each signal Qa, Tf input as an analog signal.
, Tw and ■i into digital signals, and CPU2
CPU 22 or RA at a predetermined time according to the instructions in
Output to M24. The CPU 22 takes in necessary external data according to the program written in the ROM 23, and also performs arithmetic processing on processing values necessary for air-fuel ratio control, without exchanging data with the RAM 24.
The processed data is output to the I10 boat 26 as necessary. Signals from the sensor group 16.17 are input to the I10 boat 26, and an injection signal Si is output from the I10 boat 26. The ROM 23 stores calculation programs for the CPU 22, and the RAM 24 stores data used in calculations in the form of a map or the like. Note that a part of the RAM 24 is constituted by, for example, a nonvolatile memory, and retains its stored contents (learning values, etc.) even after the calculation is stopped.

次に、作用を説明するが、最初に従来の問題点で指摘し
たように空燃比センサの出力に応答遅れが生じる理由を
説明する。
Next, the operation will be explained, but first, as pointed out in the conventional problem, the reason why the response delay occurs in the output of the air-fuel ratio sensor will be explained.

一般に、空燃比センサは排気の拡散・ガス交換によって
空燃比の濃度を検出していることから、検出に際しては
ある遅れ要素を有していることが考えられる。この遅れ
要素は空燃比センサ近辺の拡散係数やガス交換速度等に
より変化するが、その変化の要因としては(1)エンジ
ン回転数、(2)負荷および(3)変化幅等が挙げられ
る。また、その遅れ要素の次数は多次元であると考えら
れるが、略−次遅れ系として近似することも可能である
。そこで、−次遅れ系を補正する方法として差分法によ
る補正を適用すると補正後の空燃比A/Fは次式0式% 但し、A/FO:現在の空燃比 A/Fl  :前回の空燃比 α :補正係数(このαは空燃比セ ンサの近似−次遅れ時定数に 相当する) このことを、更に詳しく説明すると、この−次遅れ系は
微分方程式を用いて表すと次式〇で示され、゛ これを
差分で近似すると第0式となる。
Generally, since an air-fuel ratio sensor detects the air-fuel ratio concentration by diffusion and gas exchange of exhaust gas, it is considered that there is a certain delay element in the detection. This delay element changes depending on the diffusion coefficient in the vicinity of the air-fuel ratio sensor, the gas exchange rate, etc., and the factors for this change include (1) engine speed, (2) load, and (3) width of change. Further, although the order of the delay element is considered to be multidimensional, it is also possible to approximate it as a substantially -order delay system. Therefore, when applying correction by the difference method as a method of correcting the -order lag system, the air-fuel ratio A/F after correction is calculated using the following formula 0%. However, A/FO: current air-fuel ratio A/Fl: previous air-fuel ratio α: Correction coefficient (this α corresponds to the approximate −order lag time constant of the air-fuel ratio sensor) To explain this in more detail, this −order lag system is expressed using a differential equation as the following equation 〇. , ゛ Approximating this using a difference gives the 0th equation.

但し、y7 :現時点 )’n−+  :前回(すなわち、Δを時間前のy、、
)T:空燃比センサの時定数 Δt:サンプルインターバル(A/F。
However, y7: current time) 'n-+: previous time (i.e., Δ is y before time,
) T: Time constant of air-fuel ratio sensor Δt: Sample interval (A/F.

とA / F + との時間差) したがって、実際の空燃比センサの出力挙動は第4図に
示すように時定数Tの一次遅れ出力として示される。す
なわち、空燃比センサ出力の応答遅れは差分法を用いて
補正することができる。
and A/F + ) Therefore, the actual output behavior of the air-fuel ratio sensor is shown as a first-order delayed output with a time constant T, as shown in FIG. That is, the response delay of the air-fuel ratio sensor output can be corrected using the differential method.

第5図は上記基本原理に基づく空燃比制御のプログラム
を示すフローチャートであり、図中P。
FIG. 5 is a flowchart showing a program for air-fuel ratio control based on the above basic principle.

〜P、はフローの各ステップを示している。本プログラ
ムは所定時間毎に一度実行される。まず、PIでエンジ
ン回転数Nを読み込み、P2で吸入空気量Qaを読み込
む0回転数Nはクランク角センサ10からの基準信号(
360°毎の信号)の間隔時間を計測するか、あるいは
位置信号(1°毎の信号)の所定時間におけるパルス数
を計測して算出する。次いで、P、で基本パルス幅(基
本噴射量)Tpを次式■に従って演算する。
~P indicates each step of the flow. This program is executed once every predetermined time. First, the engine speed N is read with PI, and the intake air amount Qa is read with P2.
It is calculated by measuring the interval time of the position signal (signal every 360 degrees) or by measuring the number of pulses in a predetermined time of the position signal (signal every 1 degree). Next, the basic pulse width (basic injection amount) Tp is calculated using P according to the following equation (2).

a ’rp=KX□  ・・・・・・■ 但し、K:定数 次いで、P4で各種補正係数C0EFを演算し、Psで
無効パルス幅Tsを演算する。ここに、C0EFは燃料
の遅れ補正係数であり、過渡時に燃料量を補正するもの
である。その値は燃料の気化や壁流割合によって定めら
れるものであるが、具体的には加減速の大小や機関暖機
状態および運転状態、始動後か否か等によって算出され
る。また、上記各種補正係数C0EFおよび無効パルス
幅TSは基本パルス幅Tpを補正する各種補正係数であ
るが本発明と関係が薄いので詳しい説明は省略゛する。
a'rp=KX□...■ However, K: constant Next, various correction coefficients C0EF are calculated in P4, and invalid pulse width Ts is calculated in Ps. Here, C0EF is a fuel delay correction coefficient, which corrects the fuel amount during a transient period. The value is determined by the vaporization of the fuel and the wall flow rate, but specifically, it is calculated based on the magnitude of acceleration/deceleration, engine warm-up and operating conditions, and whether or not the engine has been started. Further, the above-mentioned various correction coefficients C0EF and invalid pulse width TS are various correction coefficients for correcting the basic pulse width Tp, but since they have little relation to the present invention, a detailed explanation will be omitted.

次いで、P、で次式〇に従って噴射パルス幅Tiを演算
する。
Next, the injection pulse width Ti is calculated at P according to the following equation.

Ti=TpXCOEFXALPHA+Ts・・・・・・
■ 但し、ALPHA:空燃比のフィードバック補正係数 なお、上記空燃比のフィードバック補正係数ALPHA
の算出については第6図で後述するプログラムで詳述す
る。
Ti=TpXCOEFXALPHA+Ts・・・・・・
■ However, ALPHA: Feedback correction coefficient for the air-fuel ratio.
The calculation will be explained in detail in the program described later in FIG.

さらに、P、で噴射パルス幅TiをI10ポート26の
出力レジスタにストアして、所定クランク角度でこのT
iに対応する燃料噴射パルス幅を有する噴射信号Siを
インジェクタ8に出力し、今回の処理を終了する。
Furthermore, the injection pulse width Ti is stored in the output register of the I10 port 26 at P, and the injection pulse width Ti is stored at a predetermined crank angle.
An injection signal Si having a fuel injection pulse width corresponding to i is output to the injector 8, and the current process ends.

第6図は空燃比のフィードバック補正係数ALPHAを
演算するプログラムを示すフローチャートであり、本プ
ログラムはエンジンの燃焼の一行程毎に実行される。ま
ず、P、でN、TpおよびTWをパラメータとする所定
のテーブルマツプからその時の運転条件における目標空
燃比TAF。
FIG. 6 is a flowchart showing a program for calculating the air-fuel ratio feedback correction coefficient ALPHA, and this program is executed for each combustion stroke of the engine. First, the target air-fuel ratio TAF under the current operating conditions is determined from a predetermined table map using P, N, Tp, and TW as parameters.

(T A F o =func (N r T p +
 T W) )をルックアップする。但し、この冷却水
温Twは図示しない別のルーチンで読み込んでおく。次
いで、p+zで空燃比センサ出力と位相合わせを行うた
めに2回転分の目標空燃比の出力シフトを行い、Pl、
で前回の空燃比センサの読込み値A/FoをA/F、と
してメモリを書換える。次いで、Pl4で空燃比センサ
の出力をA/D変換し、そのA/D変換値をA/Foと
してメモリに格納する。
(T A F o =func (N r T p +
Look up T W) ). However, this cooling water temperature Tw is read in another routine (not shown). Next, in order to perform phase matching with the air-fuel ratio sensor output at p+z, the output of the target air-fuel ratio is shifted by two rotations, and Pl,
Then, the memory is rewritten with the previous air-fuel ratio sensor read value A/Fo as A/F. Next, the output of the air-fuel ratio sensor is A/D converted at Pl4, and the A/D converted value is stored in the memory as A/Fo.

さらに、以下のp+5−pt’tでは前述の差分法を適
用して空燃比のフィードバック補正係数ALPHAを演
算する。すなわち、PISで次式■に従って差分補正係
数α(α= K/N  但し、K:定数、N:エンジン
回転数)を演算し、Pl6で前述の第0式に従って遅れ
補正後の空燃比センサの出力A/Fを演算する。
Furthermore, in the following p+5-pt't, the above-described difference method is applied to calculate the air-fuel ratio feedback correction coefficient ALPHA. That is, in PIS, calculate the difference correction coefficient α (α=K/N, where K: constant, N: engine speed) according to the following formula (■), and in Pl6 calculate the air-fuel ratio sensor after delay correction according to the above-mentioned formula 0. Calculate output A/F.

T    ゛ ・・・・・・■ (K/N) 次いで、Pl’lで次式■にPI(比例・積分)制御に
より空燃比のフィードバック補正係数ALPHAを演算
し、処理を終了する。
T ゛...■ (K/N) Next, the air-fuel ratio feedback correction coefficient ALPHA is calculated by PI (proportional/integral) control according to the following equation (2) using Pl'l, and the process ends.

A L P HA = K p (T A F 4− 
A / F )+ΣKl  (TAF4−A/F) ・・・・・・■ 但し、TAFa:PIzで算出した位相合わせ後の出力 A/ F : P lbで演算した値 Kp:定数 このように、本実施例は空燃比センサの出力の応答遅れ
を差分法を用いて適切に補正し、正確な空燃比フィード
バック補正係数ALPHAを算出しているので、空燃比
制御の精度を著しく高めることができ、排気エミッショ
ン特性の悪化やトルク変動等を防止して運転性を向上さ
せることができる。
A L P HA = K p (T A F 4-
A/F) + ΣKl (TAF4-A/F) ・・・・・・■ However, TAFa: Output after phase adjustment calculated with PIz A/F: P Value calculated with lb Kp: Constant In this way, this In the example, the response delay of the output of the air-fuel ratio sensor is appropriately corrected using the differential method, and an accurate air-fuel ratio feedback correction coefficient ALPHA is calculated. Therefore, the accuracy of air-fuel ratio control can be significantly improved, and the exhaust It is possible to improve drivability by preventing deterioration of emission characteristics, torque fluctuation, etc.

なお、本実施例では空燃比センサの出力の遅れ要素を差
分法を用いて補正しているが、本発明はこれに限るもの
ではない。要は遅れ要素を適切に補正できればよいので
、例えば差分法の代わりに微分を用いる態様でもよいこ
とは勿論である。この場合にはより一層精密な補正を行
うことが可能となる。
Note that in this embodiment, the delay element in the output of the air-fuel ratio sensor is corrected using the differential method, but the present invention is not limited to this. The point is that it is sufficient to appropriately correct the delay element, so it goes without saying that, for example, a mode in which differentiation may be used instead of the difference method is also acceptable. In this case, it becomes possible to perform even more precise correction.

また、本実施例ではフィードバック制御の方法としてP
I(比例・積分)制御を採用しているが、本発明はこれ
に限定されず、他の態様、例えばP(比例)制御、Pr
D(比例・積分・微分)制御で行ってもよい。すなわち
、P制御の場合は前述のステップPl’lの第0式を次
式〇に、PID制’+TJの場合は第0式を次式■に変
更すればよい。
In addition, in this embodiment, as a feedback control method, P
Although I (proportional/integral) control is adopted, the present invention is not limited to this, and other aspects such as P (proportional) control, Pr
D (proportional/integral/derivative) control may be used. That is, in the case of P control, the 0th equation of step Pl'l described above may be changed to the following equation 〇, and in the case of PID system'+TJ, the 0th equation may be changed to the following equation (■).

A L P HA = K p  (T A F a 
 A / F )・・・・・・■ALPHA=Kp (
TAF4  A/F)+ΣK r  (T A F a
  A / F )十KI、Δ  ・・・・・・■ 但し、Δ:今回の(TAF4−A/F)−前回の(TA
F4−A/F) 以上の第1実施例は空燃比センサの時定数Tが一定であ
る場合の例である。ところが、実際には時定数Tは前述
したようにエンジン回転数や負荷等により変化する。こ
の態様を第2実施例で示す。
A L P H A = K p (T A F a
A / F )・・・・・・■ALPHA=Kp (
TAF4 A/F)+ΣK r (TAF a
A/F) 10KI, Δ・・・・・・■ However, Δ: Current (TAF4-A/F) - Previous (TA
F4-A/F) The above first embodiment is an example in which the time constant T of the air-fuel ratio sensor is constant. However, in reality, the time constant T changes depending on the engine speed, load, etc., as described above. This aspect will be illustrated in a second example.

第7.8図は本発明の第2実施例を示す図であり、本実
施例は前述の第6図のプログラムに時定数Tの演算を追
加している他は第1実施例と同様である。本実施例の説
明にあたり、第1実施例と同一処理を行うステップには
同一番号を付してその説明を省略し、異なるステップに
は○印で囲むステップ番号を付してその内容を説明する
Fig. 7.8 is a diagram showing a second embodiment of the present invention, and this embodiment is similar to the first embodiment except that the calculation of the time constant T is added to the program shown in Fig. 6 above. be. In explaining this embodiment, steps that perform the same processing as in the first embodiment will be given the same numbers and their explanations will be omitted, and steps that are different will be given step numbers circled and their contents will be explained. .

第7図のプログラムにおいて、PI4を経るとP2、で
次式[相]に従って時定数Tを演算する。
In the program shown in FIG. 7, after passing through PI4, the time constant T is calculated at P2 according to the following equation [phase].

T =func (T p 、  N)   ””@こ
のように、本実施例では空燃比の時定数Tを基本パルス
幅Tpとエンジン回転数Nとの関数として適切に演算し
ているので、第8図に示すように空燃比のステップ信号
に対して空燃比センサの時定数Tを低負荷(同図実線)
、低負荷高回転(同図破線)および高負荷(同図−点鎖
線)の各場合に応じてさらに適切な値とすることができ
、空燃比のフィードバック補正係数ALPHAの精度を
高めて第1実施例の効果をより一層向上させることがで
きる。
T =func (T p , N) ””@In this way, in this example, the time constant T of the air-fuel ratio is appropriately calculated as a function of the basic pulse width Tp and the engine speed N, so the eighth As shown in the figure, the time constant T of the air-fuel ratio sensor is set to low load (solid line in the figure) in response to the step signal of the air-fuel ratio.
, can be set to a more appropriate value depending on the cases of low load and high rotation (broken line in the same figure) and high load (dotted chain line in the same figure), and the accuracy of the air-fuel ratio feedback correction coefficient ALPHA is increased to The effects of the embodiment can be further improved.

第9〜12図は本発明の第3実施例を示す図であり、本
実施例におけるハード的構成は第1実施例、第2実施例
と同様であるためハード的構成を省略する。
9 to 12 are diagrams showing a third embodiment of the present invention, and since the hardware configuration of this embodiment is the same as that of the first and second embodiments, the hardware configuration will be omitted.

まず、最初に本実施例についての基本的な考え方を述べ
る。一般に、空燃比センサ本来の特性は理論空燃比(λ
=1)よりリーン側でしか出力されないが、本発明にお
ける空燃比センサの構成はジルコニアにポンプ電流(拡
散電流)Ipを流し込んで表面での02イオンが少ない
状態を作り出し、ジルコニア本来の0□イオンゼロ近辺
での出力急変特性を利用してその急変出力がバランスを
保つようにIpを流し込むと、理論空燃比よりリッチ側
でも出力を取り出すことができる(第9図(a)参照)
。この特性は理論空燃比よりリーン域では0zfH度に
、リッチ域ではCo?M度に左右されその出力特性が変
化するが、リーン域における02濃度は空気過剰率λ 
(λ=空燃比/理論空燃比)に比例することから出力1
pは第9図(b)に示すように燃空比F/A (空燃比
A/Fの逆数)における空気過剰率λに対してλ=1を
境に2本の折線で表現することができる。
First, the basic concept of this embodiment will be described. In general, the inherent characteristics of an air-fuel ratio sensor are the stoichiometric air-fuel ratio (λ
Although the output is only on the leaner side than = 1), the configuration of the air-fuel ratio sensor in the present invention is to inject a pump current (diffusion current) Ip into zirconia to create a state in which there are few 02 ions on the surface, thereby eliminating the zirconia's original 0□ ion zero. By utilizing the characteristics of sudden changes in output in the vicinity and injecting Ip so that the sudden changes in output are balanced, it is possible to extract output even on the richer side than the stoichiometric air-fuel ratio (see Figure 9 (a)).
. This characteristic is 0zfH degrees in the lean range from the stoichiometric air-fuel ratio, and Co? in the rich range. The output characteristics change depending on the M degree, but the 02 concentration in the lean region is determined by the excess air ratio λ
Since it is proportional to (λ = air-fuel ratio/stoichiometric air-fuel ratio), the output is 1.
As shown in Fig. 9(b), p can be expressed by two broken lines with λ=1 as the boundary for the excess air ratio λ at the fuel-air ratio F/A (reciprocal of the air-fuel ratio A/F). can.

一方、前述の第0式の定数には目標虚空比をTFA、イ
ンジェクタの流量特性の係数をKINJとすれば次式〇
で示すことができる。
On the other hand, if the target void ratio is TFA and the coefficient of the flow rate characteristic of the injector is KINJ, the constant of the above-mentioned formula 0 can be expressed by the following formula.

K=KINJ XTFA  ・・・・・・0以上のこと
から、空燃比センサの出力特性をリッチ域からリーン域
まで一律に燃空比F/Aに変換してセンサ出力特性をリ
ニア化し、この値が目標燃空比TFAになるようにフィ
ードバック制御(以下、F/B制御という)を実行すれ
ば目標値に対して現在の空燃比がリッチ、リーンどちら
側にあっても、あるいは目標空燃比TFAの位置が理論
空燃比のどちら側にあってもフィードバックゲインをリ
ッチ側リーン側とも同一にすることが可能となる。
K=KINJ XTFA ......0 or more, the output characteristic of the air-fuel ratio sensor is uniformly converted to the fuel-air ratio F/A from the rich region to the lean region, the sensor output characteristic is linearized, and this value is If feedback control (hereinafter referred to as F/B control) is executed so that the current air-fuel ratio becomes the target fuel-air ratio TFA, no matter whether the current air-fuel ratio is rich or lean with respect to the target value, or the target air-fuel ratio TFA Regardless of which side of the stoichiometric air-fuel ratio the position is on, it is possible to make the feedback gain the same on both the rich and lean sides.

ところが、従来の空燃比のF/Bitrl[i法にあっ
ては、空燃比センサの出力そのものが目標空燃比となる
ように目標空燃比のリッチ側リーン側ともに同一のフィ
ードバックゲインで制御をしているため、F/B[御の
結果が目標値からシフトしてオフセットが生ずることが
あり、制御精度の低下から運転性や排気エミッション特
性が悪化することがある。また、このような制御精度の
低下を回避するために目標空燃比のリッチ側とリーン側
とでフィードバックゲインを変更するような態様にする
ことも考えられるが、場所(目標空燃比)によってフィ
ードバックゲインが異なるため、ゲインを決める演算処
理が複雑化する。したがって、プログラム容量や演算時
間の増大から、コスト高や性能の悪化を招くおそれがあ
る。
However, in the conventional air-fuel ratio F/Bitrl [i method, both the rich and lean sides of the target air-fuel ratio are controlled with the same feedback gain so that the output of the air-fuel ratio sensor itself becomes the target air-fuel ratio. As a result, the result of F/B control may shift from the target value and an offset may occur, resulting in a decrease in control accuracy and deterioration of drivability and exhaust emission characteristics. In addition, in order to avoid such a decrease in control accuracy, it is possible to change the feedback gain depending on the rich side and lean side of the target air-fuel ratio, but the feedback gain may vary depending on the location (target air-fuel ratio). Since the values are different, the arithmetic processing for determining the gain becomes complicated. Therefore, the increase in program capacity and calculation time may lead to higher costs and deterioration in performance.

そこで本実施例では、空燃比センサの出力を燃空比F/
Aのスケールでみると2本の折線特性となることに着目
し、第9図(b)の破線のように燃空比F/Aに対して
完全にリニアになる信号を求め、この信号に基づしζて
F/B制御を行うことにより、目標値のリッチ側す−ン
側何れも同一ゲインとして制御オフセットを回避して制
御精度の向上を図っている。なお、この遅れ補正を行う
に当ってはりニアライズ補正を行う前に遅れ補正を°実
行すると理論空燃比よりリッチとリーン側とでは傾き感
度が異なるため、リッチ側とリーン側とで遅れ補正のゲ
インを変えて補正しないとかえって誤差を生ずることに
なる。このためリニアライズした後で遅れ補正を行う必
要がある。
Therefore, in this embodiment, the output of the air-fuel ratio sensor is changed to the fuel-air ratio F/
Focusing on the fact that it has two broken line characteristics when viewed on the A scale, we find a signal that is completely linear with respect to the fuel/air ratio F/A, as shown by the broken line in Figure 9 (b), and By performing F/B control based on ζ, control offset is avoided by setting the same gain on both the rich side and the dark side of the target value, thereby improving control accuracy. Note that when performing this delay correction, if you execute the delay correction before performing the nearize correction, the slope sensitivity will be different between rich and lean sides of the stoichiometric air-fuel ratio, so the gain of the delay correction will be different between the rich side and the lean side. If the value is not corrected by changing the value, an error will occur instead. Therefore, it is necessary to perform delay correction after linearization.

第1O111図は上記基本原理に基づく空燃比制御プロ
グラムを示すフローチャートである。本実施例の説明に
あたり、第1実施例と同一処理を行うステップには同一
番号を付してその説明を省略し、異なるステップにはQ
印で囲むステップ番号を付してその内容を説明する。な
お、本実施例の第10図、第11図は第1実施例の第5
図、第6図にそれぞれ相当する。
FIG. 1O111 is a flowchart showing an air-fuel ratio control program based on the above basic principle. In explaining this embodiment, steps that perform the same processing as in the first embodiment are given the same numbers and their explanations are omitted, and different steps are marked with Q.
The contents are explained with the step numbers enclosed by marks. Note that FIGS. 10 and 11 of this embodiment are the same as those of the fifth embodiment of the first embodiment.
This corresponds to Fig. 6 and Fig. 6, respectively.

第10図のプログラムにおいてP2を経るとPillで
基本パルス幅Tp′を次式@に従って演算し、P3□で
’rp ’、N、’l’wをパラメータとする所定のテ
ーブルマツプからそ時の運転条件における目標燃空比T
FA (TFA=func (Tp ’、 N、 TW
))をルックアップする。
In the program shown in Fig. 10, after passing through P2, Pill calculates the basic pulse width Tp' according to the following formula @, and P3□ calculates the current pulse width from a predetermined table map with 'rp', N, and 'l'w as parameters. Target fuel-air ratio T under operating conditions
FA (TFA=func (Tp', N, TW
)).

a ’rp ’ =に、、、X□  ・・・・・・@但し、
Ko、:インジェクタの流量特性により定まる定数 次いで、P33で目標燃空比に応じた基本燃料パルス幅
’rpを次式〇に従って演算する。
a 'rp' = 、、、X□ ・・・・・・@However,
Ko: Constant determined by the flow rate characteristics of the injector Next, in P33, the basic fuel pulse width 'rp corresponding to the target fuel-air ratio is calculated according to the following equation.

第11図は空燃比のフィードバック補正係数ALPHA
を演算するプログラムを示すフローチャートであり、本
プログラムはエンジンの燃焼の一行程毎に実行される。
Figure 11 shows the air-fuel ratio feedback correction coefficient ALPHA.
This is a flowchart showing a program that calculates , and this program is executed for each combustion stroke of the engine.

まず、Pd2で空燃比センサとの位相組合せを行うため
に吸気から排気行程に相当する4行程分のTFAの信号
をシフトする。すなわち、本プログラムのように行程信
号毎に演算が回ってくるルーチンでは、噴射時に求めら
れた目標燃空比TFAに対して空燃比の出力が検出でき
るのは吸気行程で燃料が吸入され圧縮、爆発そして排気
行程で排出され、酸素センサ(空燃比センサ)19が取
り付けられている所まで排ガスが到達した時である。こ
のため、ここでは吸気から排°気行程に相当する4行程
分子FAの信号をシフトして空燃比センサ信号との位相
組合せを行っている。次いで、Pd2で空燃比センサの
出力をA/D変換し、そのA/D変換値をF / A 
oとしてメモリに格納する。Pd2では前回のりニアラ
イザ結果を得るためにKFBAoの値をKFBA、に移
し、Pd2で次式[相]に従ってA/D変換されたF 
/ A 。
First, in order to perform phase combination with the air-fuel ratio sensor at Pd2, the TFA signal for four strokes corresponding to the intake stroke to the exhaust stroke is shifted. In other words, in a routine such as this program where calculations are performed for each stroke signal, the air-fuel ratio output can be detected with respect to the target fuel-air ratio TFA determined at the time of injection when fuel is inhaled and compressed during the intake stroke. This is when the exhaust gas is emitted during the explosion and exhaust stroke and reaches the location where the oxygen sensor (air-fuel ratio sensor) 19 is attached. For this reason, here, the signal of the 4-stroke molecule FA corresponding to the intake stroke to the exhaust stroke is shifted and phase-combined with the air-fuel ratio sensor signal. Next, the output of the air-fuel ratio sensor is A/D converted by Pd2, and the A/D converted value is converted to F/A.
Store it in memory as o. In Pd2, in order to obtain the previous linearizer result, the value of KFBAo is transferred to KFBA, and in Pd2, the A/D converted F according to the following formula [phase] is transferred.
/A.

によりリニアライズ補正係数KHO3を演算する(第1
2図参照)。
Calculate the linearization correction coefficient KHO3 (first
(See Figure 2).

KHO3=func(F/Ao)   −・”■次いで
、P4Sで次式[相]に従ってKFBAoをリニアライ
ズ化する。
KHO3=func(F/Ao) −·”■ Next, KFBAo is linearized in P4S according to the following formula [phase].

KFBAo=KHO3xF/Ao  ”−・・−@した
がって、前述の第9図(b)に示したように燃空比F/
Aに対して空燃比センサの出力特性(空燃比F/Aに対
して折線特性)をリッチからリーン域まで全域にわたっ
て1本のリニアな直線で表示することができ、KFBA
oの出力をF/Aに対して同図鎖線のようにリニア特性
とすることができる。
KFBAo=KHO3xF/Ao ”-...-@Therefore, as shown in Figure 9(b) above, the fuel air ratio F/
The output characteristics of the air-fuel ratio sensor for A (broken line characteristics for air-fuel ratio F/A) can be displayed as one linear straight line over the entire range from rich to lean.
The output of o can be made to have a linear characteristic with respect to the F/A as shown by the chain line in the figure.

以下のpab〜P49では空燃比センサの遅れ補正を前
述の第1実施例、第2実施例同様に差分法を用いて補正
し、空燃比のフィードバック補正係数ALPHFを演算
している。すなわち、P4&で次式[相]に従って差分
補正係数(空燃比のサンプリングインターバルに相当)
αを演算し、Pd2で次式〇に従ってリニアライズ化し
た遅れ補正後の空燃比センサの出力KFBAを演算する
In pab to P49 below, the delay correction of the air-fuel ratio sensor is corrected using the difference method as in the first and second embodiments described above, and the air-fuel ratio feedback correction coefficient ALPHF is calculated. In other words, in P4&, the difference correction coefficient (corresponding to the air-fuel ratio sampling interval) is calculated according to the following formula [phase].
α is calculated, and in Pd2, the output KFBA of the air-fuel ratio sensor after linearization and delay correction is calculated according to the following equation.

但し、T:空燃比センサの1次遅れ時定数m:定数 KBFA=KBFAo+α(KBFA、。However, T: first-order lag time constant of the air-fuel ratio sensor m: constant KBFA=KBFAo+α(KBFA,.

−KBFAI )      ・・・・・・O次いで、
PdI2で目標燃空比TFAの位相修正信号TFA、と
空燃比センサの出力リニア化によって得られた燃空比K
FBAとの差分Δを次式[相]に従って演算し、Pd2
で次式〇に従って空燃比フィードバック補正係数ALP
HAを演算して、処理゛を終了する Δ≧TFA、−KFBA       川・・・[相]
ALPHA=Kp・Δ+Σ(K、  ・Δ)・・・・・
・[相]このように、本実施例では空燃比センサの出力
とその燃空比との関係が2本の折線特性となることに着
目し、第9図(b)の破線のように燃空比F/Aに対し
て完全にリニアになる信号を求め、この信号に基づいて
精密なF/B制御を行うとともに、空燃比センサの応答
遅れをも適切に補正して、正確な空燃比フィードバック
補正係数ALPHAを算出しているので、両者の効果が
相俟って極めて精度の高い空燃比F/B*J′4Bを実
現することができ、排気エミッション特性や運転性をよ
り一層向上させることができる。
-KBFAI) ......O then,
The phase correction signal TFA of the target fuel-air ratio TFA in PdI2 and the fuel-air ratio K obtained by linearizing the output of the air-fuel ratio sensor
Calculate the difference Δ with FBA according to the following formula [phase], and calculate Pd2
The air-fuel ratio feedback correction coefficient ALP is calculated according to the following formula 〇.
Calculate HA and end the process Δ≧TFA, -KFBA River... [phase]
ALPHA=Kp・Δ+Σ(K,・Δ)・・・・・・
・[Phase] In this way, in this example, we focused on the fact that the relationship between the output of the air-fuel ratio sensor and its fuel-air ratio has two broken line characteristics, and the A signal that is completely linear with respect to the air-fuel ratio F/A is obtained, and precise F/B control is performed based on this signal, and the response delay of the air-fuel ratio sensor is appropriately corrected to ensure an accurate air-fuel ratio. Since the feedback correction coefficient ALPHA is calculated, both effects work together to achieve an extremely accurate air-fuel ratio F/B*J'4B, further improving exhaust emission characteristics and drivability. be able to.

なお、本実施例では空燃比のリニアライズ化と本発明に
係る空燃比センサの応答遅れの補正とを同時に行ってい
るが、勿論これには限定されず、空燃比のリニアライズ
化のみを単独で空燃比制御に適用してもよいことは言う
までもない。このように、従来の空燃比制御装置等に本
実施例のリニアライズ化を適用すればハードの変更や特
別なセンサ類を必要とせず、しかも制御ゲインの変更も
なくソフトの対応のみで制御精度の向上を図ることがで
きる。
Note that in this embodiment, linearization of the air-fuel ratio and correction of the response delay of the air-fuel ratio sensor according to the present invention are performed at the same time, but of course this is not limited to this, and only linearization of the air-fuel ratio is performed independently. Needless to say, the present invention may also be applied to air-fuel ratio control. In this way, if the linearization of this embodiment is applied to a conventional air-fuel ratio control device, etc., there is no need to change the hardware or special sensors, and control accuracy can be improved simply by using software without changing the control gain. It is possible to improve the

(効果) 本発明によれば、空燃比センサの現出力を所定の遅れ補
正演算により補正して、今回の燃焼行程における混合気
の空燃比を算出するとともに、目標空燃比の値をシフト
させて、今回の燃焼行程における混合気の空燃比に対し
て同一の燃焼タイミングとなるように両者の燃焼位相を
合わせているので、空燃比のフィードバック制御の精度
を高めることができ、トルク変動を防止して排気エミ。
(Effects) According to the present invention, the current output of the air-fuel ratio sensor is corrected by a predetermined delay correction calculation to calculate the air-fuel ratio of the air-fuel mixture in the current combustion stroke, and the value of the target air-fuel ratio is shifted. Since both combustion phases are matched so that the combustion timing is the same for the air-fuel ratio of the air-fuel mixture in the current combustion stroke, the accuracy of feedback control of the air-fuel ratio can be increased and torque fluctuations can be prevented. Exhaust emitter.

ジョンや運転性をより一層向上させることができる。It is possible to further improve driving performance and drivability.

【図面の簡単な説明】 第1図は本発明の基本概念図、第2〜6図は本発明の第
1実施例を示す図であり、第2図はその全体構成図、第
3図はそのコントロールユニットの回路構成図、第4図
はその空燃比センサの特性を示す図、第5図はその空燃
比制御のプログラムを示すフローチャート、第6図はそ
の空燃比フィードバック補正係数を演算するプログラム
を示すフローチャート、第7.8図は本発明の第2実施
例を示す図であり、第7図はその空燃比フィードバック
補正係数を演算するプログラムを示すフローチャート、
第8図はその空燃比センサの特性を示す図、第9〜12
図は本発明の第3実施例を示す図であり、第9図はその
空燃比センサの特性を示す図、第10図はその空燃比制
御のプログラムを示すフローチャート、第11図はその
空燃比フィードバック補正係数を演算するプログラムを
示すフローチャート、第12図はそのリニアライズ補正
係数の特性を示す図である。 1・・・・・・エンジン、 8・・・・・・インジェクタ(操作手段)、19・・・
・・・酸素センサ(空燃比検出手段)、20・・・・・
・運転状態検出手段、 21・・・・・・コントロールユニット(空燃比補正手
段、目標設定手段、位相合せ手段、制 御手段)。
[Brief Description of the Drawings] Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 6 are diagrams showing a first embodiment of the present invention, Fig. 2 is an overall configuration diagram thereof, and Fig. 3 is a diagram showing a first embodiment of the present invention. A circuit configuration diagram of the control unit, FIG. 4 is a diagram showing the characteristics of the air-fuel ratio sensor, FIG. 5 is a flowchart showing the air-fuel ratio control program, and FIG. 6 is a program for calculating the air-fuel ratio feedback correction coefficient. FIG. 7.8 is a diagram showing the second embodiment of the present invention, and FIG. 7 is a flow chart showing a program for calculating the air-fuel ratio feedback correction coefficient.
Figure 8 is a diagram showing the characteristics of the air-fuel ratio sensor, Figures 9 to 12
The figures are diagrams showing a third embodiment of the present invention, Fig. 9 is a diagram showing the characteristics of the air-fuel ratio sensor, Fig. 10 is a flowchart showing the air-fuel ratio control program, and Fig. 11 is the air-fuel ratio A flowchart showing a program for calculating a feedback correction coefficient, and FIG. 12 is a diagram showing the characteristics of the linearization correction coefficient. 1...Engine, 8...Injector (operating means), 19...
...Oxygen sensor (air-fuel ratio detection means), 20...
- Operating state detection means, 21... Control unit (air-fuel ratio correction means, target setting means, phasing means, control means).

Claims (1)

【特許請求の範囲】 a)吸入混合気の空燃比を検出する空燃比検出手段と、 b)エンジンの運転状態を検出する運転状態検出手段と
、 c)空燃比検出手段の現出力を所定の遅れ補正演算によ
り補正して、今回の燃焼行程における混合気の空燃比を
算出する補正手段と、 d)エンジンの運転状態に基づいて目標空燃比を設定す
る目標設定手段と、 e)目標設定手段により設定された目標空燃比の値をシ
フトさせて、補正手段により算出される今回の燃焼行程
における混合気の空燃比に対して同一の燃焼タイミング
となるように両者の燃焼位相を合わせる位相合せ手段と
、 f)燃焼位相を合わせたときの目標空燃比および補正手
段の算出空燃比に基づいて空燃比をフィードバック補正
する制御値を演算する制御手段と、 g)制御手段の出力に基づいて吸入空気あるいは燃料の
供給量を変えて空燃比を操作する操作手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
[Scope of Claims] a) air-fuel ratio detection means for detecting the air-fuel ratio of the intake air-fuel mixture; b) operating state detection means for detecting the operating state of the engine; c) detecting the current output of the air-fuel ratio detection means at a predetermined level. a correction means that calculates the air-fuel ratio of the air-fuel mixture in the current combustion stroke by correcting it by a delay correction calculation; d) a target setting means that sets a target air-fuel ratio based on the operating state of the engine; and e) a target setting means. phasing means that shifts the value of the target air-fuel ratio set by and adjusts the combustion phase of both so that the combustion timing is the same with respect to the air-fuel ratio of the air-fuel mixture in the current combustion stroke calculated by the correction means; and f) a control means for calculating a control value for feedback correcting the air-fuel ratio based on the target air-fuel ratio when the combustion phases are matched and the air-fuel ratio calculated by the correction means; and g) a control value for adjusting the intake air based on the output of the control means. Alternatively, an air-fuel ratio control device for an internal combustion engine, comprising: an operating means for controlling the air-fuel ratio by changing the amount of fuel supplied.
JP61200692A 1986-08-26 1986-08-26 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP2501566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200692A JP2501566B2 (en) 1986-08-26 1986-08-26 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200692A JP2501566B2 (en) 1986-08-26 1986-08-26 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6355340A true JPS6355340A (en) 1988-03-09
JP2501566B2 JP2501566B2 (en) 1996-05-29

Family

ID=16428658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200692A Expired - Lifetime JP2501566B2 (en) 1986-08-26 1986-08-26 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2501566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460746A (en) * 1987-08-29 1989-03-07 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH0535039U (en) * 1991-10-17 1993-05-14 積水化学工業株式会社 Cutting board with case

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146435A (en) * 1984-08-13 1986-03-06 Nissan Motor Co Ltd Air fuel ratio controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146435A (en) * 1984-08-13 1986-03-06 Nissan Motor Co Ltd Air fuel ratio controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460746A (en) * 1987-08-29 1989-03-07 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH0535039U (en) * 1991-10-17 1993-05-14 積水化学工業株式会社 Cutting board with case

Also Published As

Publication number Publication date
JP2501566B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
KR0123561B1 (en) Engine control system using learning control
JPS6356416B2 (en)
JPH0827203B2 (en) Engine intake air amount detector
JPH01211633A (en) Fuel injection amount control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6355340A (en) Air-fuel ratio controller for internal combustion engine
JPS62253932A (en) Air-fuel ratio control device for engine
JPS6217332A (en) Fuel-injection control device for internal-combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0512538B2 (en)
JP2712153B2 (en) Load detection device for internal combustion engine
JPS62203952A (en) Electronic control device of internal combustion engine
JPH0523815Y2 (en)
JP2503057Y2 (en) Mixed fuel supply system for internal combustion engine
JP3453830B2 (en) Engine air-fuel ratio control device
JPH01294929A (en) Fuel injection control device for internal combustion engine
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JPH0531242Y2 (en)
JP2627826B2 (en) Fuel supply control device for internal combustion engine
JPH0368221B2 (en)
JPS63140836A (en) Fuel injection controller for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP2591072B2 (en) Control device for internal combustion engine
JPS6035153A (en) Control method of fuel injection in internal-conbustion engine
JPS6179839A (en) Idle rotational speed control device in engine