JPS6045753A - Fuel controller of internal-combustion engine - Google Patents

Fuel controller of internal-combustion engine

Info

Publication number
JPS6045753A
JPS6045753A JP15306283A JP15306283A JPS6045753A JP S6045753 A JPS6045753 A JP S6045753A JP 15306283 A JP15306283 A JP 15306283A JP 15306283 A JP15306283 A JP 15306283A JP S6045753 A JPS6045753 A JP S6045753A
Authority
JP
Japan
Prior art keywords
fuel
amount
signal
intake air
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15306283A
Other languages
Japanese (ja)
Inventor
Toshimi Anpo
安保 敏巳
Takashi Ueno
植野 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15306283A priority Critical patent/JPS6045753A/en
Priority to US06/576,474 priority patent/US4562814A/en
Priority to DE8484101131T priority patent/DE3483653D1/en
Priority to EP84101131A priority patent/EP0115868B1/en
Publication of JPS6045753A publication Critical patent/JPS6045753A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To constantly perform control of mixture at a demanded air fuel ratio and attain immediate increase of fuel in response to the urgent acceleration by controlling the quantity of fuel to be supplied plus the dynamic characteristics of a fuel control system and supplying additional fuel for acceleration immediately after the state where the demanded quantity of fuel is urgently increased is detected. CONSTITUTION:After reading an air quantity signal S1, namely, Aa(n-1) developed by an air flow meter 4, a revolution signal S2, etc., a computer calculates the value Ac(n) of the quantity of intake air measured in the current control period and makes foreseeing calculation of the value Ac(n+1) of the quantity of the subsequently measured intake air. Using the intake air quantity Ac(n)m the computer calculates the currently demanded quantity Fc(n) of fuel and calculates the quantity Ff(n) of fuel which is to be injected actually in order to send the demanded quantity of fuel into a cylinder. If accelerated injection is carried out, the computer calculates both Fa(a) and Fa(n+1). Fa(a) is the quantity of fuel which is actually sucked into the cylinder when injected at an accelerated speed. If the accelerated fuel has a considerable effect, the computer generates the injection signal S3 of an injection pulse width according to the quantities F'c(n) and F'(n+1) of fuel incremented by the acceleration, whereby increasing the quantity of fuel without any delay.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の燃料制御装置に関し、特に空気系お
よび燃料系の動特性に起因、する吸入空気量と燃料供給
量との不均衡を補正する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel control device for an internal combustion engine, and in particular to a device for correcting an imbalance between the intake air amount and the fuel supply amount caused by the dynamic characteristics of the air system and the fuel system. related to technology.

〔先行技術〕[Prior art]

従来の燃料制御装置としては、例えば第1図に示すごと
きものがある(特開昭53−102416、同55−3
5165、同55−134718等)。
As a conventional fuel control device, for example, there is the one shown in FIG.
5165, 55-134718, etc.).

第1図において、1はエアクリーナ、2は吸気管、ろは
スロットル弁、4は吸気管2を通過する空気量に対応し
た空気量信号S1を出力するエアフローメータ、5は後
述の燃料噴射量信号S3に応じた量の燃料を噴射する燃
料噴射弁、6はシリンダ、7はクランク軸の回転に同期
した回転信号IS2を出力する回転セ/ザ、8は主とし
て空気量信号S1と回転信号S2からそのときの運転状
態に対応した燃料噴射量を算出し、その結果に応じた燃
料噴射量信号S3を出力する演算装置であり、例えばC
PU、RAM、ROM、Ilo等からなるマイクロコン
ビーータで構成されている。
In FIG. 1, 1 is an air cleaner, 2 is an intake pipe, the lower is a throttle valve, 4 is an air flow meter that outputs an air amount signal S1 corresponding to the amount of air passing through the intake pipe 2, and 5 is a fuel injection amount signal, which will be described later. 6 is a cylinder, 7 is a rotation sensor that outputs a rotation signal IS2 synchronized with the rotation of the crankshaft, and 8 is mainly based on the air amount signal S1 and rotation signal S2. It is a calculation device that calculates the fuel injection amount corresponding to the driving state at that time and outputs the fuel injection amount signal S3 according to the result.
It is composed of a micro converter consisting of PU, RAM, ROM, Ilo, etc.

」二記の装置における燃料噴射量の演算は次のようにし
て行なわれる。
The calculation of the fuel injection amount in the device described in ``2'' is performed as follows.

すなわちエアフローメータ4で計測した空気量信号S1
によって得られる吸入空気量をQ、回転信号S2から得
られる内燃機関の回転速度をN、係数を■(とした場合
に、燃料噴射量(燃料噴射パルス幅)Tpは下記(1)
式によって算出される。
In other words, the air amount signal S1 measured by the air flow meter 4
When the intake air amount obtained by is Q, the rotation speed of the internal combustion engine obtained from the rotation signal S2 is N, and the coefficient is (), the fuel injection amount (fuel injection pulse width) Tp is as follows (1)
Calculated by the formula.

上記(1)式に示すように、燃料噴射量は主として吸入
空気量と回転速度とに応じて設定され、それに温度や排
気ガス成分濃度等による補正を付加したものが実際の燃
料噴射量となる。
As shown in equation (1) above, the fuel injection amount is mainly set according to the intake air amount and rotational speed, and the actual fuel injection amount is the one that adds corrections based on temperature, exhaust gas component concentration, etc. .

しかし従来の装置においては、エアフローメータの空気
量信号S1をそのまま吸入空気量を示す信号として用い
、捷だ噴射した燃料は時間遅れなしに全てシリンダに吸
入されるものとして制御している。
However, in the conventional device, the air amount signal S1 of the air flow meter is used as it is as a signal indicating the amount of intake air, and control is performed on the assumption that all the fuel injected at short intervals is taken into the cylinder without any time delay.

すなわち従来の装置においては、空気量はエアフローメ
ータの測定値そのものであり、燃料量は吸気管に噴射す
る燃料であって実際にシリンダに吸入される空気量や燃
料量について制御しているものではなかった。
In other words, in conventional devices, the air amount is the measured value of the air flow meter itself, and the fuel amount is the fuel injected into the intake pipe, but does not control the amount of air or fuel actually taken into the cylinder. There wasn't.

そのため定常状態では正確な制御が可能であるが、過渡
状態時には空気系と燃料系の動特性に起因する誤差が生
じ、そのため空燃比が目標値からずれてしまい、燃費性
能、排気浄化性能、運転性能等に悪影響を及ぼすという
問題があった。
Therefore, accurate control is possible in a steady state, but in a transient state, errors occur due to the dynamic characteristics of the air system and fuel system, which causes the air-fuel ratio to deviate from the target value, resulting in poor fuel efficiency, exhaust purification performance, and operational performance. There was a problem that performance etc. were adversely affected.

上記の問題を解決するため本出願人は、予め測定して記
憶しておいた空気系の動特性とエアフローメータの空気
量信号S1からシリンダにおける実際の吸入空気量を演
算で算出し、その値から内燃機関の要求燃料量を算出し
、さらに燃料系の動特性と上記の要求燃料量から実際に
供給すべき燃料量を算出することにより、動特性に起因
する誤差を補正することの出来る燃料制御装置を既に出
願(特願昭58−16150号)している。
In order to solve the above problem, the applicant calculates the actual intake air amount in the cylinder from the dynamic characteristics of the air system that have been measured and stored in advance and the air amount signal S1 of the air flow meter, and calculates the actual intake air amount in the cylinder. By calculating the required fuel amount of the internal combustion engine from the above, and then calculating the actual amount of fuel to be supplied from the dynamic characteristics of the fuel system and the above required fuel amount, it is possible to correct errors caused by the dynamic characteristics of the fuel. We have already applied for a control device (Japanese Patent Application No. 16150/1982).

上記の装置は、燃料制御系の動特性に起因する誤差を有
効に補正することが出来る優れた装置である。しかし燃
料系の動特性が空気系のそれに比べて遅い場合、例えば
スロットルボディ内に燃料噴射する場合のように噴射個
所がシリンダから離れている場合には、空気流量から燃
料供給量を演算する方式では、燃料の変化が空気の変化
より遅れるから、過渡状態時に生じる誤差を完全に補正
することは極めて困菓ILである。
The above device is an excellent device that can effectively correct errors caused by the dynamic characteristics of the fuel control system. However, when the dynamic characteristics of the fuel system are slower than those of the air system, for example when the injection point is far from the cylinder, such as when fuel is injected into the throttle body, a method that calculates the fuel supply amount from the air flow rate is used. Since the change in fuel lags behind the change in air, it is extremely difficult to completely correct errors that occur during transient conditions.

そのため比較的ゆるやかなスロットル弁開度の変化に対
しては、上記の装置は極めて有効であるが、スロットル
弁開度が急速に開かれる急加速時や、加速時に定常時よ
り濃い混合気を供給したい場合等、燃料をすばやくシリ
ンダに供給しだい場合には、補正機能が間に合わず、不
十分な制御になるという問題があつ′#、0 〔発明の目的〕 本発明は上記の問題を解決するためになされたものであ
り、急加速時のように内燃機関の要求燃料量が急激に増
加した場合にもシリンダに実際に供給する燃料量を遅滞
なく増加させ、常に所望の空燃比に制御することの出来
る燃料制御装置な提供することを目的とする。
Therefore, the above device is extremely effective against relatively gradual changes in the throttle valve opening, but it supplies a richer mixture than under normal conditions during sudden acceleration when the throttle valve opening opens rapidly, or during acceleration. When fuel is quickly supplied to the cylinder, for example, when fuel is quickly supplied to the cylinder, there is a problem that the correction function is not available in time, resulting in insufficient control. This system is designed to increase the amount of fuel actually supplied to the cylinders without delay even when the amount of fuel required by the internal combustion engine suddenly increases, such as during sudden acceleration, and to always control the air-fuel ratio to the desired air-fuel ratio. The purpose of the present invention is to provide a fuel control system capable of

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため本発明においては、予め測定
して記憶しておいた空気系の動特性とエアフローメータ
の空気量信号S1から/リンダにおける実際の吸入空気
量を演算で算出し、その値から内燃機関の要求燃料量を
算出し、さらに燃料系の動特性と上記の要求燃料量から
実際に供給すべき燃料量を算出し、捷だ内燃機関の要求
燃料量か急激に増加する状態を検出する手段を設け、」
二記の状態になったときには、」二記の演算でめた燃料
量の他に直ちに加速燃料を供給することにより、実際に
7す/ダに供給する燃料量を急速に増加させるように構
成している。
In order to achieve the above object, the present invention calculates the actual intake air amount in the cylinder from the dynamic characteristics of the air system measured and stored in advance and the air amount signal S1 of the air flow meter. The required fuel amount of the internal combustion engine is calculated from the value, and the actual amount of fuel to be supplied is calculated from the dynamic characteristics of the fuel system and the above required fuel amount. provide means for detecting
When the state in item 2 occurs, the configuration is configured to rapidly increase the amount of fuel actually supplied to the 7S/DA by immediately supplying acceleration fuel in addition to the amount of fuel determined by the calculation in item 2. are doing.

捷だ本発明の他の構成においては、上記の加速燃料を供
給したときには、上記の演算でめた燃料量から加速燃料
によって/リング内に吸入される燃料分を減算した量を
供給することにより、燃料が過剰になることのないよう
に構成している。
In another configuration of the present invention, when the above acceleration fuel is supplied, an amount obtained by subtracting the amount of fuel sucked into the ring by the acceleration fuel from the fuel amount determined by the above calculation is supplied. , so that there is no excess fuel.

第2図は本発明の全体の構成を示すブロック図である。FIG. 2 is a block diagram showing the overall configuration of the present invention.

第2図において、100は吸入空気量に関連する空気量
信号を出力するセンサであり、例えばエアフローメータ
である。101は上記空気量信号とシリンダに実際に吸
入される吸入空気量との間の動特性G21を記憶してい
るメモリ、102は上記の空気量信号と動特性G、Iと
から実際の吸入空気量を算出する演算手段、106は吸
入空気量以外の機関運転変数(機関回転速度、温度等)
を検出する1以上のセンサ、104は燃料供給手段10
8(燃料噴射弁等)で送出した燃料量とシリンダに実際
に吸入される燃料量との間の動特性Gfを記憶している
メモリ、105はセンサ103から力えられる機関運転
変数に関する情報と演算手段102から与えられる実際
の吸入空気量とからそのときの内燃機関の要求燃料量を
算出し、その要求燃料量と上記の動特性Ofとから供給
すべき燃料量を算出する演算手段、106は機関の要求
燃料量が急激に増加する状態を検出する検出手段であり
、例えばスロットル弁開度の変化速度に応じた信号を出
力するセンサである。107は燃料信号発生手段であり
、通常時は演算手段105の演算結果に応じた燃料信号
を送出するか、検出手段106の信号が与えられると直
ちに加速燃料信号を送出する。なお加速燃料信号は一定
値でも良いか、検出手段106の信号に応じだ値すなわ
ち増加の状態に応じた値にすればより良好な制御を行な
うことが出来る。
In FIG. 2, 100 is a sensor that outputs an air amount signal related to the amount of intake air, such as an air flow meter. 101 is a memory that stores the dynamic characteristic G21 between the air amount signal and the amount of intake air actually taken into the cylinder; 102 is a memory that stores the dynamic characteristic G21 between the above air amount signal and the amount of intake air actually taken into the cylinder; 102 stores the actual intake air from the above air amount signal and the dynamic characteristics G and I 106 is an engine operating variable other than the intake air amount (engine speed, temperature, etc.)
one or more sensors 104 detecting the fuel supply means 10;
A memory 105 stores the dynamic characteristic Gf between the amount of fuel delivered by the fuel injection valve or the like and the amount of fuel actually sucked into the cylinder; Calculating means 106 that calculates the required fuel amount of the internal combustion engine at that time from the actual intake air amount given from the calculating means 102, and calculates the amount of fuel to be supplied from the required fuel amount and the above dynamic characteristic Of; is a detection means for detecting a state in which the amount of fuel required by the engine increases rapidly, and is, for example, a sensor that outputs a signal according to the rate of change of the throttle valve opening. Reference numeral 107 denotes a fuel signal generating means, which normally sends out a fuel signal according to the calculation result of the calculation means 105, or immediately sends out an acceleration fuel signal when a signal from the detection means 106 is given. It should be noted that better control can be achieved by setting the acceleration fuel signal to a constant value or to a value depending on the signal from the detection means 106, that is, a value depending on the state of increase.

燃料供給手段108(燃料噴射弁等)は、上記の燃料信
号発生手段107の信号に応じた量の燃料を機関に供給
する。
The fuel supply means 108 (fuel injection valve, etc.) supplies an amount of fuel to the engine according to the signal from the fuel signal generation means 107 described above.

上記のように構成ずろことにより、機関の要求燃料量か
急増した場合、例えば急加速時には、吸入空気量の情報
によって燃料供給量か増加する前に迅速に加速燃料を供
給することが出来るので、燃料系の動特性が空気系より
も遅い場合でも、要求燃料量の急増に良く対応すること
が出来、所望の空燃比の混合気を/リンダに供給するこ
とが出来る。
Due to the configuration described above, when the amount of fuel required by the engine increases rapidly, for example during sudden acceleration, it is possible to quickly supply accelerating fuel based on information on the amount of intake air before the amount of fuel supplied increases. Even if the dynamic characteristics of the fuel system are slower than those of the air system, it is possible to respond well to a sudden increase in the amount of fuel required, and it is possible to supply a mixture with a desired air-fuel ratio to the cylinder.

次に、上記のように加速燃料を供給した場合には、演算
手段105でめた燃料供給量よりも加速燃料の分だけ燃
料供給量が増加する。
Next, when the acceleration fuel is supplied as described above, the fuel supply amount increases by the amount of the acceleration fuel compared to the fuel supply amount determined by the calculation means 105.

演算手段105は、加速燃料の有無に拘らず、機関の要
求燃料量に応じた燃料信号を出力するから、急加速時に
は、多少の遅れ時間後に吸入空気量の増加に従って燃料
信号の値も増加する。
Since the calculation means 105 outputs a fuel signal according to the amount of fuel required by the engine regardless of the presence or absence of acceleration fuel, during sudden acceleration, the value of the fuel signal increases as the amount of intake air increases after a certain delay time. .

したがって以前に供給していた加速燃料の分だけ燃料が
過剰になり、混合気が過濃になるおそれがある。
Therefore, there is a risk that the fuel will be in excess of the previously supplied acceleration fuel, and the air-fuel mixture may become too rich.

上記の問題を解決するには、第2図に破線で示すごとく
、加速燃料によってシリンダ内に実際に吸入される燃料
量を算出する演算手段109(演算方法は前記と同様に
燃料系の動特性G[を用いて行なう)を設け、加速燃料
が供給された場合には演算手段105でめた燃料量から
演算手段109てめた値を減算した量にもとすいてOf
を用いて供給燃料量を演算して燃料を供給するように構
成すれば良い。
In order to solve the above problem, as shown by the broken line in FIG. When acceleration fuel is supplied, the value determined by the calculation means 109 is subtracted from the fuel amount calculated by the calculation means 105, and Of
It may be configured to calculate the amount of fuel to be supplied using .

〔発明の実施例〕[Embodiments of the invention]

以下実施例に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on examples.

第6図は本発明の一実施例図であり、第1図と同符号は
同一物を示す。
FIG. 6 is a diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same parts.

第6図において、9は、スロットル弁6が全閉から開状
態になったどき検出信号S4を出力するスロノl−ルス
イノf f アル。
In FIG. 6, reference numeral 9 indicates a throttle valve that outputs a detection signal S4 when the throttle valve 6 changes from fully closed to open.

寸だ演算装置10は、例えば入出力装置11、cpu1
2、T(、AM13、■もOMj4等からなるマイクロ
コンビー−一夕で構成されている。
The computing device 10 includes, for example, an input/output device 11 and a CPU 1.
2, T(, AM13, ① are also composed of microcombees made of OMj4, etc.).

演算装置10は、空気量信号S1、回転信号S2、検出
信号S4及び図示しない温度信号等の機関運転変数に関
する信号を入力し、所定の6!j算を行なって燃料噴射
量信号S3を出力する。
The arithmetic device 10 inputs signals related to engine operating variables such as an air amount signal S1, a rotation signal S2, a detection signal S4, and a temperature signal (not shown), and receives a predetermined 6! j calculation is performed and a fuel injection amount signal S3 is output.

」1記燃料噴射量信号S、で燃料噴射弁5を制御するこ
とにより、機関が要求する燃料を供給する。
By controlling the fuel injection valve 5 with the fuel injection amount signal S, the fuel required by the engine is supplied.

次に第4図のフローチャートに基ついて演算装置10内
の演算について詳細に説、明する。
Next, the calculations within the calculation device 10 will be explained in detail based on the flowchart of FIG.

まず第4図(A)は割込みルーチンである。First, FIG. 4(A) shows an interrupt routine.

すなわちスロットルスイッチ9の検出信号を割込み信号
として演算装置10の演算に割込みを行なわせ、(A)
の割込みルーチンを実行させる。
That is, the detection signal of the throttle switch 9 is used as an interrupt signal to interrupt the calculation of the calculation device 10, and (A)
executes the interrupt routine.

この割込みルーチンにおいては、Plで加速燃料を噴射
させ、P2で後の計算のため加速噴射フラグを°゛1゛
′にしておく。
In this interrupt routine, accelerating fuel is injected at Pl, and the accelerating injection flag is set to °1' at P2 for later calculations.

次に、第4図(I3)は通常の燃料制御ルーチンであり
、機関の回転に同期するか又は定周期で行なわれる。
Next, FIG. 4 (I3) shows a normal fuel control routine, which is performed in synchronization with the rotation of the engine or at regular intervals.

まずP3で、エアフローメータ4の出力すなわち空気量
信号S1すなわちAa(n−1)を読込む。
First, at P3, the output of the air flow meter 4, that is, the air amount signal S1, that is, Aa (n-1) is read.

ただ1]−1は1回前の制御周期における値であること
を示す。すなわち前回読込んだエアフローメータ4の出
力値をここで用いることを意味する。
However, 1]-1 indicates the value in the previous control cycle. That is, it means that the output value of the air flow meter 4 read last time is used here.

なお図示していないが、回転信号82等も読込む。Although not shown, the rotation signal 82 and the like are also read.

次にP4で、今回の制御周期における吸入空気量の値A
。(n)を演算する。この演算は次のようにして行方う
Next, in P4, the value A of the intake air amount in the current control cycle.
. (n) is calculated. This operation proceeds as follows.

内燃機関の吸気系(エアフローメータ、吸気管等)にお
ける空気系の動特性は、例えは2次のパルス伝達関数 て良く記述することが出来る。
The dynamic characteristics of the air system in the intake system (air flow meter, intake pipe, etc.) of an internal combustion engine can be well described using, for example, a second-order pulse transfer function.

そして上記のAa(n−1)、2回前の値Aa (n−
2)、吸入空気量の1回前および2回前の値A。(n−
1)、Ao(n−2)と」1記(2)式から今回の吸入
空気量の値A。(11)は、下記の(3)式のようにな
る。
Then, the above Aa (n-1), the value Aa (n-
2), the value A of the intake air amount before the first time and the second time before. (n-
1), Ao(n-2), and the current intake air amount value A from equation (2). (11) becomes the following equation (3).

Ao(n)’= dlAa(n−j)+e1Aa(n 
2)−blAo(n−1)−clAo(n−2)・ ・
 ・ (ろ) したがって上記の係数1〕1、C1、dl、(2,を予
め実験てめておけば、Ao(n)を演算でめることか出
来ろ。なおGa(z)を(2)式のごとく近似させたも
のでA。(I〕)を示したか、G a (z )の分子
にZoの項を含んだもので近似させたものを用いてもよ
い。この場合A−o(n)を計算するのにAa(11)
すなわち現在の値を用いることになる。
Ao(n)'= dlAa(n-j)+e1Aa(n
2)-blAo(n-1)-clAo(n-2)・・
・ (B) Therefore, if you experiment in advance with the above coefficients 1]1, C1, dl, (2), you can calculate Ao(n). ) may be approximated as shown in the formula A.(I]), or may be approximated by including the Zo term in the numerator of G a (z ). In this case, A-o Aa(11) to calculate (n)
In other words, the current value will be used.

上記の各係数の値は、予め実、験てめて■(0M14又
はRAM13に記憶させておいだ値を用いる。
The values of each of the above-mentioned coefficients are the values that have been actually tested and stored in (0M14 or RAM 13).

次にP5においては、次回の吸入空気量の値Ao(n+
1)を予測演算する。
Next, at P5, the next intake air amount value Ao(n+
1) is predictively calculated.

この値は、例えば外挿式を用いて、今回と前回の吸入空
気量の値から Ao(’n+1): 2Ao(I]) −Ao(n−1
)とめることが出来る。なおAc (1]+ 1)の予
測演算が必要な理由については後述スる。
For example, this value can be calculated by using an extrapolation formula to calculate Ao('n+1): 2Ao(I]) -Ao(n-1) from the current and previous intake air amount values.
) can be stopped. Note that the reason why the prediction calculation of Ac (1] + 1) is necessary will be described later.

次にP6において、P4でめた吸入空気量A。Next, at P6, the intake air amount A obtained at P4.

(n)を用いて、下記(4)式から今回の要求燃料量F
o(n)を演算する。
Using (n), the current required fuel amount F is calculated from equation (4) below.
Compute o(n).

上記の要求燃料量F。(1])は実際の吸入空気量に対
応して実際にンリング内で必要とされる燃料量である。
The above required fuel amount F. (1) is the amount of fuel actually required in the ring corresponding to the actual amount of intake air.

次にP7で、P5でめたA。(+1+1)を用いて、次
回の要求燃料量F。(n+1)を下記(5)式から算出
する。
Next was P7, an A that I got on P5. (+1+1) is used to determine the next required fuel amount F. (n+1) is calculated from the following equation (5).

加速噴射フラグが0であれば次にP8で、上記の要求燃
料量をシリンダに供給するために実際に噴射すべき燃料
量Fr(n)を算出する。
If the acceleration injection flag is 0, then in P8, the fuel amount Fr(n) that should actually be injected in order to supply the above-mentioned required fuel amount to the cylinder is calculated.

例えば燃料系の動特性Gf(z)を とすれば、今回の噴射すべき燃料量Ff(n)は下記(
7)式のようになる。
For example, if the dynamic characteristics of the fuel system are Gf(z), the amount of fuel to be injected this time Ff(n) is as follows (
7) The formula is as follows.

+ c2Fo(n−1) −C2F((n−1) 、:
1・・・・・(7) したがって上記の係数b2、C2、d2、C2を予め実
験でめておけば、Ff(n)を演算でめることが出来る
+c2Fo(n-1) -C2F((n-1),:
1...(7) Therefore, if the above coefficients b2, C2, d2, and C2 are determined in advance through experiments, Ff(n) can be determined by calculation.

」1記の各係数もl(,0M14等に記憶させておいた
値を用いる。
For each coefficient in ``1'', the values stored in l(, 0M14, etc.) are used.

なおP5において、Ac (n +i )を予測演算し
たのば、P7でF。(n+1)を演算するためであり、
寸だF。(n+1)はP8でFl(n)をめるために必
要になったものである。
Note that if Ac (n + i) is predicted and calculated in P5, F is obtained in P7. This is to calculate (n+1),
It's a size F. (n+1) is needed to calculate Fl(n) at P8.

捷だ本実施例では、燃料系の動特性を(6)式のように
記述しているので、上記P5の予測演算が必要となるが
、空気系や燃料系の動特性がより簡単な式で表示できる
ような場合、例えば(6)式において分母がb2z十C
2z のみになるような場合には、(乃式のF。(n+
1)が不要になり、したがってAc (n + 1)の
予測演算も不要となる。
In this example, the dynamic characteristics of the fuel system are described as in equation (6), so the predictive calculation of P5 above is required, but the dynamic characteristics of the air system and fuel system can be expressed using simpler equations For example, in equation (6), the denominator is b2z+C
In the case where only 2z is obtained, (F of the formula (n+
1) is no longer necessary, and therefore the prediction calculation of Ac (n + 1) is also no longer necessary.

次にP、でY、E Sの場合、すなわち加速噴射が行な
われた場合にはPloへ行き、噴射された加速燃料が実
際にシリンダに吸入される量Fa(n)及びF、 (n
 + 1 )を計算する。この計算は前記(6)、(7
)式と同様に、燃料系の動特性Gr(z)から計算する
Next, in the case of Y and E at P, that is, when acceleration injection is performed, the process goes to Plo, where the amount Fa(n) of the injected acceleration fuel actually sucked into the cylinder and F, (n
+1). This calculation is performed in (6) and (7) above.
) is calculated from the dynamic characteristics Gr(z) of the fuel system.

次にP11テは、F′C(n) = F((n) −F
、(n)及びF′C(11+1)−F。(n+1)−F
a(n+1)を計算する。
Next, P11 is F′C(n) = F((n) −F
, (n) and F'C(11+1)-F. (n+1)-F
Calculate a(n+1).

次にP12では、PloにおけるFa (n )の計算
を終了するか否かを判定する。
Next, in P12, it is determined whether to end the calculation of Fa (n) in Plo.

この判定は、加速燃料の影響が十分小さくなったか否か
、例えばII′a(n)の値が所定値より小さくなった
場合に終了すると判定する。
This determination is completed when the influence of the accelerating fuel has become sufficiently small, for example, when the value of II'a(n) has become smaller than a predetermined value.

P12でNOの場合は直ちにP14へ行き、P、’(n
)、F二(n +1 )に応じた噴射パルス幅の燃料噴
射量信号S6を出力する。
If NO at P12, immediately go to P14 and set P,'(n
), outputs a fuel injection amount signal S6 having an injection pulse width corresponding to F2(n +1 ).

P12でYESの場合はP13へ行き、加速噴射フラグ
を“0″にすることにより、次回の演算からはP1o〜
P13の経路を通らないようにし、通常の制御に復帰す
る。
If YES in P12, go to P13 and set the accelerated injection flag to "0", so that from the next calculation, P1o ~
Avoid passing through the route P13 and return to normal control.

なお上記の実施例において、P、からP13までを省略
すれば、加速燃料分を減算しない制御となる。
In the above embodiment, if steps P to P13 are omitted, the control does not subtract the acceleration fuel.

壕だ加速燃料の量をスロットル弁開度の変化速度に応じ
て変えてやれば、更に良好な制御を行なうことが出来る
Even better control can be achieved by changing the amount of acceleration fuel in accordance with the rate of change of the throttle valve opening.

その場合には、フロy l−ルスイノチ9の代りに、ス
ロットル弁開度に応じた信号を出力するスロットルセッ
サと、その信号の変化速度を検出する手段とを設け、そ
の変化速度に応して加速燃料の量を変えてやれば良い。
In that case, a throttle processor that outputs a signal corresponding to the throttle valve opening and a means for detecting the rate of change of the signal are provided in place of the flow control valve opening 9, and a means for detecting the rate of change of the signal is provided. All you have to do is change the amount of acceleration fuel.

この場合にはPloのFa(1])の割算は、そのとき
噴射した加速燃料に応じて割算する。
In this case, Plo is divided by Fa(1]) according to the acceleration fuel injected at that time.

第5図は、内燃機関における吸入空気量と燃料量との変
化を示す図である。
FIG. 5 is a diagram showing changes in intake air amount and fuel amount in an internal combustion engine.

第5図において、(A)はエアフローメータの出力、(
B)の実線はシリンダに吸入される空気量、破線はシリ
ンダに吸入される燃料量、(C)は動特性を考慮した燃
料噴射量、(D)は(C)の場合のシーリンダ内におけ
る吸入空気量(実線)と燃料量(破線)、(Jすは本発
明の加速燃料、(F)は加速燃料を噴射したことによっ
てシリンダ内に吸入される燃料量、(G)は要求燃料量
から(F)を減算した結果からめた供給燃料量、(I−
I)は(E) + (G)の噴射によるシリンダ内の吸
入空気量(実線)と燃料量(破線)をそれぞれ示す。
In Fig. 5, (A) is the output of the air flow meter, (
The solid line in B) is the amount of air taken into the cylinder, the dashed line is the amount of fuel taken into the cylinder, (C) is the amount of fuel injection considering dynamic characteristics, and (D) is the intake in the cylinder in case of (C). Air amount (solid line) and fuel amount (dashed line), (J is the acceleration fuel of the present invention, (F) is the fuel amount sucked into the cylinder by injecting the acceleration fuel, (G) is from the required fuel amount The amount of supplied fuel calculated from the result of subtracting (F), (I-
I) shows the intake air amount (solid line) and fuel amount (broken line) in the cylinder due to the injection of (E) + (G), respectively.

捷ず(A)において、実際にエアフローメータの出力が
ステップ的に変化することは有り得ないが説明を判りや
すくするため、時点T。で(A)に示すごとく急変した
ものとする。− 従来装置のごとく、エアフローメータの出力をその1寸
用いて燃料噴射量を設定した場合には、前記のごとき空
気系と燃料系の動特性のため、/リンダ内における吸入
空気量と燃料量は(B)″に示すようになり、To−T
1間では燃料が過少になって混合気が希薄になり、11
〜72間では燃料が過多になって混合気が過濃になる。
Although it is impossible for the output of the airflow meter to actually change in a stepwise manner during the change (A), for the sake of clarity, we will use the time T. Assume that there is a sudden change as shown in (A). - If the fuel injection amount is set using the output of the air flow meter as in the conventional device, due to the dynamic characteristics of the air system and fuel system as described above, the intake air amount and fuel amount in the cylinder will be is shown in (B)'', and To-T
Between 1 and 1, there is too little fuel and the mixture becomes lean;
-72, there is too much fuel and the mixture becomes too rich.

そのため前記のごとく吸気系の動特性を加味し、(C)
に示すごとく前記(7)式の特性で燃料を噴射した場合
には、(D)に示すごとく吸入空気量と燃料量との不均
衡がかなり改善される。
Therefore, considering the dynamic characteristics of the intake system as described above, (C)
When fuel is injected according to the characteristic of equation (7) as shown in (D), the imbalance between the amount of intake air and the amount of fuel is considerably improved, as shown in (D).

しかしくD)から判るように、燃料量は吸入空気量より
多少遅れており、まだこれを改善しようとして燃料制御
をあまり早めるような制御を行なうと、定常時における
安定性が悪化するという問題も生じる。
However, as can be seen from D), the fuel amount lags behind the intake air amount to some extent, and if the fuel control is performed too early in an attempt to improve this, there is a problem that the stability in steady state will worsen. arise.

本発明においては、(E)に示すごとく、スロットル弁
開度が変化した時点T3(T、はT。より先になる)に
おいて直ちに加速燃料を噴射し、その噴射によってシリ
ンダ内に吸入される燃料量(F)を要求燃料量から引い
た値に基づいて計算された値(G)を噴射する。
In the present invention, as shown in (E), accelerating fuel is injected immediately at time T3 (T is earlier than T) when the throttle valve opening changes, and the fuel is sucked into the cylinder by the injection. A value (G) calculated based on the amount (F) subtracted from the required fuel amount is injected.

そのため本発明においては、(トI)に示すごとく燃料
の遅れがなくなり、過渡状態時にも吸入空気量と燃料量
との均衡を保つことが出来、空燃比を所望の値に保つこ
とが出来る。なお(ト■)の斜線部分が加速燃料分を示
す。
Therefore, in the present invention, as shown in (I), there is no fuel delay, the intake air amount and fuel amount can be kept in balance even during a transient state, and the air-fuel ratio can be maintained at a desired value. Note that the shaded part (g) indicates the acceleration fuel.

また加速時に混合気を多少過濃にしたい場合には、前記
のごとく、加速燃料分を減算しなければ良い。
Furthermore, if it is desired to make the air-fuel mixture a little richer during acceleration, the acceleration fuel amount need not be subtracted as described above.

次に、第6図は6気筒機関に本発明を適用した場合のタ
イムチャートである。
Next, FIG. 6 is a time chart when the present invention is applied to a six-cylinder engine.

第6図は、6気筒機関の燃料噴射装置において、クラン
ク角が120°回転するごとに出力される1200信号
に同期し、1回転に1回ずつ燃料噴射が行なわれる場合
を示す。なお燃料噴射量は噴射パルスのパルス幅に比例
する。
FIG. 6 shows a case in which fuel injection is performed once per rotation in synchronization with a 1200 signal output every time the crank angle rotates by 120 degrees in a fuel injection system for a six-cylinder engine. Note that the fuel injection amount is proportional to the pulse width of the injection pulse.

スロットル弁開度が図示のごとく変化すると、エアフロ
ーメータの出力は図示のごとくやや遅れて変化する。そ
して加速燃料のない場合は、噴射パルス(1)に示すご
とく、エアフローメータの出力につれてパルス幅が次第
に増加する。
When the throttle valve opening changes as shown in the figure, the output of the air flow meter changes with a slight delay as shown in the figure. When there is no accelerating fuel, the pulse width gradually increases as the output of the air flow meter increases, as shown in injection pulse (1).

本発明においては、スロットル弁開度が変化した時点で
、1200信号とは無関係に直ちに加速燃料パルスが出
力される。
In the present invention, when the throttle valve opening changes, an accelerating fuel pulse is immediately output regardless of the 1200 signal.

噴射パルス(2)は、加速燃料がなかった場合に本来出
力されるパルス幅から加速燃料によってシリンダ内に吸
入される量に応じた分を減算した噴射パルスであり、実
際の噴射パルスは、加速燃料パルスと噴射パルス(2)
とを加えた噴射パルス(6)となる。
The injection pulse (2) is an injection pulse obtained by subtracting the amount corresponding to the amount sucked into the cylinder by the acceleration fuel from the pulse width that would normally be output if there was no acceleration fuel, and the actual injection pulse is Fuel pulse and injection pulse (2)
The injection pulse (6) is obtained by adding the following.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明においては、燃料制御系の動
特性を含めて燃料供給量を制御し、かつ機関の要求燃料
量が急増する状態を検出し、その場合には直ちに加速燃
料を供給するように構成したことにより、急加速時等の
過渡状態時においても遅滞なく燃料を増加することが出
来、所望の空燃比に制御することが出来る。
As explained above, in the present invention, the fuel supply amount is controlled including the dynamic characteristics of the fuel control system, and a state in which the required fuel amount of the engine rapidly increases is detected, and in that case, acceleration fuel is immediately supplied. With this configuration, fuel can be increased without delay even in a transient state such as during sudden acceleration, and the air-fuel ratio can be controlled to a desired air-fuel ratio.

捷だ本発明においては、加速燃料によってシリンダに吸
入される分を差し引いた量を供給するように構成したこ
とにより、加速燃料によって燃料が過剰になるのを防止
し、常に安定した空燃比に制御することが出来るという
優れた効果がある。
In the present invention, by supplying the amount of accelerating fuel minus the amount taken into the cylinder, it is possible to prevent excess fuel from accelerating fuel and to always maintain a stable air-fuel ratio. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料制御装置の一例図、第2図は本発明
の全体の構成を示すブロック図、第6図は本発明の一実
施例のブロック図、第4図は本発明の制御を示すフロー
チャートの一実施例図、第5図は吸入空気量と燃料量の
変化を示す波形図、第6図は本発明の一実施例の信号波
形図である。 符号の説明 1・・エアクリーナ 2・・・吸気管 6・・・スロットル弁 4・・・エアフローメータ5・
・・燃料噴射弁 6・シリンダ 7・・・回転センサ 8・・演算装置 9°“°スロットルスイッチ 10・・演算装置 11・・・入出力装置12 、= 
CPU 13・・RAM 14・・・ROM 1[]0 ・吸入空気量を検出するセンサ101・・・
空気系の動特性を記憶するメモリ1[12・・実際の吸
入空気量を演算する演算手段103・機関運転変数を検
出するセンサ1[]4・燃料系の動特性を記憶するメモ
リ105・・・供給すべき燃料量を演算する演算手段1
06・・要求燃料量が急増する状態を検出する手段10
7・・燃料信号発生手段 108・・燃料供給手段 109・・・加速燃料によってシリンダに吸入される燃
料量を演算する演算手段 代理人弁理士 中村純之助 2 オ 2 図 第3図
Fig. 1 is a diagram of an example of a conventional fuel control device, Fig. 2 is a block diagram showing the overall configuration of the present invention, Fig. 6 is a block diagram of an embodiment of the present invention, and Fig. 4 is a control diagram of the present invention. FIG. 5 is a waveform diagram showing changes in intake air amount and fuel amount, and FIG. 6 is a signal waveform diagram of an embodiment of the present invention. Explanation of symbols 1... Air cleaner 2... Intake pipe 6... Throttle valve 4... Air flow meter 5...
...Fuel injection valve 6.Cylinder 7..Rotation sensor 8..Computation device 9°"°Throttle switch 10..Computation device 11..Input/output device 12, =
CPU 13...RAM 14...ROM 1[]0 ・Sensor 101 that detects intake air amount...
Memory 1 [12] for storing the dynamic characteristics of the air system; calculation means 103 for calculating the actual intake air amount; sensor 1 []4 for detecting engine operating variables; memory 105 for storing the dynamic characteristics of the fuel system;・Calculation means 1 for calculating the amount of fuel to be supplied
06... Means 10 for detecting a state in which the required fuel amount increases rapidly
7.Fuel signal generation means 108.Fuel supply means 109.Calculation means for calculating the amount of fuel sucked into the cylinder by accelerating fuel.Representative Patent Attorney Junnosuke Nakamura 2 O 2 Figure 3

Claims (1)

【特許請求の範囲】 (1) 内燃機関の吸入空気量に関連する空気量信号を
出力する第1のセンサと、吸入空気量以外の機関運転変
数を検出する一以上の第2のセンサと、上記空気量信号
とシリンダに実際に吸入される吸入空気量との間の動特
性Gaを記憶しておく第1の記憶手段と、燃料供給量と
実際にシリンダに吸入される燃料量との間の動特性Gf
を記憶しておく第2の記憶手段と、上記空気量信号と上
記空気系の動特性Gaとから実際の吸入空気量を算出す
る第1の演算手段と、該第1の演算手段で算出した吸入
空気量と上記第2のセンサの出力がらそのときの内燃機
関の要求燃料量を算出し、その要求燃料量と上記燃料系
の動特性Gfとから供給すべき燃料量を鎧出する第2の
演算手段と、内燃機関の要求燃ネ」量が急激に増加する
状態を検出する検出手段と、通常時は上記第2の演算手
段で算出した燃料量に応じた燃料信号を出力し、上記検
出手段が上記状態を検出した場合には直ちに加速燃料信
号を出力する燃料信号発生手段と、該燃料信号発生手段
の出力信号に応じて燃料を供給する手段とを備えだ題記
装置。 (2) 内燃機関の吸入空気量に関連する空気量信号を
出力する第1のセンサと、吸入空気量以外の機関運転変
数を検出する一以上の第2のセンサと、上記空気量信号
とシリンダに実際に吸入される吸入空気量との間の動特
性Gaを記憶しておく第1の記憶手段と、燃料供給量と
実際に7リングに吸入される燃料量との間の動特性Of
を記憶しておく第2の記憶手段と、上記空気量信号と上
記空気系の動特性Gaとから実際の吸入空気量を算出す
る第1の演算手段と、該第1の演算手段で算出した吸入
空気量と上記第2のセンサの出力からそのときの内燃機
関の要求燃料量を算出し、その要求燃料量と上記燃料系
の動特性Ofとから供給すべき燃料量を算出し、かつ、
下記加速燃料が供給された場合は上記要求燃料量から上
記第6の演算手段でめた燃料量を減算した値に応じて供
給すべき燃料量を算出する第2の演算手段と、内燃機関
の要求燃料量が急激に増加する状態を検出する検出手段
と、上記燃料系の動特性Gfから下記加速燃料によって
実際にシリンダに吸入される燃料量を算出する第6の演
算手段と、通常時は上記第2の演算手段で算出した燃料
量に応じた燃料信号を出力し、上記検出手段が上記状態
を検出した場合には直ちに加速燃料信号を出力する燃料
信号発生手段と、核燃料信号発生手段の出力信号に応じ
て燃料を供給する手段とを備えた照射装置。 (ロ)上記燃料信号発生手段は、上記検出手段か」二記
状態を検出したとき、一定値の加速燃料信号を出力する
ものであることを特徴とする特許請求の範囲第2項記載
の照射装置。 (4)上記燃料信号発生手段は、上記検出手段が上記状
態を検出したとき、その増加の程度に応じ
[Scope of Claims] (1) A first sensor that outputs an air amount signal related to the intake air amount of the internal combustion engine, and one or more second sensors that detect engine operating variables other than the intake air amount; A first storage means for storing a dynamic characteristic Ga between the air amount signal and the amount of intake air actually taken into the cylinder, and a relationship between the amount of fuel supplied and the amount of fuel actually taken into the cylinder. The dynamic characteristic Gf of
a second storage means for storing the actual intake air amount; a first calculation means for calculating the actual intake air amount from the air amount signal and the dynamic characteristic Ga of the air system; A second method that calculates the fuel amount required by the internal combustion engine at that time from the intake air amount and the output of the second sensor, and determines the amount of fuel to be supplied from the required fuel amount and the dynamic characteristic Gf of the fuel system. and a detection means for detecting a state in which the required fuel amount of the internal combustion engine rapidly increases. Under normal conditions, the second calculation means outputs a fuel signal corresponding to the fuel amount calculated by the second calculation means. The device according to the present invention, comprising fuel signal generating means for immediately outputting an acceleration fuel signal when the detecting means detects the above state, and means for supplying fuel in accordance with the output signal of the fuel signal generating means. (2) A first sensor that outputs an air amount signal related to the intake air amount of the internal combustion engine, one or more second sensors that detect engine operating variables other than the intake air amount, and the air amount signal and the cylinder. a first storage means for storing a dynamic characteristic Ga between the amount of intake air actually taken into the ring, and a dynamic characteristic Of between the fuel supply amount and the amount of fuel actually taken into the seventh ring;
a second storage means for storing the actual intake air amount; a first calculation means for calculating the actual intake air amount from the air amount signal and the dynamic characteristic Ga of the air system; Calculating the required fuel amount of the internal combustion engine at that time from the intake air amount and the output of the second sensor, calculating the fuel amount to be supplied from the required fuel amount and the dynamic characteristic Of of the fuel system, and
a second calculating means for calculating the amount of fuel to be supplied according to the value obtained by subtracting the fuel amount calculated by the sixth calculating means from the required fuel amount when the following acceleration fuel is supplied; a detection means for detecting a state in which the required fuel amount suddenly increases; a sixth calculation means for calculating the amount of fuel actually drawn into the cylinder by the acceleration fuel described below from the dynamic characteristic Gf of the fuel system; a fuel signal generating means for outputting a fuel signal according to the amount of fuel calculated by the second calculating means, and immediately outputting an acceleration fuel signal when the detecting means detects the above state; and a nuclear fuel signal generating means. and means for supplying fuel in response to an output signal. (b) The irradiation according to claim 2, wherein the fuel signal generating means outputs an acceleration fuel signal of a constant value when the detecting means detects the condition described in 2. Device. (4) When the detection means detects the above-mentioned condition, the fuel signal generation means responds to the degree of increase.
JP15306283A 1983-02-04 1983-08-24 Fuel controller of internal-combustion engine Pending JPS6045753A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15306283A JPS6045753A (en) 1983-08-24 1983-08-24 Fuel controller of internal-combustion engine
US06/576,474 US4562814A (en) 1983-02-04 1984-02-02 System and method for controlling fuel supply to an internal combustion engine
DE8484101131T DE3483653D1 (en) 1983-02-04 1984-02-03 METHOD AND SYSTEM FOR CONTROLLING THE FUEL SUPPLY IN AN INTERNAL COMBUSTION ENGINE.
EP84101131A EP0115868B1 (en) 1983-02-04 1984-02-03 System and method for contolling fuel supply to an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15306283A JPS6045753A (en) 1983-08-24 1983-08-24 Fuel controller of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6045753A true JPS6045753A (en) 1985-03-12

Family

ID=15554147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15306283A Pending JPS6045753A (en) 1983-02-04 1983-08-24 Fuel controller of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6045753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258143A (en) * 1986-05-06 1987-11-10 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
JPS6324336U (en) * 1986-07-31 1988-02-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258143A (en) * 1986-05-06 1987-11-10 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
JPS6324336U (en) * 1986-07-31 1988-02-17

Similar Documents

Publication Publication Date Title
US4509477A (en) Idle operation control for internal combustion engines
US4479186A (en) Method and apparatus for controlling an internal combustion engine
EP0115868A2 (en) System and method for contolling fuel supply to an internal combustion engine
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPS6335825B2 (en)
JPS63215848A (en) Fuel injection amount control method and device for internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6045753A (en) Fuel controller of internal-combustion engine
JP2841806B2 (en) Air-fuel ratio control device for engine
JPS60249651A (en) Electronic control type fuel injector
JPH057546B2 (en)
JP2581046B2 (en) Fuel injection method for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2590941B2 (en) Fuel injection amount learning control device for internal combustion engine
JP2589193B2 (en) Ignition timing control device for internal combustion engine
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPS635128A (en) Fuel injection amount control device for internal combustion engine
JPH0584386B2 (en)
JPH0510490B2 (en)
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine
JPS63159646A (en) Fuel supply controller for internal combustion engine
JPS62168939A (en) Control device for internal combustion engine with supercharger
JPH08144833A (en) Intake air amount detection method of engine
JPH08144805A (en) Air-fuel ratio control method for engine