JPS58150057A - Study control method of air-fuel ratio in internal-combustion engine - Google Patents

Study control method of air-fuel ratio in internal-combustion engine

Info

Publication number
JPS58150057A
JPS58150057A JP3203082A JP3203082A JPS58150057A JP S58150057 A JPS58150057 A JP S58150057A JP 3203082 A JP3203082 A JP 3203082A JP 3203082 A JP3203082 A JP 3203082A JP S58150057 A JPS58150057 A JP S58150057A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction coefficient
learning
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3203082A
Other languages
Japanese (ja)
Other versions
JPS6231179B2 (en
Inventor
Nobuyuki Kobayashi
伸行 小林
Toshiaki Isobe
磯部 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3203082A priority Critical patent/JPS58150057A/en
Publication of JPS58150057A publication Critical patent/JPS58150057A/en
Publication of JPS6231179B2 publication Critical patent/JPS6231179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To always perform a correct study in the method of correctively studying a correction coefficient of air-fuel ratio when the air fuel ratio is set in acccordance with a deviation between the detected air-fuel ratio and the target air fuel ratio, by performing the study in every prescribed region within a study range of intake pipe pressure or intake air quantity. CONSTITUTION:The basic injection timing calculated from an intake pipe pressure sensor 23 and crank angle sensor 44 is corrected in accordance with a deviation between the air-fuel ratio by an O2 sensor 34 and the target air-fuel ratio in a digital control circuit 54. While an air-fuel ratio correction coefficient, used when air-fuel ratio is set in accordance with said deviation, is correctively studied. Here said correction coefficient is studied in every prescribed region within a study range of intake pipe pressure or intake air quantity. Then at air- fuel ratio control, an air-fuel ratio correction coefficient in the upper limit region within the study range is used for a region exceeding the upper limit of said study range and/or an air-fuel ratio correction coefficient in the lower limit region within the study range is used for a region below the lower limit of the study range.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比学1制御方法に係F)、I
WIK、吸気管圧力式の電子制御燃料噴射装置全備えた
自動車用工/ジ/に用いるのに好適な。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine.
WIK is suitable for use in automobiles equipped with an intake pipe pressure type electronically controlled fuel injection system.

設定空燃比の混合気を燃焼させた時の、−気ガスの空燃
比と目標空燃比との偏差に応じて、混合気の空燃比をフ
ィードバック制御すると共に、前記補正に応じて、混合
気の空燃比を設定する際に用いられる空燃比補正係数を
学習補正するようにし九内燃機関の空燃比学習制御方法
の改良に関する。
When the air-fuel mixture at the set air-fuel ratio is combusted, the air-fuel ratio of the air-fuel mixture is feedback-controlled according to the deviation between the air-fuel ratio of -gas and the target air-fuel ratio, and the air-fuel ratio of the air-fuel mixture is controlled according to the correction described above. This invention relates to an improvement in an air-fuel ratio learning control method for an internal combustion engine by learning and correcting an air-fuel ratio correction coefficient used when setting an air-fuel ratio.

内燃機関、特に、三元触媒を用いて排気ガス浄化対策が
施された自動車用工/ジ/においては、その−気ガスの
空燃比を厳密に理論空燃比近傍に保持する必要があり、
そのため、例えば、−気ガス中の残存酸素濃度からその
空燃比を検出する酸素濃度センナ等の空燃比セ/すと、
燃料噴射量管制−することによって混合気の空燃比を制
御する電子制御燃料噴射装置からなる空燃比制御手段と
を用いて、工/ジ/の吸気!圧力酸いは吸入空気量と1
727回転数に応じて求められる基本噴射量に、工/ジ
/冷却水温、絞り弁開度、前記空燃比セ/す出力の排気
ガスの空燃比と目標空燃比との偏差等の工/ジ/運転状
態に応じたフィードフォワード及びフィードバック増減
量補正を加えて燃料を噴射することによって、混合気の
空燃比をフィードフォワード及びフィードバック制御す
ると共に、前記偏差に応じて、前記基本噴射量をフィー
ドフォワード増減量補正する際に用いられる空燃比補正
係数を学習補正するようにした内燃機関の空燃比学習制
御方法が提案されている。
In internal combustion engines, especially in automobiles where exhaust gas purification measures are taken using a three-way catalyst, the air-fuel ratio of the gas must be kept strictly close to the stoichiometric air-fuel ratio.
Therefore, for example, when using an air-fuel ratio sensor such as an oxygen concentration sensor that detects the air-fuel ratio from the residual oxygen concentration in the gas,
Air-fuel ratio control means consisting of an electronically controlled fuel injection device that controls the air-fuel ratio of the air-fuel mixture by controlling the amount of fuel injection is used to control the air-fuel ratio of air-fuel mixture! The pressure difference is the amount of intake air and 1
727 In addition to the basic injection amount determined according to the rotation speed, engineering/engineering/engineering/cooling water temperature, throttle valve opening, deviation between the exhaust gas air-fuel ratio of the air-fuel ratio output and the target air-fuel ratio, etc. /By injecting fuel with feedforward and feedback increase/decrease correction according to the operating condition, the air-fuel ratio of the air-fuel mixture is feedforward and feedback controlled, and the basic injection amount is feedforward according to the deviation. An air-fuel ratio learning control method for an internal combustion engine has been proposed in which an air-fuel ratio correction coefficient used when making an increase/decrease correction is learned and corrected.

このような空燃比学習制御方法によれば、工/ジ/運転
秋轢を検出するための各種セ/すの個体差や経時変化、
或いは、気象粂件醇に応じて空燃比補正係数が学習補正
されるので、常に、目標空燃比に近い空燃比で燃料噴射
量がフィードフォワード制御されることとなり、フィー
ドバック制御による遅れの少ない良好な空燃比制御を行
うことができるという特徴を有する。
According to such an air-fuel ratio learning control method, it is possible to detect individual differences and changes over time in various stages in order to detect engine/engine/driving collisions.
Alternatively, since the air-fuel ratio correction coefficient is learned and corrected according to weather conditions, the fuel injection amount is always feedforward controlled at an air-fuel ratio close to the target air-fuel ratio, resulting in a good control with less delay due to feedback control. It has the feature of being able to perform air-fuel ratio control.

岡、前記空燃比補正係数を学習する方法としては、工/
ジ/運転状態毎に適切な空燃比補正係数が存在すること
から1例えば、空燃比補正係数t1吸気管圧力或いは吸
入空気量の所定領域毎に学習することが考えられる。し
かしながら、空燃比補正係数の学、習を、吸気管圧力或
すは吸入空気量の全範囲にわ九って行ってしまうと、4
?に、吸気管圧力或いは吸入空気量が所定値以上である
高負荷域、或いは、所定値以下である低負荷域において
は、過渡時が多く、空燃比が乱れているだけでなく、学
習機会4少ないので、このような領域においても学習を
行うと、かえって逆効果になることが考えられる。この
ような欠点を防止するべく、空燃比補正係数の学習範囲
を限定することも考えられるが、この場合にFi、学資
結果が学資範囲内の領域の空燃比制御にしか適用されず
、学習制御の効果が十分に発揮されない場合があるとb
う問題点を有していた。
Oka, as a method of learning the air-fuel ratio correction coefficient,
Since there is an appropriate air-fuel ratio correction coefficient for each operating state, it is conceivable to learn the air-fuel ratio correction coefficient t1 for each predetermined region of intake pipe pressure or intake air amount, for example. However, if you study and practice the air-fuel ratio correction coefficient over the entire range of intake pipe pressure or intake air amount,
? In addition, in the high load range where the intake pipe pressure or intake air amount is above a predetermined value, or in the low load range where it is below a predetermined value, there are many transient periods, which not only disrupt the air-fuel ratio but also provide learning opportunities. Since there are only a few, learning in such areas may actually have the opposite effect. In order to prevent such drawbacks, it may be possible to limit the learning range of the air-fuel ratio correction coefficient, but in this case, the Fi and school capital results are only applied to air-fuel ratio control in the area within the school capital range, and the learning control b.
It had some problems.

本発明ri、前記従来の欠点を解消するべくなされ九も
ので、過渡時等の影響を受けない精度の高い空燃比補正
係数を学習することができ、しかも、学習結果を、高負
荷域或いは/及び低負荷域を含む広い範I!に適用して
、喪好な空燃比制御を行うことができる内燃機関の空燃
比学習制御方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology, and it is possible to learn a highly accurate air-fuel ratio correction coefficient that is not affected by transient conditions. and a wide range including low load range I! It is an object of the present invention to provide an air-fuel ratio learning control method for an internal combustion engine that can be applied to perform air-fuel ratio control in a favorable manner.

本発明は、設定空燃比の混合気を燃焼させた時の、排気
ガスの空燃比と目標空燃比との偏差に応じて、混合気の
空燃比をフィードバック制御すると共に、前記偏差に応
じて、混合気の空燃比を設楚する際に用いられる空燃比
補正係数を学習補正するようKし九内燃機関の空燃比学
習制御方法において、前記空燃比補正係数を、吸気管圧
力或いは吸入空気量の学習範囲内の所定領域毎に学習す
ると共に、前記学習範囲の上限を超える領域の空燃比制
御に際しては、学習範囲内の上限領域の空燃比補正係数
を用い、或いは/及び、前記学習範囲の下限を下まわる
領域の空燃比制御に際しては、学習範囲内の下限領域の
空燃比補正係数を用いるようにして、前記目的を達成し
た亀のである。
The present invention performs feedback control of the air-fuel ratio of the air-fuel mixture according to the deviation between the air-fuel ratio of exhaust gas and the target air-fuel ratio when the air-fuel mixture of the set air-fuel ratio is combusted, and also controls the air-fuel ratio of the air-fuel mixture according to the deviation. In an air-fuel ratio learning control method for an internal combustion engine, the air-fuel ratio correction coefficient is adjusted by adjusting the intake pipe pressure or the intake air amount. In addition to learning for each predetermined area within the learning range, when controlling the air-fuel ratio in an area exceeding the upper limit of the learning range, use the air-fuel ratio correction coefficient in the upper limit area within the learning range, or/and using the air-fuel ratio correction coefficient in the upper limit area of the learning range. When controlling the air-fuel ratio in the region below , the above objective is achieved by using the air-fuel ratio correction coefficient in the lower limit region within the learning range.

以下図面を参照して、本発明の実1/IA例を詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An actual 1/IA example of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の空燃比学習制御方法が採用され
た吸気管圧力式の電子制御燃料噴射装置の実施例は、鶴
1図及び槙2図に示す如く、外気を取入れるためのエア
クリーナ12と、該エアクリーナ12より取入れられた
吸入空気の温度を検出するための吸気温セ/す14と%
吸気通路16中に配設され、運転席に配設されたアク造
ルペダル(図示省略)と連動して開閉するようにされえ
、吸入空気の流量を制御するための較9弁1Bと。
An embodiment of an intake pipe pressure type electronically controlled fuel injection device in which the air-fuel ratio learning control method for an internal combustion engine according to the present invention is adopted is as shown in Figures 1 and 2 of Tsuru, an air cleaner 12 for taking in outside air. and an intake temperature set 14 and % for detecting the temperature of the intake air taken in from the air cleaner 12.
A valve 1B is disposed in the intake passage 16 and can be opened and closed in conjunction with an accelerator pedal (not shown) disposed on the driver's seat, for controlling the flow rate of intake air.

骸絞り弁18がアイドル開度にあるか否かを検出するた
めのアイドル接点及び絞9弁1BC1開度に比例した電
圧出力を発生するボテ/ショメータを含むスロットルセ
/す20と、サージタ/り22と、咳す−ジタ/り22
内の圧力から吸気管圧力を検出するための吸気管圧力士
/す23と、前記絞り弁1sをバイパスするバイパス通
路24と。
A throttle controller 20 including an idle contact for detecting whether or not the throttle valve 18 is at the idle opening and a voltage output proportional to the opening of the throttle valve 9 1BC1, and a surgitator. 22 and cough-jita/ri22
an intake pipe pressure gauge/su 23 for detecting the intake pipe pressure from the pressure within the intake pipe, and a bypass passage 24 that bypasses the throttle valve 1s.

該バイパス通路24の途中に配設され、該バイパス通路
24の開口面積を制御する仁とによってアイドル回転速
度を制御する丸めのアイドル回転制御弁26と、吸気マ
ニホルド28に配設され九、二/ジ/10の吸気ポート
に向けて燃料を噴射するためのインジェクタ30と、排
気マニホルド32に配設された、排気ガス中の残存酸素
濃度がら空燃比を検知するための酸素濃度上/す34と
、前記−気1ニホルド32下流側の排気管36の途中に
配設され九三元触媒コ/バータ38と、工/ジ/10の
クラ/り軸の回転と連動して回転するディストリビュー
タ軸を有するディストリビュータ40と、該ディストリ
ビュータ40に内蔵された、前記ディストリビュータ軸
の回転に応じて上死点信号及びクラ/り角信号を出力す
る上死点セ/す42及びクラ/り角セ/す44と、工/
ジ/ブロックに配設された、工/ジ/冷却水温を検知す
る丸めの冷却水温セ/す46と、変速機48の出力軸の
回転数から車両の走行速度を検出する九めの車速セ/す
50と、前記吸気管圧カセ/す23出力の吸気管圧力と
前記クラ/り角センサ44の出力から求められる工/ジ
/回転数に応じてエンジ9弁開度、前記冷却水温セ/す
46出力の工/ジ/冷却水温、前記酸素濃度セ/す34
出力から検知される排気ガスの空燃比と目標空燃比との
偏差等0工/ジ/運転状態に応じたフィードフォワード
及びフィードバック増減量補正を加えることによって、
燃料噴射量を決定して前記インジェクタ30に開弁時間
信号を出力し、更に、前記偏差に応じて、前記基本噴射
量t−フィードフォワード増減量補正する際に用いられ
る空燃比補正係数を学習補正し、又、工/ジ/運転状轢
に応じて点火時期を決定してイグナルタ付コイル52に
点火信号を出力し、更に、アイドル時に前記アイドル回
転制御弁26を制御するデジタル制御回路54とを備え
た自動車用工/ジ/10の吸気管圧力式電子制御燃料噴
射装置において、前記デジタル制御回路54内で、前記
空燃比補正係数を、吸気管圧力の学資範囲内の所定領域
毎に学習すると共に、前記学習範囲の上限を超える領域
の空燃比制御に際しては、学習範囲内の上限領域の空燃
比補正係数を用い、又、前記学習範囲の下限を下まわる
領域の空燃比制御に際しては、学習範囲内の下限領域の
空燃比補正係数を用いるようにし九も0である。
A round idle rotation control valve 26 is disposed in the middle of the bypass passage 24 and controls the idle rotation speed by controlling the opening area of the bypass passage 24; an injector 30 for injecting fuel toward the intake port of the exhaust gas; and an oxygen concentration upper/suction 34 disposed in the exhaust manifold 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas. , a 93-way catalyst converter 38 disposed midway in the exhaust pipe 36 on the downstream side of the exhaust pipe 32, and a distributor shaft that rotates in conjunction with the rotation of the engine/engine/10 crankshaft. a top dead center center 42 and a top dead center center 44 which are built into the distributor 40 and output a top dead center signal and a cradle/turn angle signal in accordance with the rotation of the distributor shaft; and engineering/
A round cooling water temperature sensor 46 that detects the cooling water temperature and a ninth vehicle speed sensor that detects the running speed of the vehicle from the rotation speed of the output shaft of the transmission 48 are arranged in the engine block. The valve opening of the engine 9 and the cooling water temperature control are determined based on the intake pipe pressure of the intake pipe pressure cassette 23 and the output of the crank angle sensor 44. /S46 output power/cooling water temperature, oxygen concentration set/S34
By adding feedforward and feedback increase/decrease corrections according to the operating conditions such as the deviation between the exhaust gas air-fuel ratio detected from the output and the target air-fuel ratio,
Determine the fuel injection amount and output a valve opening time signal to the injector 30, and further correct the air-fuel ratio correction coefficient used when correcting the basic injection amount t-feedforward increase/decrease according to the deviation. Further, a digital control circuit 54 is provided which determines the ignition timing according to the work/engine/driving conditions and outputs an ignition signal to the igniter-equipped coil 52, and further controls the idle rotation control valve 26 during idle. In the intake pipe pressure type electronically controlled fuel injection device of Automotive Engineer/J/10, the air-fuel ratio correction coefficient is learned for each predetermined region within the range of intake pipe pressure in the digital control circuit 54, and When controlling the air-fuel ratio in an area exceeding the upper limit of the learning range, use the air-fuel ratio correction coefficient in the upper limit area within the learning range, and when controlling the air-fuel ratio in an area below the lower limit of the learning range, use the air-fuel ratio correction coefficient in the upper limit area within the learning range. The air-fuel ratio correction coefficient in the lower limit range is used, and 9 is also 0.

前記デジタル制御回路54は、第2図に詳細に示す如く
、各種演算処理を行うマイクロプロセッサからなる中央
処理装置(以下CPUと称する)60と、前記吸気温セ
/す14、スロットルセ/す20のボテ/ショメータ、
吸気管圧力上/[3%酸素濃度セ/す34、冷却水温セ
/す46等から入力されるアナログ信号を、デジタル信
号に変換して順次CPU60に取込むためのマルチプレ
クサ付アナログ入力ポートロ2と、前記スロットルセ/
す20のアイドル接点、上死点セ/す42、クラ/り角
セ/す44、車速セ/す50郷から入力されるデジタル
信号を、所定のタイミングでCPU6Gに取込むための
デジタル入力ポートロ4と、プログラム或いは各種定数
等を記憶するためのリードオ/リーメモリ(以下ROM
と称する)66と、CPU60における演算データ等を
一時的に記憶すゐためのう/ダムアクセスメモリ(以下
RAMと称する)68と、機関停止時にも補助電源から
給電されて記憶を保持できるバックアップ用う/ダムア
クセスメモリ(以下バックアップRAMと称する)70
と、CPU60における演算結果を所定のタイミングで
前記アイドル回転制御弁26、イ/ジエクタ30、イグ
ナイタ付コイル52等に出力するためのデジタル出カポ
ードア鵞と、上記各構成機器間を接続するコモ/パス7
4とから構成されている。
As shown in detail in FIG. 2, the digital control circuit 54 includes a central processing unit (hereinafter referred to as CPU) 60 consisting of a microprocessor that performs various arithmetic operations, the intake temperature control unit 14, and the throttle control unit 20. Bote/Shometa,
An analog input port 2 with a multiplexer for converting analog signals input from the intake pipe pressure upper/[3% oxygen concentration center 34, cooling water temperature center 46, etc.] into digital signals and sequentially inputting them into the CPU 60. , said throttle control/
A digital input port controller is provided for inputting digital signals input from the idle contact of the 20, the top dead center center 42, the crank angle 44, and the vehicle speed 50 to the CPU 6G at a predetermined timing. 4, read-only memory (hereinafter referred to as ROM) for storing programs or various constants, etc.
) 66, a storage/dam access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and a backup memory that can be supplied with power from an auxiliary power source and retain memory even when the engine is stopped. / Dumb access memory (hereinafter referred to as backup RAM) 70
, a digital output door for outputting the calculation results in the CPU 60 to the idle rotation control valve 26, the engine ignitor 30, the igniter-equipped coil 52, etc. at a predetermined timing, and a communication path connecting the above-mentioned components. 7
It is composed of 4.

以下作用を説明する。The action will be explained below.

まずデジタル制御回路54は、吸気管圧カセ/す23出
力の吸気管圧力PMと、クラック角セ/す44の出力か
ら算出される工/ジ/回転数NEにより、ROM66に
予め記憶されているマツプから、基本噴射時間TP (
RM、NE)を読出す。
First, the digital control circuit 54 stores in advance in the ROM 66 the intake pipe pressure PM output from the intake pipe pressure cassette 23 and the engine speed NE calculated from the output of the crack angle cassette 44. From the map, basic injection time TP (
RM, NE).

更に、各セ/すからの信号に応じて、次式を用いて前記
基本噴射時間TP (PM、NE)l補正することによ
り、燃料噴射時間TAU會算比算出。
Furthermore, the fuel injection time TAU calculation ratio is calculated by correcting the basic injection time TP (PM, NE)l using the following formula according to the signals from each cell.

TAU=に*TP(PM、NB)*(1+F)   ・
・・(1)ここで、Kは、学1補正される空燃比補正係
数(初期値=1)、Fは、工/ジ/運転状111に応じ
て補正される。空燃比フィードバック補正係数を含む補
正係数であり、Fが正である場合には増量補正を表わし
、Fが負である場合には減量補正を表わしている。
TAU=to*TP(PM,NB)*(1+F)・
... (1) Here, K is an air-fuel ratio correction coefficient (initial value = 1) that is corrected by 1, and F is corrected according to engineering/engine/operating conditions 111. This is a correction coefficient including an air-fuel ratio feedback correction coefficient, and when F is positive, it represents an increase correction, and when F is negative, it represents a reduction correction.

このようにして決定され九燃料噴射時間TAUに対応す
る燃料噴射信号が、インジェクタ30に出力され、工/
ジ/回転と同期してインジェクタ30が燃料噴射時間T
AUだけ開かれて、エンシフ10の吸気マニホルド28
内に燃料が噴射される。
A fuel injection signal corresponding to the nine fuel injection times TAU determined in this way is output to the injector 30 and
The injector 30 injects fuel for a fuel injection time T in synchronization with the engine/rotation.
Only AU is opened, intake manifold 28 of Ensif 10
Fuel is injected inside.

前記空燃比補正係数にの学習は、具体的には、第3図に
示すようなプログラムに従つ1行われる。
Specifically, learning of the air-fuel ratio correction coefficient is performed according to a program as shown in FIG.

即ち、まずステップ101で、その時の吸気管圧力PM
が吸気管圧力の学習範囲の上限値P4を超えているか否
かを判定する0判定結果が正である場合、即ち、吸気管
圧力PMが、学習範囲の上II値P4を超えている場合
には、過渡運転状態である場合が多く、空燃比も乱れて
bるので、空燃比補正係数を学習することなく、このプ
ログラムを終了する。一方、ステップ101における判
定結果が否である場合には、ステップ102に進み、同
じく吸気管圧力PMが所定値Pa  (<P4 )以上
であるか否かを判定する。判定結果が正である場合には
、ステップ103に進み、学1範囲内の上限領域に対応
する空燃比補正係数に、を学習し。
That is, first in step 101, the intake pipe pressure PM at that time is
If the 0 judgment result for determining whether or not exceeds the upper limit P4 of the learning range of intake pipe pressure is positive, that is, if the intake pipe pressure PM exceeds the upper II value P4 of the learning range. is often in a transient operating state, and the air-fuel ratio is also disturbed, so this program is terminated without learning the air-fuel ratio correction coefficient. On the other hand, if the determination result in step 101 is negative, the process proceeds to step 102, where it is similarly determined whether the intake pipe pressure PM is equal to or higher than a predetermined value Pa (<P4). If the determination result is positive, the process proceeds to step 103, where the air-fuel ratio correction coefficient corresponding to the upper limit region within the 1 range is learned.

ステップ104で、レジスタKaに記憶して、このプロ
グラムを終了する。一方、前出ステップ102における
判定結果が否である場合には、ステップ105に進み、
吸気管圧力PMが所定値P。
In step 104, the information is stored in the register Ka, and this program ends. On the other hand, if the determination result in step 102 is negative, proceed to step 105,
Intake pipe pressure PM is a predetermined value P.

(<Ps)以上であゐか否かを判定する。判定結果が正
である場合には、ステップ10gに進み。
(<Ps) or more, it is determined whether or not. If the determination result is positive, proceed to step 10g.

学習範囲内の中間領域に対応する空燃比補正係数Kit
学習し、ステップ107で、レジスタKgに記憶して、
このプログラムを終了する。一方、前出ステップ105
における判定結果が否である場合には、吸気管圧力PM
が学習範囲の下限値P。
Air-fuel ratio correction coefficient Kit corresponding to the intermediate region within the learning range
learned and stored in register Kg in step 107,
Exit this program. On the other hand, step 105 mentioned above
If the determination result in is negative, the intake pipe pressure PM
is the lower limit value P of the learning range.

(<P嘗 )以上であるか否かを判定する0判定結果が
正であゐ場合KFi、ステップ109に進み。
(<P嘗) If the 0 determination result is positive, the process proceeds to step 109.

学資範囲の下限領域に対応する空燃比補正係数K。Air-fuel ratio correction coefficient K corresponding to the lower limit region of the school funds range.

を学習し、ステップ110で、レジスタKIK記憶して
、このプログラムを終了せる。一方、ステップ108に
おける判定結果が否である場合、llI]ち、吸気管圧
力PMが学習範囲の下限値21未満である場合には、過
渡運転状態である場合が多く。
is learned and stored in register KIK in step 110, and this program is terminated. On the other hand, if the determination result in step 108 is negative, if the intake pipe pressure PM is less than the lower limit value 21 of the learning range, it is likely that the engine is in a transient operating state.

空燃比も乱れているので、空燃比補正係数を学習するこ
となくこのプログラムを終了する。
Since the air-fuel ratio is also disturbed, this program ends without learning the air-fuel ratio correction coefficient.

前記のようにして学習された空燃比補正係数に1〜に、
を用いた燃料噴射時間TAUの算出は、第4図に示すよ
うにして行われる。
The air-fuel ratio correction coefficient learned as described above is set to 1 to 1.
Calculation of the fuel injection time TAU using is performed as shown in FIG.

即ち、まず、ステップ201で、その時の吸気管圧力P
M及び工/ジ/回転数Ngに応じて、予めROM66に
記憶されているマツプから基本噴射時間TPt求める。
That is, first, in step 201, the intake pipe pressure P at that time is
The basic injection time TPt is determined from a map stored in the ROM 66 in advance according to M and the engine/engine/rotational speed Ng.

次いで、ステップ202に進み、その時の吸気管圧力P
Mが学習範囲内の上限領域の下限値23以上であるか否
かを判定する。
Next, the process proceeds to step 202, where the intake pipe pressure P at that time is
It is determined whether M is greater than or equal to the lower limit value 23 of the upper limit area within the learning range.

判定結果が正である場合には、ステップ203に進み、
次式に示す如く、レジスタに3に記憶されている、学業
範囲内の上限領域の空燃比補正係数に、を用りで燃料噴
射時間TAUを算出する。
If the determination result is positive, proceed to step 203;
As shown in the following equation, the fuel injection time TAU is calculated using the air-fuel ratio correction coefficient of the upper limit range within the academic range stored in the register 3.

TAU、、に3*TP*(1+F)      ・・・
(2)一方、ステップ2020判定結果が否である場合
には、ステップ204に進み、その時の吸気管圧力PM
が学習範囲内の中間領域の下限値P、以−ヒであるか否
かを判定する。判定結果が正である場合には、ステップ
205に進み、次式に示す如く、レジスタに2に記憶さ
れている。学習範囲内の中間領域の空燃比補正係数に!
を用いて燃料噴射時間TAUを算出する。
TAU, 3*TP*(1+F)...
(2) On the other hand, if the determination result in step 2020 is negative, the process proceeds to step 204, where the intake pipe pressure PM at that time
It is determined whether or not is less than or equal to the lower limit P of the intermediate region within the learning range. If the determination result is positive, the process proceeds to step 205, where the value is stored in the register 2 as shown in the following equation. For the air-fuel ratio correction coefficient in the middle range within the learning range!
The fuel injection time TAU is calculated using

TAU=に2*TP*(1+F)     ・・・(3
)又、ステップ204における判定結果が否である場合
VC,は、ステップ208に進み1次式に示す如く、レ
ジスタに1に記憶きれている。学習範囲内の下限領域の
空燃比補正係数に1t−用いて燃料噴射時間TAUt算
出する。
TAU=2*TP*(1+F)...(3
) If the determination result in step 204 is negative, the process proceeds to step 208, where VC is stored at 1 in the register as shown by the linear equation. The fuel injection time TAUt is calculated using 1t as the air-fuel ratio correction coefficient in the lower limit region within the learning range.

TAU口に1*TP*(1+F)     ・・・(3
)本実施例における吸気管圧力PMの学資領域と学1結
果の適用範囲の関係を第5図に示す0図から明らかな如
く、本実施例においては、空燃比補正係数の学習を、吸
気管圧力がP1〜P4の範囲内にある学習範囲内の所定
領域毎に行い、学資範囲の上限を超える領域の空燃比制
御に際しては、学1範囲内の上限領域の空燃比補正係数
を用い。
1*TP*(1+F)...(3
) As is clear from the diagram 0 shown in FIG. 5, which shows the relationship between the range of intake pipe pressure PM and the scope of application of the results of study 1 in this example, in this example, the learning of the air-fuel ratio correction coefficient is This is performed for each predetermined region within the learning range where the pressure is within the range of P1 to P4, and when controlling the air-fuel ratio in the region exceeding the upper limit of the educational range, the air-fuel ratio correction coefficient of the upper limit region within the educational range is used.

又、前記学習範囲の下限を下まわる領域の空燃比制御に
際しては、学習範囲内の下限領域の空燃比補正係数を用
いるようにしているので、空燃比補正係数の正確な学習
が可能であるだけでなく、学習結果の適用範囲も非常に
大きく、空燃比の制御精度が向上できる。
Furthermore, when controlling the air-fuel ratio in a region below the lower limit of the learning range, the air-fuel ratio correction coefficient in the lower limit region within the learning range is used, so that accurate learning of the air-fuel ratio correction coefficient is possible. Moreover, the scope of application of the learning results is also very wide, and the control accuracy of the air-fuel ratio can be improved.

本実施例においては、学習範囲内の上限領域の空燃比補
正係数を学習範囲の上限を超える領域の空燃比制御に拡
大適用するだけでなく、学習範囲内の下限領域の空燃比
補正係数を学習範囲の下限を下まわる領域の空燃比制御
に拡大適用する2うにしているので、特に精度の高い空
燃比制御を行うことができる。なお、いずれか一方を省
略することも勿論可能である。
In this embodiment, the air-fuel ratio correction coefficient in the upper limit region within the learning range is not only expanded and applied to the air-fuel ratio control in the region exceeding the upper limit of the learning range, but also learns the air-fuel ratio correction coefficient in the lower limit region within the learning range. Since the air-fuel ratio control is expanded and applied to the air-fuel ratio control in the region below the lower limit of the range, particularly highly accurate air-fuel ratio control can be performed. Note that it is of course possible to omit either one of them.

又、前記実施例においては、空燃比補正係数の学習範囲
内が3領域に分割されていたが、空燃比補正係数の学習
範囲内の分割数はこれに限定されない。
Further, in the embodiment described above, the learning range of the air-fuel ratio correction coefficient is divided into three regions, but the number of divisions within the learning range of the air-fuel ratio correction coefficient is not limited to this.

前記実施例Fi、本発明を吸気管圧力式の電子制御燃料
噴射装置を備え九自動車用工/ジ/に適用したものであ
るが1本発明の適用範囲はこれに限定されず、吸入空気
量式の電子制御燃料噴射装置を備えた内燃機関或いは、
一般の電子制御燃料噴射装置を備えた内燃機関にも同様
に適用することができることは明らかである。
In the above-mentioned Example Fi, the present invention is applied to a nine-vehicle vehicle equipped with an intake pipe pressure type electronically controlled fuel injection device; however, the scope of application of the present invention is not limited thereto, and an internal combustion engine equipped with an electronically controlled fuel injection device, or
It is clear that the invention can be similarly applied to internal combustion engines equipped with general electronically controlled fuel injection devices.

以上説明した通や、本発明によれば、空燃比補正係数を
過渡時等の影蕃を受けることなく正確罠学習でI、Lか
も、学習結果を、高負荷域或いは/及び低負荷域を含む
広い範囲に適用して、良好な空燃比制御を行うことかで
色るという優れ九効果を有する。
As explained above, and according to the present invention, the air-fuel ratio correction coefficient can be accurately learned by trap learning without being affected by transient conditions, etc. It has excellent effects that can be applied to a wide range of areas, including good air-fuel ratio control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の空燃比学習制御方法
が採用され九、自動車用工/ジ/の吸気管圧力式電子制
御燃料噴射装貨の実施例の構成を示すブロック線図、第
2図は、前記実施例で用いられているデジタル制御回路
の構成を示すブロック線図、第3図は、同じく、空燃比
補正係数を学習する丸めのプログラムを示す流れ図%第
4図は、同じく、学習結果に基づき燃料噴射時間を算出
するためのプログラムを示す流れ図、第5図は、同じく
前記実施例における、吸気管圧力の学習領域と学習結果
の適用範囲の関係を示す線図である。 10・・・工/ジ/%  14・・・吸気温セ/す、1
8・・・絞り弁、    20・・・スロットルセ/す
、23・・・吸気管圧カセ/す、 30・・・イ/ジエクタ、 34・・・酸素濃度セ/す。 40・・・ディストリビュータ。 42・・・上死点セ/す、 44・・・クラ/り角セ/す、 46・・・冷却水温セ/す、 54・・・デジタル制御回路。 =41
FIG. 1 is a block diagram showing the configuration of an embodiment of an intake pipe pressure type electronically controlled fuel injection equipment for automobiles in which the air-fuel ratio learning control method for an internal combustion engine according to the present invention is adopted. FIG. 2 is a block diagram showing the configuration of the digital control circuit used in the above embodiment, and FIG. 3 is a flowchart showing a rounding program for learning the air-fuel ratio correction coefficient. , a flowchart showing a program for calculating the fuel injection time based on the learning results, and FIG. 5 is a diagram showing the relationship between the learning area of the intake pipe pressure and the application range of the learning results in the same embodiment. 10...work/di/% 14...intake temperature set/su, 1
8... Throttle valve, 20... Throttle control/su, 23... Intake pipe pressure control/su, 30... I/director, 34... Oxygen concentration control/su. 40...Distributor. 42...Top dead center/su, 44...C/R corner/su, 46...Cooling water temperature/su, 54...Digital control circuit. =41

Claims (1)

【特許請求の範囲】[Claims] (1)設定空燃比の混合気を燃焼させた時の、排気ガス
の空燃比と目標空燃比との偏差に応じて、混合気の空燃
比をフィードバック制御すると共に、前記偏差に応じて
、混合気の空燃比を設定する際に用いられる空燃比補正
係数を学習補正するようにした内燃機関の空燃比学習制
御方法において、前記空燃比補正係数を、吸気管圧力或
いは吸入空気量の学習範囲内の所定領域毎に学習すると
共に、前記学習範囲め上限を超える領域の空燃比制御に
際しては、学習範囲内の上限領域の空燃比補正係数を用
い、或いri/及び、前記学習範囲の下限を下まわる領
域の空燃比制御に際しては、学習範囲内の下限領域の空
燃比補正係数を用いるようにしたことt−特徴とする内
燃機関O空燃比学習制御方法。
(1) When the air-fuel mixture with the set air-fuel ratio is combusted, the air-fuel ratio of the air-fuel mixture is feedback-controlled according to the deviation between the air-fuel ratio of exhaust gas and the target air-fuel ratio, and the air-fuel ratio of the air-fuel mixture is controlled according to the deviation. In an air-fuel ratio learning control method for an internal combustion engine that learns and corrects an air-fuel ratio correction coefficient used when setting an air-fuel ratio of air, the air-fuel ratio correction coefficient is set within a learning range of intake pipe pressure or intake air amount. In addition, when controlling the air-fuel ratio in a region exceeding the upper limit of the learning range, use the air-fuel ratio correction coefficient in the upper limit region within the learning range, or adjust the lower limit of the learning range to A method for learning and controlling an air-fuel ratio of an internal combustion engine, characterized in that an air-fuel ratio correction coefficient in a lower limit region within a learning range is used when controlling the air-fuel ratio in a lower region.
JP3203082A 1982-03-01 1982-03-01 Study control method of air-fuel ratio in internal-combustion engine Granted JPS58150057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203082A JPS58150057A (en) 1982-03-01 1982-03-01 Study control method of air-fuel ratio in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203082A JPS58150057A (en) 1982-03-01 1982-03-01 Study control method of air-fuel ratio in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58150057A true JPS58150057A (en) 1983-09-06
JPS6231179B2 JPS6231179B2 (en) 1987-07-07

Family

ID=12347465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203082A Granted JPS58150057A (en) 1982-03-01 1982-03-01 Study control method of air-fuel ratio in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58150057A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954750A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPS60212652A (en) * 1984-04-07 1985-10-24 Nissan Motor Co Ltd Accelerating fuel supply apparatus for internal- combustion engine
JPS62107251A (en) * 1985-11-06 1987-05-18 Japan Electronic Control Syst Co Ltd Air fuel ratio learning control device for internal combustion engine
US4705002A (en) * 1985-03-29 1987-11-10 Aisan Kogyo Kabushiki Kaisha Electronic air-fuel mixture control system for internal combustion engine
US4726344A (en) * 1985-01-21 1988-02-23 Aisan Kogyo Kabushiki Kaisha Electronic air-fuel mixture control system for internal combustion engine
JPS63170537A (en) * 1986-12-29 1988-07-14 Nippon Denso Co Ltd Air-fuel ratio control device for internal combustion engine
US4800857A (en) * 1987-01-21 1989-01-31 Nippon Denshi Kiki Co., Ltd. Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPH01100341A (en) * 1987-10-09 1989-04-18 Mitsubishi Electric Corp Fuel control device
DE3908371A1 (en) * 1988-03-23 1989-10-12 Mitsubishi Electric Corp FUEL REGULATOR
EP0404060A2 (en) * 1989-06-20 1990-12-27 WEBER S.r.l. An electronic fuel injection system for internal combustion engines, with self-adjusting flow rate strategy
JP2011153608A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Air/fuel ratio learning control device for internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256340B2 (en) * 1982-09-20 1987-11-25 Matsuda Kk
JPS5954750A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPH0660586B2 (en) * 1984-04-07 1994-08-10 日産自動車株式会社 Acceleration fuel supply system for internal combustion engine
JPS60212652A (en) * 1984-04-07 1985-10-24 Nissan Motor Co Ltd Accelerating fuel supply apparatus for internal- combustion engine
US4726344A (en) * 1985-01-21 1988-02-23 Aisan Kogyo Kabushiki Kaisha Electronic air-fuel mixture control system for internal combustion engine
US4705002A (en) * 1985-03-29 1987-11-10 Aisan Kogyo Kabushiki Kaisha Electronic air-fuel mixture control system for internal combustion engine
JPS62107251A (en) * 1985-11-06 1987-05-18 Japan Electronic Control Syst Co Ltd Air fuel ratio learning control device for internal combustion engine
JPS63170537A (en) * 1986-12-29 1988-07-14 Nippon Denso Co Ltd Air-fuel ratio control device for internal combustion engine
US4800857A (en) * 1987-01-21 1989-01-31 Nippon Denshi Kiki Co., Ltd. Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPH01100341A (en) * 1987-10-09 1989-04-18 Mitsubishi Electric Corp Fuel control device
DE3908371A1 (en) * 1988-03-23 1989-10-12 Mitsubishi Electric Corp FUEL REGULATOR
US4913121A (en) * 1988-03-23 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Fuel controller
EP0404060A2 (en) * 1989-06-20 1990-12-27 WEBER S.r.l. An electronic fuel injection system for internal combustion engines, with self-adjusting flow rate strategy
JP2011153608A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Air/fuel ratio learning control device for internal combustion engine

Also Published As

Publication number Publication date
JPS6231179B2 (en) 1987-07-07

Similar Documents

Publication Publication Date Title
JPS58150039A (en) Air-fuel ratio storage control method of electronically controlled engine
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS58148238A (en) Electron control fuel injection method for internal- combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58150058A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58150034A (en) Air-fuel ratio storage control method of internal-combustion engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH08291738A (en) Air-fuel ratio feedback control device for engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JP2625984B2 (en) Air-fuel ratio control device for electronically controlled fuel injection type internal combustion engine
JPS62182456A (en) Air-fuel ratio control of internal combustion engine
JPH0744748Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0510490B2 (en)
JPS5859335A (en) Air-fuel ratio controlling method by learning for internal-combustion engine
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS61129443A (en) Air-fuel ratio learning control for internal-combustion engine
JPS61112760A (en) Method of controlling air-fuel ratio of internal combustion engine through learning
JPS60209646A (en) Electronic control type fuel injection device
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS5990739A (en) Control-by-learning of air-fuel ratio of internal-combustion engine