JPS5990739A - Control-by-learning of air-fuel ratio of internal-combustion engine - Google Patents

Control-by-learning of air-fuel ratio of internal-combustion engine

Info

Publication number
JPS5990739A
JPS5990739A JP20017182A JP20017182A JPS5990739A JP S5990739 A JPS5990739 A JP S5990739A JP 20017182 A JP20017182 A JP 20017182A JP 20017182 A JP20017182 A JP 20017182A JP S5990739 A JPS5990739 A JP S5990739A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
learning
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20017182A
Other languages
Japanese (ja)
Inventor
Kazuhiko Iwano
岩野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20017182A priority Critical patent/JPS5990739A/en
Publication of JPS5990739A publication Critical patent/JPS5990739A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the idling stability at re-starting under high temperature by a method wherein the correction of air-fuel ratio, which has been performed, is controlled to temporarily be stopped at re-starting under high temperature in a system, in which the deviation between the target air-fuel ratio and the base air-fuel ratio is learned and the correction of air-fuel ratio is performed based upon the result of said learning. CONSTITUTION:During the running of an engine 10, the respective output signals from an air flow meter 12, an oxygen sensor 26, an turning angle sensor 32, a water temperature sensor 34 and the like are inputted to an electronic control unit (ECU) 38 in order to calculate basic fuel injection amounts in response to the suction air amounts and the rotational frequencies of the engine 10. In addition, said base fuel injection amounts are corrected by the result of learning, the cooling water temperature and the like, and when air-fuel ratio feedback condition is estabeished, the air-fuel ratio of gas mixture is feedback-controlled in proportion to the deviation between the exhaust air-fuel ratio obtained by the output from the oxygen sensor 26 and the target air-fuel ratio. Furthermore, when learning condition is established, the deviation between the target air-fuel ratio and the basic air-fuel ratio is learned, while at the re-starting under high temperature, the correction of air-fuel ratio, which has been performed based upon the result of learning, is controlled to be temporarily stopped until the feedback control is started.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比学習制御方法に係り、特に
、三元触媒を用いて排気ガス浄化対策が施された自動軍
用エンジンに用いるのに好適な、排気空燃比と目標望燃
比との偏差に応じて空燃比フィードバック制御を行うと
共に、目標空燃比とベース空燃比の偏差を学習して、学
習量による空燃比補正を行うようにした内燃機関の空燃
比学習制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio learning control method for an internal combustion engine, and in particular to an exhaust air-fuel ratio learning control method suitable for use in an automatic military engine in which exhaust gas purification measures are taken using a three-way catalyst. Air-fuel ratio learning for an internal combustion engine that performs air-fuel ratio feedback control according to the deviation between the fuel ratio and the target desired fuel-fuel ratio, learns the deviation between the target air-fuel ratio and the base air-fuel ratio, and performs air-fuel ratio correction based on the learning amount. Concerning improvements in control methods.

内燃機関、特に、三元触々■を用いて排気ガス浄化対策
が施された自動軍用エンジンにおいては、排気ガスの空
燃比を厳密に理論空燃比近傍に保持する必要があり、そ
のため、餠気ガスの空燃比(以下、排気空燃比と称する
)を検知するr#素濃度セセンと、混合気の空燃比を制
御する空燃比制御手段とを用いて、排気空燃比と目標空
燃比との偏差に応じて空燃比フィードバック制御を行う
と共に、目標空燃比とベース空燃比の偏差を学習して、
学習量による?F比補正を行うようにした内燃機関の空
燃比学習制御方法が提案されている。
In internal combustion engines, especially automatic military engines that use three-way exhaust gas purification measures, it is necessary to maintain the air-fuel ratio of the exhaust gas strictly close to the stoichiometric air-fuel ratio. The deviation between the exhaust air-fuel ratio and the target air-fuel ratio is determined using an r# elementary concentration sensor that detects the air-fuel ratio of gas (hereinafter referred to as exhaust air-fuel ratio) and an air-fuel ratio control means that controls the air-fuel ratio of the air-fuel mixture. In addition to performing air-fuel ratio feedback control according to the
Does it depend on the amount of learning? An air-fuel ratio learning control method for an internal combustion engine that performs F-ratio correction has been proposed.

このような空燃比学習制御方法によれば、環境条件、或
い―:、エンジン運転状態を検v′jするための各種セ
ンサの個体差や紅年変化に応じて空燃比が学習補正され
るので、良好な空燃比制御を行うことができるという’
Lf徴を有する。
According to such an air-fuel ratio learning control method, the air-fuel ratio is learned and corrected in accordance with environmental conditions, individual differences in various sensors for detecting the engine operating state, and yearly changes. Therefore, it is possible to perform good air-fuel ratio control.
It has Lf characteristics.

しかしながら、高淵時には、燃料タンクからの燃料蒸気
によυベース空燃比がリッチとなるため、空燃比をリー
ン側に補正するように学習量が学習される。一方、高調
時にエンジンを放置すると、エンジンルーム内が高温と
なるため、燃料通路内の燃料が気泡化し、再始動しても
、始動直後は所定の燃料流筒が和られず、空燃比がリー
ンと々る。
However, at high water, the υ base air-fuel ratio becomes rich due to fuel vapor from the fuel tank, so the learning amount is learned to correct the air-fuel ratio to the lean side. On the other hand, if the engine is left running when it is running high, the temperature inside the engine room will become high, causing the fuel in the fuel passage to become bubbles. Totoru.

従って、高温再始動時には、燃料通路内の燃料気泡によ
υベース空燃比が一時的にリーンとなるにも拘らず、更
に学習量によシ空燃比がリーン側に補正されるため、エ
ンジンのアイドル安定性が不良となるという問題点を有
していた。
Therefore, when restarting at a high temperature, even though the υ base air-fuel ratio temporarily becomes lean due to fuel bubbles in the fuel passage, the learning amount further corrects the air-fuel ratio to the lean side, so that the engine This had the problem of poor idle stability.

本発明は、前記従来の欠点を解消するべく々されたもの
で、高温再始動時におけるアイドル安定性を向上するこ
とができる内燃機関の空燃比学習制御方法を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide an air-fuel ratio learning control method for an internal combustion engine that can improve idle stability during high-temperature restart.

本発明は、排気空燃比と目標空燃比との偏差に応じて空
燃比フィードバック制御を行うと共に、自行空燃比とペ
ース空燃比の偏差を学習して、学習量による空燃比補正
を行うようにした内燃機関の空燃比学習制御方法におい
て、第1図にその要旨を示す如く、高温再始動時は、前
記学習量による空燃比補正を一時停止するようにして、
前記目的を達成したものである。
The present invention performs air-fuel ratio feedback control according to the deviation between the exhaust air-fuel ratio and the target air-fuel ratio, learns the deviation between the own running air-fuel ratio and the pace air-fuel ratio, and performs air-fuel ratio correction based on the learning amount. In the air-fuel ratio learning control method for an internal combustion engine, as shown in FIG.
The above objective has been achieved.

以下図面を参照して、本発明に係る内燃機関の空燃比学
習制御方法が採用された、自動車用エンジンの吸入空気
量感知式電子制御燃料噴射装置の実施例を詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electronically controlled fuel injection system that senses an intake air amount for an automobile engine will be described in detail below with reference to the drawings, in which an air-fuel ratio learning control method for an internal combustion engine according to the present invention is adopted.

本実施例は、第2図に示す如く、エアクリーナ(図示省
略)によシ取シ入れられた吸入空気の流量を検知するた
めのエアフローメータ12と、スロツ・トルボディ14
に配設され、運転席に配設されたアクセルペダル(図示
省略)と連動して開閉するようにされた、吸入空気の流
量を制御するためのスロットルバルブ16と、吸気干渉
を防止するためのサージタンク18と、吸気マニホルド
20の各気筒毎に配設された、エンジン10の各吸気ボ
ートに向けて燃料を噴射するためのインジェクタ22と
、エンジン燃焼室10a内に導入された混合気に着火す
るための点火プラグ23と、排気マニオルド24に配設
された、排気ガス中の残存酸素濃度がら空燃比のリッチ
−リーン状態を感知するための酸素一度センサ(以下、
0オセンサと称する)26と、エンジン10のクランク
軸の回転と連動して回転するデストリピユータ軸を有す
るデストリピユータ28と、該デストリピユータ28に
内蔵された、前記デストリピユータ軸の回転に応じてそ
れぞれ気筒判別信号及び回転角信号を出力する気筒判別
センサ30及び回転角センサ32と、エンジン10のシ
リンダブロック10bに配設された、エンジン冷却水温
を検知するだめの水濡センサ34と、前記エアフローメ
ータ12出力の吸入を気量と前記回転角センサ32出力
の回転角信号から求められるエンジン回転速度に応じて
エンレフ1行程轟シの基本噴射量を算出すると共に、こ
れを、後出学習量、前記水濡センサ34出力のエンジン
冷却水温等に応じて補正し、更に、空燃比フィードバッ
ク条件成立時は、前記0!センサ26を用いて検知され
る排気空燃比と目標望燃比との偏差に応じて、混合気の
空燃比をフィードバック制御して、決定された燃料噴射
量に応じた開弁時間信号を前記インジェクタ22に出力
すると共に、学習条件成立時は、目標空燃比とベース空
燃比の偏差を学習し、又、高温再始動時は、前記学習量
による空燃比補正を、フィードバック制御が開始される
まで一時停止する電子制御ユニット(以下、ECUと称
する)38とから構成されている。
As shown in FIG. 2, this embodiment includes an air flow meter 12 for detecting the flow rate of intake air taken in by an air cleaner (not shown), and a slot/tor body 14.
A throttle valve 16 for controlling the flow rate of intake air, which is opened and closed in conjunction with an accelerator pedal (not shown) disposed at the driver's seat, and a throttle valve 16 for preventing intake air interference. A surge tank 18, an injector 22 arranged for each cylinder of the intake manifold 20 for injecting fuel toward each intake boat of the engine 10, and ignition of the air-fuel mixture introduced into the engine combustion chamber 10a. and an oxygen sensor (hereinafter referred to as "oxygen sensor") disposed in the exhaust manifold 24 for detecting the rich-lean state of the air-fuel ratio based on the residual oxygen concentration in the exhaust gas.
26 (referred to as a zero sensor) 26, a destroyer 28 having a destroyer shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10, and a cylinder discrimination signal and A cylinder discrimination sensor 30 and a rotation angle sensor 32 that output a rotation angle signal, a water wetness sensor 34 installed in the cylinder block 10b of the engine 10 to detect the engine cooling water temperature, and an intake sensor for the output of the air flow meter 12. The basic injection amount for one stroke of the engine reflex is calculated according to the engine rotational speed determined from the air flow rate and the rotational angle signal output from the rotational angle sensor 32, and this is used as the learning amount described later and the water wetness sensor 34. It is corrected according to the output engine cooling water temperature, etc., and when the air-fuel ratio feedback condition is satisfied, the above-mentioned 0! The air-fuel ratio of the air-fuel mixture is feedback-controlled according to the deviation between the exhaust air-fuel ratio and the target desired fuel-fuel ratio detected using the sensor 26, and a valve opening time signal corresponding to the determined fuel injection amount is sent to the injector 22. At the same time, when the learning condition is met, the deviation between the target air-fuel ratio and the base air-fuel ratio is learned, and when restarting at a high temperature, the air-fuel ratio correction based on the learning amount is temporarily stopped until feedback control is started. It is comprised of an electronic control unit (hereinafter referred to as ECU) 38.

前記ECU38は、第3図に詳細に示す如く、各種演算
処理を行うだめの、例えばマイクロプロセッサからなる
中央処理ユニット(以下、MPUと称する)40と、バ
ッファ42を介して入力される前記エアフローメータ1
2出力、バッファ44を介して入力される前記水温セン
サ34出力等を順次数シ込むためのマルチプレクサ46
と、該マルチプレクサ46出力のアナログ信号をデジタ
ル信号に変換するためのアナログ−デジタル変換器(以
下、A/D変換器と称する)48と、該A/D変換′a
48の出力をMPU40に取り込むだめの第1の入出力
ボート50と、バッファ52及びコンバータ54を介し
て入力される前記0嘗七ンザ26出力、整形回路56を
介して入力される前記気筒判別センサ30及び回転角セ
ンサ32の出力等を前記MPU40に取り込むための第
2の入出力ボート58と、制御プログラムや各種データ
等を記憶するためのリードオンリーメモリ(以下、PO
O12称する)60と、MPU40における演算データ
等を一時的に記憶するだめのランダムアクセスメモリ(
以下、RAMと称する)62と、クロック64と、前記
MPU40における演算結果に応じて、開弁時間信号を
、駆動回路66を介して前記インジェクタ22に出力す
るための出力ポートロ8と、前記各構成機器間を接続す
るコモンバス70とから構成されてイル。
As shown in detail in FIG. 3, the ECU 38 includes a central processing unit (hereinafter referred to as MPU) 40, which is made up of, for example, a microprocessor and which performs various arithmetic operations, and the air flow meter, which is inputted via a buffer 42. 1
2 outputs, a multiplexer 46 for sequentially inputting several outputs of the water temperature sensor 34, etc. input via a buffer 44;
, an analog-to-digital converter (hereinafter referred to as an A/D converter) 48 for converting the analog signal output from the multiplexer 46 into a digital signal, and the A/D converter'a
the first input/output port 50 for inputting the output of 48 to the MPU 40; 30 and rotation angle sensor 32 into the MPU 40, and a read-only memory (hereinafter referred to as PO) for storing control programs, various data, etc.
A random access memory (referred to as O12) 60 and a random access memory (referred to as O12) for temporarily storing calculation data etc. in the MPU 40
(hereinafter referred to as RAM) 62, a clock 64, an output port 8 for outputting a valve opening time signal to the injector 22 via a drive circuit 66 according to the calculation result in the MPU 40, and each of the above components. It consists of a common bus 70 that connects devices.

以下作用を説明する。The action will be explained below.

本実施例におけるメインルーチンの流れを第4図に示す
。このメインルーチンにおいては、咬ずステップ101
で、入出力ボートの初期設定が行われ、次いでステップ
102で、RAM62がクリアされ、初期データがセッ
トされる。次いで、ステップ103に進み、例えば、前
記水温センサ34の出力に応じて、エンジン10が高調
状態、例えば100℃以上であるか否かを判定する。判
定結果が正である場合には、ステップ104に進み、既
に空燃比フィードバック制御実行中であ石か否かを判定
する。前出ステップ103における判定結果が否である
か、或いは、ステップ104における判定結果が正であ
る場合には、ステップ105に進み、学習量による空燃
比補正を行う。
FIG. 4 shows the flow of the main routine in this embodiment. In this main routine, step 101
In step 102, the input/output boat is initialized, and then in step 102, the RAM 62 is cleared and initial data is set. Next, the process proceeds to step 103, where it is determined, for example, based on the output of the water temperature sensor 34, whether or not the engine 10 is in a high operating state, for example, at a temperature of 100° C. or higher. If the determination result is positive, the process proceeds to step 104, where it is determined whether or not air-fuel ratio feedback control is already being executed. If the determination result in step 103 is negative, or if the determination result in step 104 is positive, the process proceeds to step 105, where air-fuel ratio correction is performed using the learning amount.

一方、前出ステップ104における判定結果が否である
場合には、ステップ106に進み、例えば学習量補正係
数を基単値1として、学習量による空燃比補正が行われ
ないようにする。
On the other hand, if the determination result in step 104 is negative, the process proceeds to step 106, where, for example, the learning amount correction coefficient is set to the base unit value 1, so that air-fuel ratio correction based on the learning amount is not performed.

前出ステップ105或いは106終了後、ステップ10
7に進み、空燃比フィートノ(ツク栄件が成立している
か否かを判定する。判定結果が正である場合、J’lj
ち、例えばエンジン冷却水温が40℃以上であり、且つ
、増減邦補正が行われていない場合には、〜ステップ1
08に進み、既にフィードバック制御実行中であるか否
かを判定する。判定結果が否である場合に目、ステップ
109に進み、前記O,センサ26で感知される空燃比
がり一ンであるか否かを判定する。判定結果が正である
場合には、ステップ1. l Oに進み、エンジン10
が高ヤ1状態にあ、るか否かを判定する。前出ステップ
108.110における判定結果が正であるか、ステッ
プ109における判定結果が否である場合には、ステッ
プ111に5ftみ、前記O,センサ26の出力に応じ
て空燃比フィードバック補正係数を求めて、空燃比フィ
ードバック処理を実行する。
After completing step 105 or 106, step 10
Proceed to step 7, and determine whether the air-fuel ratio condition is satisfied. If the determination result is positive, J'lj
For example, if the engine cooling water temperature is 40°C or higher and the increase/decrease correction is not performed, ~Step 1
Proceeding to step 08, it is determined whether feedback control is already being executed. If the determination result is negative, the process proceeds to step 109, where it is determined whether the air-fuel ratio sensed by the oxygen sensor 26 is equal to or not. If the determination result is positive, step 1. l Go to O, engine 10
It is determined whether or not the is in the high-yield 1 state. If the determination result in steps 108 and 110 is positive or the determination result in step 109 is negative, step 111 is performed and the air-fuel ratio feedback correction coefficient is adjusted according to the output of the O sensor 26. and executes air-fuel ratio feedback processing.

一方、前出ステップ107或いは110の判定結見が否
である44合には、ステップ112に進み、例えば空燃
比フィードバック補正係数を基準値12すること(でよ
って、オープン処理を実行する。
On the other hand, if the determination result in step 107 or 110 is negative (44), the process proceeds to step 112, where, for example, the air-fuel ratio feedback correction coefficient is set to the reference value 12 (thus, the open process is executed).

前出ステップ111或いは112終了後、ステップ11
3に進み、燃料噴射時間を計算する。次いでステップ1
14にl!″み、学習東件が成立しているか否かを判定
する。判定結果が正である場合、即ち、例えばエンジン
冷却水温が70℃以上であり、増減月補正が行われてお
らず、空燃比を段階的((変化させた府Wでなく、且つ
、減速中でない場合にVl、ステップ115に進み、そ
の時の目標空燃比とペース空炉比の偏差を学習して、学
習量補正係数を求める。ステップ115終了後、或いは
、前出ステップ114における判定結果が否である場合
には、前出ステップ103に戻る。
After completing step 111 or 112, step 11
Proceed to step 3 and calculate the fuel injection time. Then step 1
l on 14! ” and determine whether the learning condition is established. If the determination result is positive, for example, the engine cooling water temperature is 70°C or higher, no monthly correction has been performed, and the air-fuel ratio is step by step ((If it is not the changed air-fuel ratio and is not decelerating, proceed to step 115, learn the deviation between the target air-fuel ratio and the pace air-fuel ratio at that time, and find the learning amount correction coefficient. After step 115 is completed, or if the determination result in step 114 is negative, the process returns to step 103.

本実施例においては、高淵再始動時における学習量によ
る空燃比補正を、空燃比フィードバック制御が実行され
るまで停止するようにしているので、フィードバック制
御によシ空燃比が理論空燃比近傍になる寸で学習量によ
る空燃比補正が停止されることになシ、良好なアイドル
安定性を確実に得ることができる。なお、高淵再始動時
に学習量による9燃比補正を再開する方法は、これに限
定されず、例えば、高温再始動から所定時間経過後に学
習μ:による空燃比補正を再開することも可能である。
In this embodiment, since the air-fuel ratio correction based on the learning amount at the time of Takafuchi restart is stopped until the air-fuel ratio feedback control is executed, the air-fuel ratio is brought close to the stoichiometric air-fuel ratio by the feedback control. Good idling stability can be reliably obtained since the air-fuel ratio correction based on the learning amount is not stopped at the moment when the amount of learning is reached. Note that the method of restarting the 9 fuel ratio correction using the learning amount at the time of Takabuchi restart is not limited to this, for example, it is also possible to restart the air fuel ratio correction using the learning μ: after a predetermined time has elapsed since the high temperature restart. .

伺、前記実施例は、本発明を、吸入空気量感知式電子制
御燃料噴射装置を備えた自動軍用エンジンに適用したも
のであるが、本発明の適用範囲はこれに限定されず、吸
気管圧力感知式電子制御燃料噴射装置を備えた自動車用
エンジン、或いは、一般の9燃比制御装置を備えた内燃
機関にも同様に適用できることけ明らかである。
In the above embodiment, the present invention is applied to an automatic military engine equipped with an electronically controlled fuel injection device that senses the amount of intake air. However, the scope of application of the present invention is not limited to this, and It is obvious that the present invention can be similarly applied to an automobile engine equipped with a sensing electronically controlled fuel injection system or an internal combustion engine equipped with a general 9 fuel ratio control system.

以上説明し、た通シ、本発明によれば、高温再始動時の
アイドル安定性を向上することができるという侵れた効
果を有する。
As described above, according to the present invention, the idling stability at the time of high temperature restart can be improved, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の空燃比学習制御方法
の要旨を示す流れ図、第2図は、本発明に係る内燃機関
の空燃比学習制御方法が採用された、自動車用エンジン
の吸入空気量、感知式電子制御燃料噴射装置の実施例の
構成を示す、一部ブロック線図を含む断面し]、第3図
は、前記実施例で用いられている電子制御ユニットの構
成を示すブロック線図、第4図は、同じくメインルーチ
ンの要部を示す流れ図である。 10・・・エンジン、12・・・エアフローメータ、2
2・・・インジェクタ、26・・・酸素濃度センサ、2
8・・・デストリピユータ、32・・・回転角センサ、
34・・・水垢センサ、38・・・電子制御ユニット。 代理人  高 矢   論 蔓 l 図
FIG. 1 is a flowchart showing the gist of the air-fuel ratio learning control method for an internal combustion engine according to the present invention, and FIG. FIG. 3 is a block diagram illustrating the configuration of an electronic control unit used in the above embodiment; FIG. Similarly, FIG. 4 is a flowchart showing the main part of the main routine. 10...Engine, 12...Air flow meter, 2
2... Injector, 26... Oxygen concentration sensor, 2
8... Distributor, 32... Rotation angle sensor,
34... Limescale sensor, 38... Electronic control unit. Agent Takaya Rontu l Figure

Claims (1)

【特許請求の範囲】[Claims] (1)排気を燃比と目標空燃比との偏差に応じて空燃比
フィードバック制御を行うと共に、目標空燃比とベース
空燃比の偏差を学習して、学習量による空燃比補正を行
うようにした内燃機関の空燃比学習制御方法において、
高淵再始動時は、前記学習量による空燃比補正を一時停
止するようにしたことを特徴とする内燃機関の空燃比学
習制御方法0
(1) Internal combustion system that performs air-fuel ratio feedback control on the exhaust according to the deviation between the fuel ratio and the target air-fuel ratio, learns the deviation between the target air-fuel ratio and the base air-fuel ratio, and performs air-fuel ratio correction based on the learning amount. In the engine air-fuel ratio learning control method,
Air-fuel ratio learning control method for an internal combustion engine 0, characterized in that when restarting Takafuchi, air-fuel ratio correction based on the learning amount is temporarily stopped.
JP20017182A 1982-11-15 1982-11-15 Control-by-learning of air-fuel ratio of internal-combustion engine Pending JPS5990739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20017182A JPS5990739A (en) 1982-11-15 1982-11-15 Control-by-learning of air-fuel ratio of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20017182A JPS5990739A (en) 1982-11-15 1982-11-15 Control-by-learning of air-fuel ratio of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5990739A true JPS5990739A (en) 1984-05-25

Family

ID=16419968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20017182A Pending JPS5990739A (en) 1982-11-15 1982-11-15 Control-by-learning of air-fuel ratio of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5990739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283106B1 (en) 1997-09-11 2001-09-04 Denso Corporation Control apparatus for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283106B1 (en) 1997-09-11 2001-09-04 Denso Corporation Control apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6338537B2 (en)
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6231179B2 (en)
US4580221A (en) Method and device for internal combustion engine condition sensing and fuel injection control
JPS63117137A (en) Method for controlling fuel injection under acceleration of internal combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPS5990739A (en) Control-by-learning of air-fuel ratio of internal-combustion engine
JPS593136A (en) Learning control of air-fuel ratio of internal-combustion engine
JPS6231180B2 (en)
JPS5990740A (en) Starting of air-fuel ratio control of internal-combustion engine
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH1193736A (en) Idling rotation learning control device for electronically controlled throttle valve type internal combustion engine
JPS59200032A (en) Method of controlling air-fuel ratio of electronically controlled fuel injection engine
JPS62182456A (en) Air-fuel ratio control of internal combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH0681943B2 (en) Ignition timing control device
JPS6324142B2 (en)
JPS5990729A (en) Control method for acceleration fuel of internal-combustion engine
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS59160071A (en) Ignition timing control of internal-combustion engine
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine