JPS6017240A - Study control method of air-fuel ratio in electronically controlled engine - Google Patents

Study control method of air-fuel ratio in electronically controlled engine

Info

Publication number
JPS6017240A
JPS6017240A JP58125202A JP12520283A JPS6017240A JP S6017240 A JPS6017240 A JP S6017240A JP 58125202 A JP58125202 A JP 58125202A JP 12520283 A JP12520283 A JP 12520283A JP S6017240 A JPS6017240 A JP S6017240A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
feedback control
amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58125202A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Mizuno
水野 和好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58125202A priority Critical patent/JPS6017240A/en
Publication of JPS6017240A publication Critical patent/JPS6017240A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the controllability of air-fuel ratio, by providing a procedure to decide the change of amount in intake pipe pressure or intake air, procedure to decide continuation of feedback control and a procedure to inhibit study control. CONSTITUTION:An electronic control unit (ECU) 40 performs both feedback control of air-fuel ratio in accordance with a deviation of actual air-fuel ratio from the preset air-fuel ratio and study control by studying the deviation when the feedback control is executed. A procedure to decide whether or not the change of amount per unit time in intake pipe pressure or intake air per one revolution of an engine exceeds the preset value, a procedure to decide whether or not the feedback control is continued for over a preset time after said change of amount exceeds the preset value to again decrease below the preset value and a procedure to inhibit the study control when the feedback control is not continued for over the preset time are provided. In such way, the study control in high reliability can be performed.

Description

【発明の詳細な説明】 本発明は、電子制御エンジンの空燃比学習制御方法に係
り、特に、空燃比センサ及び三元触媒を用いて排気ガス
浄化対策が施された、・尾子制va燃料噴剣装置を備え
た自動車用エンジンに用いるのに好適な、設定空燃比と
実空燃比の偏差に応じて空燃比フィードバック制御を行
うと共に、フィードバック制御実行時の前記偏差を学習
して学習制御を行うようにした電子制御エンジンの空燃
比学習制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio learning control method for an electronically controlled engine, and particularly relates to an air-fuel ratio learning control method for an electronically controlled engine. Suitable for use in an automobile engine equipped with a squirt device, the air-fuel ratio feedback control is performed according to the deviation between the set air-fuel ratio and the actual air-fuel ratio, and the learning control is performed by learning the deviation during feedback control execution. This invention relates to an improvement in an air-fuel ratio learning control method for an electronically controlled engine.

内燃機関、特に、三元触媒を用いて排気ガス浄化対策が
施された自動車用エンジンにおいては、排気ガスの空燃
比を厳密に理論空燃比近傍に保持覆る必要があり、その
ため、排気ガスの空燃比を検知づる酸素11度センサと
、混合気の空燃比を制御する空燃比制卸手段とを用いて
、設定空燃比と実空燃比の偏差に応じて空燃比フィード
バック制御を行うと共に、フィードバック制御実行時の
前記偏差を学習して学習制御を行うようにした空燃比学
習制御方法が提案されている。
In internal combustion engines, especially automobile engines that use three-way catalysts to purify exhaust gas, it is necessary to maintain the air-fuel ratio of the exhaust gas strictly close to the stoichiometric air-fuel ratio. Using an oxygen 11 degree sensor that detects the fuel ratio and an air-fuel ratio control means that controls the air-fuel ratio of the air-fuel mixture, air-fuel ratio feedback control is performed according to the deviation between the set air-fuel ratio and the actual air-fuel ratio, and feedback control is also performed. An air-fuel ratio learning control method has been proposed in which learning control is performed by learning the deviation during execution.

このような空燃比学習制御方法によれば、環境条件、或
いはエンジン運転状態を検出するための各種センサの個
体差や経年変化に応じて空燃比が学門補正されるので、
良好な空燃比制皿を行うことができるという特徴を有づ
る。
According to such an air-fuel ratio learning control method, the air-fuel ratio is academically corrected in accordance with individual differences and aging of various sensors for detecting environmental conditions or engine operating conditions.
It has the feature of being able to perform good air-fuel ratio control.

しかしながら従来は、吸気管圧力が急激に変化し、吸気
管内に何重した燃料の蒸発量の変化等の影響により一時
的に空燃比が狂い、空燃比フィードバック制御が乱れて
、その制御値がエンジンの正しい特質を示さない状態に
ある場合でも、フィードバック制御値に基づいl〔学習
制御を実行し、学δ値を修正・算出するようにしていた
ため、学習値が誤った値となり、適切な空燃比学習制御
が行われないことがあるという問題点を有していた。
However, in the past, when the intake pipe pressure suddenly changed, the air-fuel ratio temporarily went out of order due to the influence of changes in the amount of evaporation of the fuel layered in the intake pipe, and the air-fuel ratio feedback control was disrupted, causing the control value to change when the engine Even when the correct characteristics of the air-fuel ratio are not shown, the learning control is executed based on the feedback control value to correct and calculate the learned δ value, so the learned value becomes an incorrect value and the air-fuel ratio This has the problem that learning control may not be performed.

本発明は、前記従来の問題点を解消プるべくなされたも
ので、設定空燃比と実空燃比の偏差を適切に学Mlるこ
とができ、従って信頼性の高い学習制御を行うことがで
きる電子制御エンジンの空燃比学習制御り法を提供づる
ことを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to appropriately calculate the deviation between the set air-fuel ratio and the actual air-fuel ratio, and therefore, it is possible to perform highly reliable learning control. The purpose of this paper is to provide an air-fuel ratio learning control method for electronically controlled engines.

本発明は、設定空燃比と実空燃比の偏差に応じて空燃比
フィードバック制御を行うと共に、フィードバック制御
実行詩の前記偏差を学習して学習制御を行うようにした
電子制御エンジンの空燃比学習制御方法において、第1
図にその要旨を示す如く、吸気管圧力又はエンジン1回
転当りの吸入空気量の、単位時間当りの変化量が設定値
を越えたか否かを判定づる手順と、前記変化量が設定値
を越えた後、再び設定値以下となってから、フィードバ
ック制■1が設定時間以上継続しているか否かを判定づ
る手順と、前記変化量が設定値を越えた時、又は、フィ
ードバック制御が設定時間以上継続していない時は学と
制冴を禁止する手順と、を含むようにして、前記目的を
達成したものである。
The present invention provides air-fuel ratio learning control for an electronically controlled engine that performs air-fuel ratio feedback control according to a deviation between a set air-fuel ratio and an actual air-fuel ratio, and also performs learning control by learning the deviation of the feedback control execution verse. In the method, the first
As shown in the figure, there is a procedure for determining whether the amount of change per unit time in intake pipe pressure or intake air amount per engine revolution exceeds the set value, and After the amount of change exceeds the set value, or when the feedback control becomes below the set value again, the procedure is to determine whether or not the feedback control (1) continues for the set time or not. The above purpose has been achieved by including a procedure for prohibiting study and study when the above is not continued.

本発明においては、吸気管圧力又はエンジン1回転当り
の吸入空気量の、単位時間当りの変化量が設定値を越え
たか否かを判定し、前記変化量が設定値を越えた時、又
は、前記変化量が設定値を越えIC後、再び設定値以下
となってから1、フィードバック制御が設定時間以上継
続していない時は、学習制御を禁止づるようにしたので
、設定空燃比と実空燃比の偏差を適切に学習することが
でき、従ってイ△頼性の高い学習制御を行うことができ
る。
In the present invention, it is determined whether the amount of change per unit time in the intake pipe pressure or the amount of intake air per engine revolution exceeds a set value, and when the amount of change exceeds the set value, or After the amount of change exceeds the set value and becomes below the set value again after IC, learning control is prohibited if feedback control has not continued for more than the set time, so the set air-fuel ratio and actual air Deviations in fuel ratio can be learned appropriately, and learning control with high reliability can therefore be performed.

以下図面を参照して、本発明に係る電子制御エンジンの
空燃比学習制御方法が採用された、吸気管圧力感知式の
電子制御燃料噴9A装置を備えlζ自動車用エンジンの
実施例を詳細に説明する。
Hereinafter, with reference to the drawings, an embodiment of an automobile engine equipped with an intake pipe pressure sensing type electronically controlled fuel injection device 9A, in which the air-fuel ratio learning control method for an electronically controlled engine according to the present invention is adopted, will be explained in detail with reference to the drawings. do.

本実施例は、第2図に示づ如く、外部から吸入される吸
入空気の温度を検出するための吸気温センサ12と、ス
ロットルボディ14に1lil! 設され、運転席に配
設されたアクセルペダル(図示省略)と連動し゛(開閉
するようにされた、吸入空気の流量を制illするため
のスロットル弁16と、該スロットル弁16の開度を検
出づるためのスロットルセンサ18と、吸気干渉を防止
するためのサージタンク20と、該サージタンク2o内
の吸入空気の圧力を検出するための吸気管圧力センサ2
2と、吸気マニホルド24に配設され1c、エンジン1
゜の各気筒の吸気ボートに向けて、加圧燃料を間欠的に
噴!)!IJるためのインジェクタ26と、エンジン燃
焼室10A内に導入された混合気に着火するだめの点火
プラグ28と、排気マニホルド3oに配設された、排気
空燃比のリッチ−リーン状態を検出するための酸素濃度
センサ(以下02センサと称づる)31と、該o2セン
サ31の下流側に配設された、例えば三元触媒が充鎖さ
れた触媒コンバータ32と、点火コイル33で発生され
た高圧の点火2次信号をエンジン10の各気筒の点火プ
ラグ28に配電するための、エンジン10のクランク軸
の回転と連動して回転するデストリどユータ軸34Aを
有するデストリピユータ34と、該デストリピユータ3
4に内蔵された、前記デストリピユータ軸34Aの回転
状態からエンジン10の回転状態を検知づるためのクラ
ンク角度センサ36と、エンジン10のシリンダブロッ
ク70Bに配設された、エンジン冷却水温を検知づるた
めの水温センサ38と、前記吸気管圧力センサ22出力
から検知されるエンジン負荷や前記クランク角度センサ
36出力からめられるエンジン回転速度等に応じて燃料
噴射量を計算し、該燃料噴*J itに、設定空燃比と
実空燃比の偏差に応じた空燃比フィードバック補正を加
えて要求噴射量を計算し、該要求噴躬呈が得られるよう
前記インジェクタ26に開弁時間信号を出力づると共に
、フィードバック制御実行時の前記偏差を学習して学習
制御ll1iljるための電子制御ユニット(以下EC
Uと称する)40と、から構成されている。
In this embodiment, as shown in FIG. 2, an intake air temperature sensor 12 for detecting the temperature of intake air taken in from the outside and a throttle body 14 are installed. A throttle valve 16 for controlling the flow rate of intake air, which is opened and closed in conjunction with an accelerator pedal (not shown) disposed in the driver's seat, and a throttle valve 16 that controls the opening degree of the throttle valve 16. A throttle sensor 18 for detection, a surge tank 20 for preventing intake interference, and an intake pipe pressure sensor 2 for detecting the pressure of intake air in the surge tank 2o.
2, 1c disposed in the intake manifold 24, and engine 1
Pressurized fuel is intermittently injected towards the intake boat of each cylinder of ゜! )! An injector 26 for IJ, a spark plug 28 for igniting the air-fuel mixture introduced into the engine combustion chamber 10A, and an exhaust manifold 3o for detecting the rich-lean state of the exhaust air-fuel ratio. An oxygen concentration sensor (hereinafter referred to as 02 sensor) 31, a catalytic converter 32 filled with, for example, a three-way catalyst and arranged downstream of the O2 sensor 31, and high pressure generated by an ignition coil 33. a distributor 34 having a distributor shaft 34A that rotates in conjunction with the rotation of the crankshaft of the engine 10 for distributing a secondary ignition signal to the spark plugs 28 of each cylinder of the engine 10;
4 and a crank angle sensor 36 for detecting the rotational state of the engine 10 from the rotational state of the distributor shaft 34A, and a crank angle sensor 36 for detecting the engine cooling water temperature disposed in the cylinder block 70B of the engine 10. The fuel injection amount is calculated according to the engine load detected from the output of the water temperature sensor 38 and the intake pipe pressure sensor 22, the engine rotational speed determined from the output of the crank angle sensor 36, and set to the fuel injection *Jit. Calculates the required injection amount by adding air-fuel ratio feedback correction according to the deviation between the air-fuel ratio and the actual air-fuel ratio, outputs a valve opening time signal to the injector 26 to obtain the required injection amount, and executes feedback control. An electronic control unit (hereinafter referred to as EC) for learning the deviation in time and performing learning control
(referred to as U) 40.

前記ヒCU40は、第3図に詳細に示づ如く、各種演算
処理を行うための、例えばマイクロプロセッサからなる
中央処理ユニット(以下CP[Jと称づる)40Aと、
制御プログラムや各種デ・−タ等を記憶するためのリー
ドオンリーメモリ(以下ROMと称Jる)40Bと、前
記CPtJ40Aにお番プる演算データ等を一時的に記
11るためのランダムアクセスメモリ(以下RAMと称
する)40Gと、前記吸気温センサ12、吸気管圧力セ
ンサ22.02センサ31、水温センサ38等から入力
されるアナログ信号をデジタル信号に変換して順次取込
むための、マルチプレクサ機能を備えたアナログ−デジ
タル変換器(以下A/Dコンバータと称づる)40Eと
、前記スロットルセンサ18、クランク角度センサ36
等から入力されるデジタル信号を取込むとともに、CP
U40Aの演算結果に応じて、前記インジェクタ26等
に制御信号を出力するための、バッファ機能を備えた入
出カポ−1へ(以下I10ボートと称プる)40Fと、
前記各構成機器間を接続して、データや命令を転送づる
ためのコモンバス40Gと1、から構成されている。
As shown in detail in FIG. 3, the CU 40 includes a central processing unit (hereinafter referred to as CP [J]) 40A consisting of, for example, a microprocessor for performing various arithmetic processing;
A read-only memory (hereinafter referred to as ROM) 40B for storing control programs and various data, etc., and a random access memory for temporarily recording calculation data etc. input to the CPtJ 40A. (hereinafter referred to as RAM) 40G and a multiplexer function to convert analog signals input from the intake air temperature sensor 12, intake pipe pressure sensor 22, sensor 31, water temperature sensor 38, etc. into digital signals and sequentially import them. an analog-to-digital converter (hereinafter referred to as A/D converter) 40E, the throttle sensor 18, and the crank angle sensor 36.
In addition to capturing digital signals input from etc.,
40F to the input/output capo-1 (hereinafter referred to as I10 boat) equipped with a buffer function for outputting a control signal to the injector 26 etc. according to the calculation result of U40A;
It is comprised of common buses 40G and 1 for connecting the respective component devices and transferring data and instructions.

以下作用を説明づる。The action will be explained below.

本実施例における、吸気管圧力の単位時間当りの変化量
が設定値を越えたか否かの判定は、第4図に示ずような
所定1間毎の割込みルーチンによって実行される。即ち
所定時間経過毎にステップ110に進み、舶記吸気管圧
力センサ22の出力にル6じて吸気管圧力P Mを取込
む。次いでステップ112に進み、今回取込んだ吸気管
圧力P Mと前回取込んだ吸気管圧力PMとの差を計n
づることにより、吸気管圧力の単位時間当りの変化Md
PMを算出づる。次いでステップ114に進み、前記変
化ff1d PMが、設定値−aとbの間にあるか否か
を判足りる。判定結果が否である場合、即ち、変化11
−d PN2が設定値を越えたと判断される時には、ス
テップ116に進み、変化fi?I PMが設定値を越
えIc後の経過時間を計数しているスキップカウンタC
5kipをクリアづる。ステップ116終了後、又は前
出ステップ114の判定結果が正である場合には、この
ルーチンを終了する。
In this embodiment, the determination as to whether the amount of change in intake pipe pressure per unit time exceeds a set value is executed by an interrupt routine at predetermined intervals as shown in FIG. That is, the process proceeds to step 110 every predetermined time period, and the intake pipe pressure P M is acquired based on the output of the ship's intake pipe pressure sensor 22. Next, the process proceeds to step 112, where the difference between the intake pipe pressure PM taken in this time and the intake pipe pressure PM taken in last time is calculated as a total n.
The change Md of intake pipe pressure per unit time is calculated by
Calculate PM. The process then proceeds to step 114, where it is determined whether the change ff1d PM is between the set values -a and b. If the determination result is negative, that is, change 11
-d When it is determined that PN2 exceeds the set value, the process proceeds to step 116, and the change fi? Skip counter C that counts the elapsed time after I PM exceeds the set value and Ic
Clear 5kip. After step 116 is completed, or if the determination result in step 114 is positive, this routine ends.

又、前記スキップカウンタC5kipのカウントアツプ
及びそのカウント値に応じた学習制御の実行の有無の判
定は、第5図に示すような、フィードバック制御及び学
門制御ルーチンによって実行される。即ち、まずステッ
プ210 ′c、例えば前記水温センサ38の出力から
検出されるエンジン冷fil水温、前記スロットルセン
サ18の出力がら検出されるスーツトル弁開度等に応じ
て、現在のエンジン運転条件がフィードバック実行条件
にあるか否かを判定Jる。判定結果が圧である場合には
、ステップ212に進み、フィードバック制卸を実行づ
る。次いでステップ214に進み、フィードバック制(
IIによって、前記o2センサ31の出力がリッチから
リーンへ、又は、リーンがらリッチへ反転したか否かを
判定づる。判定績・果が正である場合には、ステップ2
16に進み、前記スキップカウンタC5kipを1だけ
カウントアツプする。
Further, the count-up of the skip counter C5kip and the determination of whether or not learning control is to be executed according to the count value are executed by a feedback control and a school gate control routine as shown in FIG. That is, first, in step 210'c, the current engine operating conditions are fed back according to, for example, the engine cold water temperature detected from the output of the water temperature sensor 38, the throttle valve opening detected from the output of the throttle sensor 18, etc. Determine whether the execution conditions are met. If the determination result is pressure, the process advances to step 212 and feedback control is executed. Next, the process proceeds to step 214, where the feedback system (
II determines whether the output of the O2 sensor 31 has reversed from rich to lean or from lean to rich. If the result/result is positive, step 2
The process proceeds to step 16, where the skip counter C5kip is incremented by one.

次いでステップ218に進み、C5kipカウンタの最
大値をガードする。ステップ218終了後、又は前出ス
テップ214の判定結果が否であ、る場合に(よ、ステ
ップ220に進み、スキップカウンタC5kipの計数
値が設定値C1例えば7以上どなったか否かを判定する
。判定結果が正である場合、即ち、o2センサ31出力
の反転回数が設定値C以上であり、フィードバック制卸
が設定時間以上継続していると判断される場合には、ス
テップ222に進み、学習制御を実行する。一方、前出
ステップ220の判定結果が否である場合、即ち、変化
ad PVIffi設定値を越えた後、フィードバック
制御が設定時間以上継続していないと判断される時には
、学習vttmを行うことなく、このルーチンを終了づ
る。
Next, the process proceeds to step 218, where the maximum value of the C5kip counter is guarded. After step 218 is completed, or if the determination result in step 214 is negative, the process proceeds to step 220, where it is determined whether the count value of the skip counter C5kip has exceeded a set value C1, for example, 7. If the determination result is positive, that is, if the number of inversions of the O2 sensor 31 output is equal to or greater than the set value C, and it is determined that the feedback control continues for longer than the set time, the process proceeds to step 222; Learning control is executed.On the other hand, if the determination result in step 220 is negative, that is, when it is determined that feedback control has not continued for the set time or longer after the change ad PViffi set value is exceeded, learning control is executed. This routine ends without running vttm.

本実施例における、吸気管圧力PM、その変化印dPM
、フィードバック制御値、学習制御の状態の関係の一例
を第6図に示す。図から明らかな如く、吸気管圧力PM
が変化し、その変化QdPMが判定1[−a、bを外れ
ると、フィードバック制御値の反転回数が判定値(7)
以上になるまでは、学習制御が禁止されている。
In this embodiment, intake pipe pressure PM, its change mark dPM
, the feedback control value, and the state of learning control are shown in FIG. As is clear from the figure, the intake pipe pressure PM
changes and the change QdPM deviates from judgment 1 [-a, b, the number of inversions of the feedback control value becomes the judgment value (7)
Learning control is prohibited until this point is reached.

このようにして、フィードバック制御値が乱れている、
吸気管圧力の単位時間当りの変化量が大ぐある時に、学
習制御を禁止づることにより、より信頼性の高い学習制
御を行うことが可能である。
In this way, the feedback control value is disturbed,
By prohibiting learning control when the amount of change in intake pipe pressure per unit time is large, it is possible to perform learning control with higher reliability.

本実施例においては、判定値−a、b、cが一定値とさ
れていたので、プログラムが単純である。
In this embodiment, the determination values -a, b, and c are constant values, so the program is simple.

尚、エンジン運転状態に合わせて、前記判定値−a 、
lJ 、Oのいずれか又は全てを変化させることによっ
て、より最適化を図つlこり、或いは簡略化づることが
可能である。
In addition, depending on the engine operating condition, the judgment value -a,
By changing either or all of lJ and O, it is possible to achieve further optimization or simplification.

前記実施例においては、本発明が、吸気管圧力感知式の
電子制御燃料噴9A装置を備えた自動車用エンジンに適
用されていたが、本発明の適用範囲はこれに限定されず
、例えば、吸気管圧力の単位時間当りの変化量の代りに
、エンジン1回転当りの吸入空気量又は基本噴射量の単
位時間当りの変化量が設定値を越えたか否かを判定づる
ようにして、本発明を、吸入空気量感知式の電子制御燃
料噴射装置を協えた自動車用エンジンや、一般の電子制
御エンジンにも同様に適用することが可能である。
In the above embodiment, the present invention was applied to an automobile engine equipped with an electronically controlled fuel injection device 9A that senses intake pipe pressure. However, the scope of application of the present invention is not limited to this, and for example, Instead of the amount of change in pipe pressure per unit time, the present invention is implemented by determining whether or not the amount of change in intake air amount per engine revolution or the amount of change in basic injection amount per unit time exceeds a set value. The present invention can be similarly applied to automobile engines equipped with an electronically controlled fuel injection device that senses the amount of intake air, and to general electronically controlled engines.

以上説明した通り、本発明によれば、設定空燃比と実空
燃比の偏差を適切に学習することができ、従って信頼性
の高い学習制御を行うことができる。
As described above, according to the present invention, it is possible to appropriately learn the deviation between the set air-fuel ratio and the actual air-fuel ratio, and therefore it is possible to perform highly reliable learning control.

よって、空燃比制御性を向上して、排気エミッションを
低減すると共に、ドライバビリティを向上づることがで
きるという優れた効果を有する。
Therefore, it has the excellent effect of improving air-fuel ratio controllability, reducing exhaust emissions, and improving drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る電子制御エンジンの空燃比学習
制御方法の要旨を示づ流れ図、第2図は、本発明が採用
された、吸気管圧力感知式の電子制御iII燃料噴劃装
側を備えた自動車用エンジンの実施例の構成を示す、一
部ブロック線図を含む断面図、第3図は、前記実施例で
用いられている電子!lJ御ユシュニット成を示すブロ
ック線図、第4図は、同じく、スキップカウンタをカウ
ントアツプするための時間割込みルーチンを示す流れ図
、第5図は、同じく、フィードバック制御及び学習制御
を行うためのルーチンを示す流れ図、第6図は、前記実
施例における、吸気管圧力、その単位時間当りの変化量
、フィードバック制御値及び学習制御の状態の関係の一
例を示す線図である。 PM・・・吸気管圧力、 CIPM・・・吸気管圧力の単位時間当りの変化量、−
a 、 b 、 c・・・設定値、10・・・エンジン
、22・・・吸気管圧力センサ、 26・・・インジェ
クタ、31・・・酸素濃度センサ(02センサ)、40
・・・電子制御ユニット(ECU)。 代理人 高 矢 論 (ほか1名) 第4図 第5図
FIG. 1 is a flowchart showing the gist of the air-fuel ratio learning control method for an electronically controlled engine according to the present invention, and FIG. 2 is a flowchart showing an electronically controlled III fuel injection system using intake pipe pressure sensing, in which the present invention is adopted. FIG. 3 is a cross-sectional view, including a partial block diagram, showing the structure of an embodiment of an automobile engine equipped with an electronic engine used in the above embodiment. FIG. 4 is a block diagram showing the configuration of the IJ control unit. Similarly, FIG. 4 is a flowchart showing the time interrupt routine for counting up the skip counter. Similarly, FIG. 5 is a flow chart showing the routine for performing feedback control and learning control. The flowchart shown in FIG. 6 is a diagram showing an example of the relationship among the intake pipe pressure, the amount of change thereof per unit time, the feedback control value, and the learning control state in the embodiment. PM...Intake pipe pressure, CIPM...Amount of change in intake pipe pressure per unit time, -
a, b, c... set value, 10... engine, 22... intake pipe pressure sensor, 26... injector, 31... oxygen concentration sensor (02 sensor), 40
...Electronic control unit (ECU). Agent Takaya Ron (and 1 other person) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)設定空燃比と実空燃比の偏差に応じて空燃比フィ
ードバック制御を行うと共に、フィードバック制御実行
時の前記偏差を学習して学習制御を行うように゛した電
子制御エンジンの空燃比学習制御方法において、吸気管
圧力又はエンジン1回転当りの吸入空気量の、単位時間
当りの変化量が設定値を越えたか否かを判定づる手順と
、前記変化量が設定値を越えた後、再び設定値以下とな
ってから、フィードバック制御が設定時間以上継続して
いるか否かを判定する手順と、前記変化量が設定値を越
えた時、又は、フィードバック制御が設定時間以上継続
していない時は学習制御を禁止する手順と、を含むこと
を特徴と覆る電子制御エンジンの空燃比学習制御方法。
(1) Air-fuel ratio learning control for an electronically controlled engine that performs air-fuel ratio feedback control according to the deviation between the set air-fuel ratio and the actual air-fuel ratio, and also performs learning control by learning the deviation during feedback control execution. The method includes a step of determining whether the amount of change per unit time in intake pipe pressure or intake air amount per engine revolution exceeds a set value, and a step of determining whether the amount of change exceeds the set value, and then setting again after the amount of change exceeds the set value. A procedure for determining whether feedback control continues for a set time or longer after the amount of change exceeds a set value, or when feedback control does not continue for a set time or longer. An air-fuel ratio learning control method for an electronically controlled engine characterized by comprising: a procedure for prohibiting learning control.
JP58125202A 1983-07-08 1983-07-08 Study control method of air-fuel ratio in electronically controlled engine Pending JPS6017240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125202A JPS6017240A (en) 1983-07-08 1983-07-08 Study control method of air-fuel ratio in electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125202A JPS6017240A (en) 1983-07-08 1983-07-08 Study control method of air-fuel ratio in electronically controlled engine

Publications (1)

Publication Number Publication Date
JPS6017240A true JPS6017240A (en) 1985-01-29

Family

ID=14904431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125202A Pending JPS6017240A (en) 1983-07-08 1983-07-08 Study control method of air-fuel ratio in electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS6017240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238853A (en) * 1985-08-14 1987-02-19 Hitachi Ltd Intelligent engine controller
JPH01159437A (en) * 1987-12-16 1989-06-22 Mazda Motor Corp Idling controller for engine
JP2021076060A (en) * 2019-11-08 2021-05-20 トヨタ自動車株式会社 Engine control device
JP2021076059A (en) * 2019-11-08 2021-05-20 トヨタ自動車株式会社 Engine control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238853A (en) * 1985-08-14 1987-02-19 Hitachi Ltd Intelligent engine controller
JPH01159437A (en) * 1987-12-16 1989-06-22 Mazda Motor Corp Idling controller for engine
JP2021076060A (en) * 2019-11-08 2021-05-20 トヨタ自動車株式会社 Engine control device
JP2021076059A (en) * 2019-11-08 2021-05-20 トヨタ自動車株式会社 Engine control device

Similar Documents

Publication Publication Date Title
US4528963A (en) Method of and system for controlling restart of engine
JPS6231179B2 (en)
JPH057548B2 (en)
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPH0465223B2 (en)
JPH0512538B2 (en)
JP2841806B2 (en) Air-fuel ratio control device for engine
JPS6231180B2 (en)
JPH057546B2 (en)
JPH0429855B2 (en)
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH059620B2 (en)
JPH0372824B2 (en)
JPH0510493B2 (en)
JPH0536617B2 (en)
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS59162333A (en) Control method of fuel injection in multi-cylinder internal-combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS5990740A (en) Starting of air-fuel ratio control of internal-combustion engine
JPS6324142B2 (en)
JPS6019935A (en) Method of deciding rich/leam of air-fuel ratio for electronically controlled engine
JPH059621B2 (en)
JPS6232336B2 (en)
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine