JPH08312410A - Controlling method for air-fuel ratio of internal combustion engine - Google Patents

Controlling method for air-fuel ratio of internal combustion engine

Info

Publication number
JPH08312410A
JPH08312410A JP11495395A JP11495395A JPH08312410A JP H08312410 A JPH08312410 A JP H08312410A JP 11495395 A JP11495395 A JP 11495395A JP 11495395 A JP11495395 A JP 11495395A JP H08312410 A JPH08312410 A JP H08312410A
Authority
JP
Japan
Prior art keywords
speed
fuel injection
high load
air
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11495395A
Other languages
Japanese (ja)
Inventor
Koji Fujii
孝治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP11495395A priority Critical patent/JPH08312410A/en
Publication of JPH08312410A publication Critical patent/JPH08312410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To cool a catalyst by fuel by correcting fuel injection quantity, a base, by instantly increasing power without waiting for the elapse of delay time in a high-load operating state even when vehicular traveling speed exceeds predetermined speed over a predetermined period. CONSTITUTION: An O2 sensor 21, and a three way catalyst 22 are stationed in an exhaust system 20. In addition, provided are an electronic control device 6, an engine speed sensor 14 for detecting engine speed, and a speed sensor 15, etc. When vehicular traveling speed is detected, and a continuous operating state, the detected traveling speed exceeds predetermined speed, over a predetermined period is detected, delay time is inhibited to correct fuel injection quantity, a base, by increasing power under a high-load operating state. Thus, air-fuel ratio comes to rich to cool a catalyst by fuel. Therefore, the heating of the catalyst is effectively prevented without degrading drivability under high-load operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として自動車用エン
ジンにおける高負荷時の内燃機関の空燃比制御制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to an air-fuel ratio control method for an internal combustion engine at high load in an automobile engine.

【0002】[0002]

【従来の技術】従来、燃料噴射方式のエンジンにおいて
は、通常は理論空燃比によりいわゆるフィードバック制
御運転が行われているが、高負荷での出力性能を確保す
るため、あるいは高回転、高負荷域での燃焼温度を低下
させて触媒温度を所定の温度に保持するために、出力空
燃比かそれよりもリッチな空燃比いわゆるパワー空燃比
により運転が行われる。この場合、理論空燃比に適合す
る基本噴射時間を、パワー増量補正係数により補正を行
って有効噴射時間を計算している。このようなパワー増
量補正係数を用いて燃料噴射量を増量する空燃比制御方
法では、高負荷領域での運転すなわち高負荷運転状態と
高負荷領域以外の通常の負荷での運転すなわち通常負荷
運転状態とを繰り返して運転する場合では、増量がその
都度繰り返されると通常負荷運転時の空燃比がリッチ側
に変化する場合もあるので、高負荷運転に移行してから
一定時間が経過した時点から、つまり設定された遅延時
間が経過してから燃料噴射量の増量を行うようにしてい
る(例えば、特開平3−43640号公報)。
2. Description of the Related Art Conventionally, in a fuel injection type engine, so-called feedback control operation is usually performed by the stoichiometric air-fuel ratio. However, in order to secure output performance under high load, or in high rotation and high load range. In order to reduce the combustion temperature in the above and maintain the catalyst temperature at a predetermined temperature, the operation is performed with an output air-fuel ratio or an air-fuel ratio that is richer than it, a so-called power air-fuel ratio. In this case, the effective injection time is calculated by correcting the basic injection time that matches the theoretical air-fuel ratio with the power increase correction coefficient. In the air-fuel ratio control method of increasing the fuel injection amount using such a power increase correction coefficient, the operation in the high load region, that is, the high load operating state, and the operation under the normal load other than the high load region, that is, the normal load operating state In the case of repeatedly operating and, since the air-fuel ratio during normal load operation may change to the rich side when the increase is repeated each time, from the time when a certain period of time has passed after the transition to high load operation, That is, the fuel injection amount is increased after the set delay time has elapsed (for example, Japanese Patent Laid-Open No. 3-43640).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図4の
(a)に示すように、通常の負荷運転状態(フィードバ
ック制御運転中を含む)から高負荷運転状態に移行した
際に一定の遅延時間T経過後に増量補正を行う制御で
は、図4の(b)に示すように、通常負荷運転状態から
高負荷運転状態に移行した後、遅延時間Tが経過する
までに通常負荷運転状態に戻り、再度高負荷運転状態に
移行するような運転状態を繰り返した場合、高負荷運転
状態に移行してから遅延時間Tが経過しないために、
その高負荷運転のための燃料噴射量の増量は行われな
い。つまり、高負荷運転を行っているにもかかわらず、
その高負荷運転状態が遅延時間Tの間継続して行われ
ないため、それぞれの高負荷運転状態において燃料噴射
量の増量が実行されないものである。この結果、リッチ
な空燃比により触媒が冷却されることがなく、しかも繰
り返し高負荷運転が行われるため、触媒温度は高負荷運
転が連続されている時と同様に上昇し、触媒を劣化させ
ることになった。
However, as shown in FIG. 4 (a), when the normal load operating state (including feedback control operation) shifts to the high load operating state, a constant delay time T In the control for performing the increase correction after the lapse of D , as shown in (b) of FIG. 4, after the transition from the normal load operating state to the high load operating state, the normal load operating state is restored by the delay time T D. , When the operating state is changed to the high load operating state again, the delay time T D does not elapse after the operating state is changed to the high load operating state.
The fuel injection amount for the high load operation is not increased. In other words, despite the high load operation
Since the high load operation state is not continuously performed for the delay time T D , the fuel injection amount increase is not executed in each high load operation state. As a result, the catalyst is not cooled by the rich air-fuel ratio, and since the high load operation is repeatedly performed, the catalyst temperature rises in the same manner as when the high load operation is continued, and the catalyst is deteriorated. Became.

【0004】本発明は、このような不具合を解消するこ
とを目的としている。
An object of the present invention is to eliminate such a problem.

【0005】[0005]

【課題を解決するための手段】本発明は、このような目
的を達成するために、次のような手段を講じたものであ
る。すなわち、本発明に係る内燃機関の空燃比制御制御
方法は、排気系に触媒を備えて車両に搭載される内燃機
関の少なくとも回転数に基づいて基本となる燃料噴射量
を演算し、高負荷運転時にあっては少なくとも回転数に
基づいて設定されるパワー増量により基本となる燃料噴
射量を、高負荷運転に移行後所定の遅延時間の後に補正
して最終的な燃料噴射量を決定する内燃機関の空燃比制
御方法であって、車両の走行速度を検出し、検出した走
行速度が所定速度を上回っている運転状態が所定時間を
上回って連続していることを検出した場合に前記遅延時
間を禁止して高負荷運転状態で即時にパワー増量により
基本となる燃料噴射量を補正することを特徴とする。
In order to achieve the above object, the present invention takes the following measures. That is, an air-fuel ratio control control method for an internal combustion engine according to the present invention calculates a basic fuel injection amount based on at least the number of revolutions of an internal combustion engine equipped with a catalyst in an exhaust system and performs a high load operation. Sometimes, an internal combustion engine that determines the final fuel injection amount by correcting the basic fuel injection amount by a power increase set based on at least the number of revolutions after a predetermined delay time after shifting to high load operation In the air-fuel ratio control method, the traveling speed of the vehicle is detected, and the delay time is detected when it is detected that the operating state in which the detected traveling speed is higher than a predetermined speed is continuous for a predetermined time or longer. The feature is that the basic fuel injection amount is corrected by prohibiting and immediately increasing the power in a high load operation state.

【0006】[0006]

【作用】このような構成のものであれば、車両の走行速
度が所定時間を上回って所定速度を超えている場合で
は、高負荷運転状態になると遅延時間の経過を待つこと
なく即時にパワー増量により基本となる燃料噴射量を補
正するので、触媒の燃料による冷却が可能になる。すな
わち、内燃機関の運転状態が、高負荷運転と通常負荷運
転とを繰り返している場合にあっては、高負荷運転状態
においてその移行開始から遅延時間の経過後にパワー増
量による燃料噴射量の補正を行うのではなく、両者の運
転状態を繰り返している運転状態における走行速度が所
定速度を上回っている状態が所定時間を上回って連続す
ることにより、実質的に遅延時間経過後の高負荷運転状
態と見做してパワー増量の補正を行うものである。した
がって、増量補正されたことにより空燃比がリッチにな
り、触媒の加熱を抑制する。
With such a structure, when the traveling speed of the vehicle exceeds the predetermined speed for more than the predetermined time, when the vehicle is in a high load operation state, the power is increased immediately without waiting for the delay time to elapse. Since the basic fuel injection amount is corrected by, the catalyst can be cooled by the fuel. That is, when the operating state of the internal combustion engine repeats the high load operation and the normal load operation, the fuel injection amount is corrected by increasing the power after the delay time has elapsed from the start of the transition in the high load operating state. Rather than performing it, the state in which the traveling speed is higher than the predetermined speed in the operating state in which the both operating states are repeated continues for more than the predetermined time, so that the high load operating state after the delay time has substantially passed. The power increase is corrected by considering it. Therefore, the air-fuel ratio becomes rich due to the increased amount correction, and the heating of the catalyst is suppressed.

【0007】[0007]

【実施例】以下、本発明の一実施例を、図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1に概略的に示したエンジンは自動車用
のもので、その吸気系1には図示しないアクセルペダル
に応動して開閉するスロットルバルブ2が配設され、そ
の下流側にはサージタンク3が設けられている。サージ
タンク3に連通する吸気系1に吸気マニホルド4のシリ
ンダヘッド30側の端部近傍には、さらに燃料噴射弁5
が設けてあり、この燃料噴射弁5の前方のシリンダヘッ
ド30には、吸気バルブ31が配設されている。また排
気系20には、排気ガス中の酸素濃度を測定するO
ンサ21が、図示しないマフラに至るまでの管路に配設
された三元触媒22の上流の位置に取り付けられてい
る。このOセンサ21からは、酸素濃度に対応して電
圧信号hが出力される。
The engine schematically shown in FIG. 1 is for an automobile, and its intake system 1 is provided with a throttle valve 2 which opens and closes in response to an accelerator pedal (not shown), and a surge tank is provided downstream thereof. 3 is provided. In the vicinity of the cylinder head 30 side end of the intake manifold 4 of the intake system 1 communicating with the surge tank 3, a fuel injection valve 5 is further provided.
An intake valve 31 is provided in the cylinder head 30 in front of the fuel injection valve 5. Further, an O 2 sensor 21 for measuring the oxygen concentration in the exhaust gas is attached to the exhaust system 20 at a position upstream of a three-way catalyst 22 arranged in a pipe line leading to a muffler (not shown). The O 2 sensor 21 outputs a voltage signal h corresponding to the oxygen concentration.

【0009】電子制御装置6は、中央演算処理装置7
と、記憶装置8と、入力インターフェース9と、出力イ
ンターフェース11とを具備してなるマイクロコンピュ
ータシステムを主体に構成され、入力されるアナログ信
号をディジタル信号に変換するA/D変換器(図示しな
い)が内蔵されている。その入力インターフェース9に
は、サージタンク3内の圧力すなわち吸気管負圧(以
下、吸気圧と称する)を検出するための吸気圧センサ1
3から出力される吸気圧信号a、エンジン回転数NEを
検出するために回転数センサ14から出力される回転数
信号b、車速を検出するための車速センサ15から出力
される車速信号c、スロットルバルブ2が全開になった
際に全開信号fsを出力するパワースイッチ16aを有
し、スロットルバルブ2の開閉状態を検出するためのス
ロットルセンサ16から出力されるスロットル開度信号
d及び全開信号fs、エンジンの冷却水温を検出するた
めの水温センサ17が出力される水温信号e、上記した
センサ21から出力される電圧信号hなどが入力さ
れる。一方、出力インターフェース11からは、燃料噴
射弁5に対して後述する有効噴射時間TAUに対応した
燃料噴射信号fが、またスパークプラグ18に対してイ
グニッションパルスgが出力されるようになっている。
The electronic control unit 6 includes a central processing unit 7
An A / D converter (not shown) mainly composed of a microcomputer system including a memory device 8, an input interface 9, and an output interface 11 for converting an input analog signal into a digital signal. Is built in. The input interface 9 has an intake pressure sensor 1 for detecting the pressure in the surge tank 3, that is, the intake pipe negative pressure (hereinafter referred to as intake pressure).
3, an intake pressure signal a output from the engine 3, a rotational speed signal b output from the rotational speed sensor 14 to detect the engine rotational speed NE, a vehicle speed signal c output from a vehicle speed sensor 15 to detect the vehicle speed, and a throttle. A throttle switch 16 has a power switch 16a that outputs a full-open signal fs when the valve 2 is fully open, and a throttle opening signal d and a full-open signal fs output from a throttle sensor 16 for detecting the open / closed state of the throttle valve 2. The water temperature signal e output from the water temperature sensor 17 for detecting the cooling water temperature of the engine, the voltage signal h output from the O 2 sensor 21, and the like are input. On the other hand, the output interface 11 outputs a fuel injection signal f corresponding to an effective injection time TAU described later to the fuel injection valve 5 and an ignition pulse g to the spark plug 18.

【0010】電子制御装置6には、吸気圧センサ14か
ら出力される吸気圧信号aと回転数センサ15から出力
される回転数信号bとを主な情報とし、エンジンの回転
状態に応じて決まるパワー増量補正係数FPOWERを
含む各種の補正係数例えば始動後増量補正係数FSE、
暖機増量補正係数FWL、空燃比フィードバック補正係
数FAF等で基本噴射時間TPを補正して燃料噴射弁開
成時間すなわち有効噴射時間TAUを設定し、その設定
された時間により燃料噴射弁5を制御して、エンジン負
荷に応じた燃料を燃料噴射弁5からシリンダヘッド30
近傍の吸気系1に噴射させるためのプログラムが内蔵し
てある。パワー増量補正係数FPOWERによる補正
は、パワースイッチ16aから出力される全開信号fs
に基づいて高負荷運転を検出した場合に、その検出時点
から高負荷運転が持続する状態では設定された遅延時間
が経過した時点で実行され、また、少なくとも高負荷運
転と通常負荷運転とが繰り返し連続しても、走行速度が
所定速度を上回り、かつ所定時間を超えてその状態が持
続している場合には、所定時間経過後に遅延することな
く実行される。すなわち、このプログラムにおいては、
車両の走行速度を検出し、検出した走行速度が所定速度
を上回っている運転状態が所定時間を上回って連続して
いることを検出した場合に前記遅延時間を禁止して高負
荷運転状態で即時にパワー増量により基本となる燃料噴
射量を補正するようにプログラミングされている。
The electronic control unit 6 has an intake pressure signal a output from the intake pressure sensor 14 and a rotation speed signal b output from the rotation speed sensor 15 as main information, and is determined according to the rotation state of the engine. Various correction factors including a power increase correction factor FPOWER, for example, a post-starting amount increase correction factor FSE,
The basic injection time TP is corrected by the warm-up increase correction coefficient FWL, the air-fuel ratio feedback correction coefficient FAF, etc. to set the fuel injection valve opening time, that is, the effective injection time TAU, and the fuel injection valve 5 is controlled by the set time. The fuel corresponding to the engine load from the fuel injection valve 5 to the cylinder head 30.
A program for injecting into the nearby intake system 1 is built in. The correction by the power increase correction coefficient FPOWER is performed by the full open signal fs output from the power switch 16a.
When a high load operation is detected based on the above, it will be executed when the set delay time elapses in the state where the high load operation continues from the detection time, and at least the high load operation and the normal load operation are repeated. Even if continuous, if the traveling speed exceeds the predetermined speed and the state continues for a predetermined time or longer, the process is executed without delay after the lapse of the predetermined time. That is, in this program,
Detects the running speed of the vehicle, and if the detected running speed exceeds the specified speed and it is detected that the driving condition continues for more than the specified time, prohibits the delay time and immediately starts in the high load operating condition. It is programmed to correct the basic fuel injection amount by increasing the power.

【0011】この空燃比制御プログラムの概要は、図2
に示すようなものである。ただし、定常運転時における
種々の補正係数を考慮して有効噴射時間TAUを演算す
るプログラム自体は、従来知られているものを利用でき
るので図示及び説明を省略する。
The outline of this air-fuel ratio control program is shown in FIG.
As shown in. However, as the program itself for calculating the effective injection time TAU in consideration of various correction factors during steady operation, a conventionally known program can be used, and therefore illustration and description thereof will be omitted.

【0012】まず、ステップS1では、走行速度(車
速)Vが所定速度Vを上回っているか否かを判定し、
上回っている場合はステップS2に進み、所定速度V
以下の場合にはステップS4に移行する。ステップS2
では、走行速度が所定速度を上回ってからの経過時間T
が所定時間Tを上回っているか否かを判定し、上回っ
ている場合はステップS3に進み、所定時間Tに達し
ていない場合はステップS6に移行する。経過時間T
は、このルーチンを実行する回数から計時するもので、
所定の回数を計数した時点で所定時間Tを上回るもの
である。ステップS3では、遅延時間Tを禁止(=
0)する。具体的には、例えば、遅延時間Tを計時す
るカウンタをカウントアップした状態にして、疑似的に
遅延時間Tが経過した状態にして、遅延が実行できな
い状態に設定する。ステップS4では、経過時間Tを0
すなわちそれまでに計数していたルーチンの実行回数を
0にする。ステップS5では、遅延時間Tを通常の時
間に設定する。
First, in step S1, it is determined whether the traveling speed (vehicle speed) V is higher than a predetermined speed V D ,
If it is higher than the predetermined speed V D
In the following cases, the process proceeds to step S4. Step S2
Then, the elapsed time T after the traveling speed exceeds the predetermined speed
Is above the predetermined time T V, and if it is above the predetermined time T V , the process proceeds to step S3. If the predetermined time T V is not reached, the process proceeds to step S6. Elapsed time T
Is to count from the number of times this routine is executed,
It exceeds the predetermined time T V when the predetermined number of times is counted. In step S3, the delay time T D is prohibited (=
0) Specifically, for example, a counter that counts the delay time T D is set to a count-up state, a state in which the delay time T D has elapsed in a pseudo manner, and a state in which delay cannot be executed are set. In step S4, the elapsed time T is set to 0.
That is, the number of executions of the routine that has been counted up to that point is set to zero. In step S5, the delay time T D is set to a normal time.

【0013】このような構成において、図3に示すよう
に、車両の走行速度Vが徐々に速くなり、高負荷運転状
態で所定速度Vを上回る場合を説明する。走行速度V
が、所定速度V以下で高負荷運転に移行した場合に
は、制御は、ステップS1→S4→S5と進み、通常の
遅延時間Tを設定する。この後、走行速度Vが上が
り、所定速度Vを上回ると、走行速度Vが所定速度V
を連続して上回り、かつ所定時間Tが経過するまで
は、制御は、ステップS1→S2→S6を繰り返して進
行する。この間、負荷の状態が高負荷と通常負荷とを繰
り返している場合であっても、走行速度Vにより経過時
間Tを計時してパワー増量補正のタイミングを設定する
ように制御するものである。そして、走行速度Vが所定
速度Vを上回ってから、所定速度V以下になること
なく所定時間Tが経過すると、制御は、ステップS1
→S2→S3と進み、遅延時間Tを禁止して、高負荷
運転状態になるとパワー増量補正係数FPOWERによ
り基本噴射時間TPを補正して、空燃比をリッチにす
る。つまり、所定時間Tが経過した時点で高負荷運転
状態であれば、即時にパワー増量補正を実行し、その後
走行速度Vが所定速度Vを下回ることなく通常負荷運
転状態になり、さらに高負荷運転状態になると同時に再
度パワー増量補正を実行するものである。
In such a structure, as shown in FIG. 3, a case where the traveling speed V of the vehicle gradually increases and exceeds the predetermined speed V D in a high load operation state will be described. Running speed V
However, when the high load operation is performed at a speed equal to or lower than the predetermined speed V D , the control proceeds to steps S1 → S4 → S5 to set the normal delay time T D. After that, when the traveling speed V increases and exceeds the predetermined speed V D , the traveling speed V becomes the predetermined speed V D.
The control is repeated by repeating steps S1 → S2 → S6 until D is continuously exceeded and the predetermined time T V elapses. During this time, even when the load state is repeated between high load and normal load, the elapsed time T is measured by the traveling speed V and the power increase correction timing is controlled. Then, the running speed V is higher than the predetermined speed V D, a predetermined time T V has elapsed without becoming below a predetermined speed V D, control, step S1
→ S2 → S3 and proceeds, prohibits the delay time T D, by correcting the basic injection time TP by the high load becomes a driving state power enrichment coefficient FPOWER, the air-fuel ratio rich. In other words, if the vehicle is in the high load operation state when the predetermined time T V has elapsed, the power increase correction is immediately executed, and then the traveling speed V does not fall below the predetermined speed V D and the normal load operation state is set. At the same time as the load operation state is reached, the power increase correction is executed again.

【0014】このように、高負荷状態と通常負荷状態と
を繰り返すような運転状態であっても、走行速度Vが所
定速度Vを上回る状態が所定時間Tを超えて持続す
る場合には、遅延時間Tとは別に、所定時間Tの経
過後に高負荷運転状態になればパワー増量補正係数FP
OWERによる基本噴射量TPの補正を行うため、運転
状態が変化していても燃料を増量補正するものとなる。
したがって、三元触媒22の温度は、所定時間T内に
おいてはその時の運転状態に応じて上昇するが、増量補
正が遅延時間Tだけ遅れることがないために、つまり
所定時間T経過後に遅延(ディレイ)することなく増
量補正が実施されるので、図3に点線で示すように、そ
の後も上昇し続けて許容温度を超えるといった不具合を
生じることはない。この結果、空燃比がリッチになり、
三元触媒22が冷却されてその劣化を防止することがで
きる。また、高負荷運転状態に対応した燃料噴射量の増
量補正が実施できるので、空燃比をその運転状態に適合
させたものに維持することができ、ドライバビリティを
安定にすることができる。
As described above, even in an operating state in which the high load state and the normal load state are repeated, when the state in which the traveling speed V exceeds the predetermined speed V D continues for a predetermined time T V or more. In addition to the delay time T D , if the high load operation state is reached after the predetermined time T V has elapsed, the power increase correction coefficient FP
Since the basic injection amount TP is corrected by the OWER, the fuel amount is increased and corrected even when the operating state changes.
Therefore, the temperature of the three-way catalyst 22 rises according to the operating state at that time within the predetermined time T V , but the increase correction is not delayed by the delay time T D , that is, after the predetermined time T V has elapsed. Since the increase correction is performed without delay, there is no problem that the temperature continues to rise and exceeds the allowable temperature as shown by the dotted line in FIG. As a result, the air-fuel ratio becomes rich,
The three-way catalyst 22 is cooled and its deterioration can be prevented. Further, since the increase correction of the fuel injection amount corresponding to the high load operating state can be performed, the air-fuel ratio can be maintained at a value adapted to the operating state, and drivability can be stabilized.

【0015】なお、本発明は以上説明した実施例に限定
されるものではない。
The present invention is not limited to the embodiment described above.

【0016】その他、各部の構成は図示例に限定される
ものではなく、本発明の趣旨を逸脱しない範囲で種々変
形が可能である。
Besides, the configuration of each part is not limited to the illustrated example, and various modifications can be made without departing from the spirit of the present invention.

【0017】[0017]

【発明の効果】本発明は、以上に詳述したように、車両
の走行速度が所定時間を上回って所定速度を超えている
場合に、高負荷運転状態において遅延時間の経過を待つ
ことなく即時にパワー増量により基本となる燃料噴射量
を補正するので、空燃比がリッチになり、触媒の燃料に
よる冷却を行うことができる。したがって、高負荷運転
時のドライバビリティを悪くすることなく、効果的に触
媒の加熱を防止することができる。
As described in detail above, the present invention provides immediate operation without waiting for the delay time to elapse in the high load operation state when the traveling speed of the vehicle exceeds the predetermined speed for more than the predetermined time. Since the basic fuel injection amount is corrected by increasing the power, the air-fuel ratio becomes rich, and the catalyst can be cooled by the fuel. Therefore, heating of the catalyst can be effectively prevented without deteriorating the drivability during high-load operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成説明図。FIG. 1 is a schematic configuration explanatory view showing an embodiment of the present invention.

【図2】同実施例の制御手順を示すフローチャート。FIG. 2 is a flowchart showing a control procedure of the embodiment.

【図3】同実施例の作用説明図。FIG. 3 is an operation explanatory view of the same embodiment.

【図4】従来例の作用説明図。FIG. 4 is an explanatory view of the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1…吸気系 2…スロットルバルブ 5…燃料噴射弁 6…電子制御装置 7…中央演算処理装置 8…記憶装置 9…入力インターフェース 11…出力インターフェース 20…排気系 22…三元触媒 1 ... Intake system 2 ... Throttle valve 5 ... Fuel injection valve 6 ... Electronic control unit 7 ... Central processing unit 8 ... Memory device 9 ... Input interface 11 ... Output interface 20 ... Exhaust system 22 ... Three-way catalyst

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排気系に触媒を備えて車両に搭載される内
燃機関の少なくとも回転数に基づいて基本となる燃料噴
射量を演算し、高負荷運転時にあっては少なくとも回転
数に基づいて設定されるパワー増量により基本となる燃
料噴射量を、高負荷運転に移行後所定の遅延時間の後に
補正して最終的な燃料噴射量を決定する内燃機関の空燃
比制御方法であって、 車両の走行速度を検出し、 検出した走行速度が所定速度を上回っている運転状態が
所定時間を上回って連続していることを検出した場合に
前記遅延時間を禁止して高負荷運転状態で即時にパワー
増量により基本となる燃料噴射量を補正することを特徴
とする内燃機関の空燃比制御制御方法。
1. A basic fuel injection amount is calculated based on at least the number of revolutions of an internal combustion engine mounted on a vehicle with a catalyst in an exhaust system, and is set based on at least the number of revolutions during high load operation. A method for controlling an air-fuel ratio of an internal combustion engine, which corrects a basic fuel injection amount by a power increase performed after a predetermined delay time after shifting to a high load operation to determine a final fuel injection amount. When the running speed is detected and the detected running speed exceeds the specified speed and it is detected that the operating condition continues for more than the specified time, the delay time is prohibited and the power is immediately applied in the high load operating condition. An air-fuel ratio control control method for an internal combustion engine, characterized in that a basic fuel injection amount is corrected by increasing the amount.
JP11495395A 1995-05-12 1995-05-12 Controlling method for air-fuel ratio of internal combustion engine Pending JPH08312410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11495395A JPH08312410A (en) 1995-05-12 1995-05-12 Controlling method for air-fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11495395A JPH08312410A (en) 1995-05-12 1995-05-12 Controlling method for air-fuel ratio of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08312410A true JPH08312410A (en) 1996-11-26

Family

ID=14650739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11495395A Pending JPH08312410A (en) 1995-05-12 1995-05-12 Controlling method for air-fuel ratio of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08312410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7806211B2 (en) * 2006-11-10 2010-10-05 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system, power output apparatus, vehicle, and method for controlling the internal combustion engine system
CN112160841A (en) * 2020-09-29 2021-01-01 潍柴动力股份有限公司 Air excess coefficient modulation method and device and readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7806211B2 (en) * 2006-11-10 2010-10-05 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system, power output apparatus, vehicle, and method for controlling the internal combustion engine system
CN112160841A (en) * 2020-09-29 2021-01-01 潍柴动力股份有限公司 Air excess coefficient modulation method and device and readable storage medium

Similar Documents

Publication Publication Date Title
US6609059B2 (en) Control system for internal combustion engine
US6470854B1 (en) Air-fuel ratio control with improved fuel supply operation immediately after complete combustion of mixture
US6302091B1 (en) Air-fuel ratio feedback control for engines having feedback delay time compensation
JP4055256B2 (en) Exhaust gas purification device for internal combustion engine
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JP5398994B2 (en) Operation control method for internal combustion engine
JP4115162B2 (en) Exhaust gas purification control device for internal combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JP3808151B2 (en) Lean air-fuel ratio correction method
JPH06185396A (en) Basic fuel injection method
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JP3179295B2 (en) Fuel injection control method
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05141294A (en) Air/fuel ratio control method
JPH10176565A (en) Air-fuel ratio switching control method
JP3319167B2 (en) Control device for internal combustion engine
JPH0429855B2 (en)
JP3591046B2 (en) Fuel injection amount control device for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JP3621258B2 (en) Power increase control method for internal combustion engine
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JPH07139395A (en) Fuel injection control method
JPH08200120A (en) Control method for fuel injection
JPH0914013A (en) Internal combustion engine air-fuel ratio controlling method
JPH09317526A (en) Warming-up correction control method for internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330