JPH06185396A - Basic fuel injection method - Google Patents

Basic fuel injection method

Info

Publication number
JPH06185396A
JPH06185396A JP33405792A JP33405792A JPH06185396A JP H06185396 A JPH06185396 A JP H06185396A JP 33405792 A JP33405792 A JP 33405792A JP 33405792 A JP33405792 A JP 33405792A JP H06185396 A JPH06185396 A JP H06185396A
Authority
JP
Japan
Prior art keywords
time
calculated
fuel injection
engine speed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33405792A
Other languages
Japanese (ja)
Other versions
JP3295150B2 (en
Inventor
Sadao Takagi
定夫 高木
Katsuyuki Kajitani
勝之 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP33405792A priority Critical patent/JP3295150B2/en
Publication of JPH06185396A publication Critical patent/JPH06185396A/en
Application granted granted Critical
Publication of JP3295150B2 publication Critical patent/JP3295150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance air-fuel ratio controllability at an initial stage in transition by calculating an intake pipe pressure, where a charge delay and a stroke delay of which are corrected, on the basis of a throttle opening degree and an engine speed detected at each predetermined timing so as to determine a basic fuel injection time. CONSTITUTION:An electronic controller 6 controls at least a fuel injection valve 5 in an engine 100 on the basis of at least a throttle opening degree signal detected by a throttle sensor 16 and an engine speed signal detected by a cam position sensor 14. The electronic controller 6 predicts an intake pipe pressure to be changed after a lapse of a predetermined time on the basis of the throttle opening degree and the engine speed, calculates a delay time of a stroke based on a calculated timing of a fuel injection quantity and an opening timing of an intake value, and further, and calculates a predictive pressure on the basis of the predicted intake pipe pressure and the calculated stroke delay time. Consequently, the electronic controller 6 determines a basic fuel injection time at each given timing based on the calculated predictive pressure and the engine speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として自動車用の燃
料噴射式エンジンにおける基本燃料噴射方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a basic fuel injection method in a fuel injection type engine for automobiles.

【0002】[0002]

【従来の技術】従来、この種の基本燃料噴射方法とし
て、例えば、特開昭63−29038号公報に記載され
た内燃機関の電子制御燃料噴射装置のように、スロット
ルバルブの開度、内燃機関の回転数及び吸気温度をそれ
ぞれ検出し、スロットルバルブ開度と回転数とをパラメ
ータとする運転領域ごとに対応する吸入空気量を予め記
憶した中から検索し、検索した吸入空気量と検出した吸
気温度とに応じて吸入空気量の補正係数を設定し、前記
吸入空気量を設定した補正係数で補正して基本燃料噴射
量を演算するものが知られている。
2. Description of the Related Art Conventionally, as a basic fuel injection method of this type, for example, as in the electronically controlled fuel injection device for an internal combustion engine disclosed in Japanese Patent Laid-Open No. 63-29038, the opening of a throttle valve, The intake air amount detected and the intake air temperature are respectively detected, and the intake air amount corresponding to each operating region in which the throttle valve opening and the rotation speed are used as parameters are searched in advance, and the searched intake air amount and the detected intake air amount are detected. It is known that a correction coefficient for the intake air amount is set according to the temperature, and the basic fuel injection amount is calculated by correcting the intake air amount with the set correction coefficient.

【0003】[0003]

【発明が解決しようとする課題】ところで、過渡時にあ
っては、実際の吸入空気量を検出して、上記のように補
正係数を設定した後、補正係数で吸入空気量を補正して
基本燃料噴射量を演算していると、センサからの信号を
処理するフィルタなどにおける信号の遅延、あるいは燃
料噴射量の演算から実際に吸気弁が作動するまでの行程
の遅延などにより、適切な燃料噴射量を演算できない場
合があった。したがって、燃料噴射量が適切でないた
め、過渡状態の初期段階での空燃比制御性が悪くなる傾
向にあった。
By the way, during a transition, the actual intake air amount is detected, the correction coefficient is set as described above, and then the intake air amount is corrected by the correction coefficient to obtain the basic fuel. When calculating the injection amount, the appropriate fuel injection amount may be due to the delay of the signal in the filter that processes the signal from the sensor, or the delay of the stroke from the calculation of the fuel injection amount to the actual operation of the intake valve. Was sometimes not calculated. Therefore, since the fuel injection amount is not appropriate, the air-fuel ratio controllability in the initial stage of the transient state tends to deteriorate.

【0004】本発明は、このような不具合を解消するこ
とを目的としている。
An object of the present invention is to eliminate such a problem.

【0005】[0005]

【課題を解決するための手段】本発明は、このような目
的を達成するために、次のような手段を講じたものであ
る。すなわち、本発明に係る基本燃料噴射方法は、スロ
ットル開度及びエンジン回転数を検出し、検出したスロ
ットル開度及びエンジン回転数に基づいて所定時間後に
変化している吸気管圧力を予測し、噴射量計算時期と吸
気弁閉弁時期とから行程の遅れ時間を演算し、予測した
吸気管圧力と遅れ時間とに基づいて予測圧力を演算し、
得られた予測圧力とその時のエンジン回転数とに基づい
て基本噴射時間を所定期間ごとに演算することを特徴と
する。
The present invention takes the following means in order to achieve such an object. That is, the basic fuel injection method according to the present invention detects the throttle opening and engine speed, predicts the intake pipe pressure changing after a predetermined time based on the detected throttle opening and engine speed, and The stroke delay time is calculated from the amount calculation timing and the intake valve closing timing, and the predicted pressure is calculated based on the predicted intake pipe pressure and the delay time,
It is characterized in that the basic injection time is calculated for each predetermined period based on the obtained predicted pressure and the engine speed at that time.

【0006】[0006]

【作用】このような構成のものであれば、所定時間後の
変化した吸気管圧力を、所定時間ごとのスロットル開度
とエンジン回転数とに基づいて予測し、さらに行程の遅
れ時間を演算して予測した吸気管圧力とその遅れ時間と
に基づいて予測圧力を求め、得られた予測圧力とエンジ
ン回転数とに基づいて基本噴射時間を演算している。つ
まり、基本噴射時間は、サージタンクタンクなどの容量
で左右される吸入空気量の変化の始まりと吸気管圧力の
変化の始まりとの間の遅れを補正し、かつ行程遅れをも
補正した吸気管圧力とエンジン回転数とにより演算され
ているので、センサからの信号を処理するフィルタ等に
おける遅れを補正することなく、過渡時初期の空燃比制
御性を向上させる。
With such a structure, the intake pipe pressure that has changed after a predetermined time is predicted based on the throttle opening and the engine speed for each predetermined time, and the stroke delay time is calculated. The predicted pressure is obtained based on the predicted intake pipe pressure and its delay time, and the basic injection time is calculated based on the predicted pressure and the engine speed obtained. In other words, the basic injection time is an intake pipe that corrects the delay between the start of the change in the intake air amount and the start of the change in the intake pipe pressure, which also depends on the capacity of the surge tank tank, and also the stroke delay. Since it is calculated from the pressure and the engine speed, the air-fuel ratio controllability at the initial stage of the transition is improved without correcting the delay in the filter or the like that processes the signal from the sensor.

【0007】[0007]

【実施例】以下、本発明の一実施例を、図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1に概略的に示したエンジン100は自
動車用のもので、その吸気系1には図示しないアクセル
ペダルに応動して開閉するスロットルバルブ2が配設さ
れ、その下流側にはサージタンク3が設けられている。
サージタンク3に連通する吸気系1の吸気マニホルド4
の一方の端部近傍には、さらに燃料噴射弁5が設けてあ
り、この燃料噴射弁5を、電子制御装置6により制御す
るようにしている。また排気系20には、排気ガス中の
酸素濃度を測定するためのOセンサ21が、図示しな
いマフラに至るまでの管路に配設された三元触媒22の
上流の位置に取り付けられている。このOセンサ21
からは、酸素濃度に対応して電圧信号hが出力される。
An engine 100 schematically shown in FIG. 1 is for an automobile, and its intake system 1 is provided with a throttle valve 2 which opens and closes in response to an accelerator pedal (not shown), and a surge is provided downstream thereof. A tank 3 is provided.
Intake manifold 4 of intake system 1 communicating with surge tank 3
A fuel injection valve 5 is further provided near one end of the fuel injection valve 5, and the fuel injection valve 5 is controlled by the electronic control unit 6. Further, an O 2 sensor 21 for measuring the oxygen concentration in the exhaust gas is attached to the exhaust system 20 at a position upstream of a three-way catalyst 22 arranged in a pipe line leading to a muffler (not shown). There is. This O 2 sensor 21
Outputs a voltage signal h corresponding to the oxygen concentration.

【0009】電子制御装置6は、中央演算処理装置7
と、記憶装置8と、入力インターフェース9と、出力イ
ンターフェース11とを具備してなるマイクロコンピュ
ータシステムを主体に構成されており、その入力インタ
ーフェース9には、エンジン回転数NE、圧縮上死点
(気筒判別)、及びクランク角度基準位置を検出するた
めのカムポジションセンサ14から出力される回転数信
号Ne、気筒判別信号G1、及びクランク角度基準位置
信号G2、車速を検出するための車速センサ15から出
力される車速信号c、スロットルバルブ2の開度を検出
するためのスロットルセンサ16から出力されるスロッ
トル開度信号d、エンジンの冷却水温を検出するための
水温センサ17から出力される水温信号e、上記したO
センサ21から出力される電圧信号hなどが入力され
る。一方、出力インターフェース11からは、燃料噴射
弁5に対して燃料噴射信号fが、またスパークプラグ1
8に対してイグニッションパルスgが出力されるように
なっている。
The electronic control unit 6 includes a central processing unit 7
And a storage device 8, an input interface 9, and an output interface 11 are mainly configured, and the input interface 9 includes an engine speed NE, a compression top dead center (cylinder). (Discrimination) and a rotation speed signal Ne output from a cam position sensor 14 for detecting a crank angle reference position, a cylinder determination signal G1, a crank angle reference position signal G2, and a vehicle speed sensor 15 for detecting a vehicle speed. The vehicle speed signal c, the throttle opening signal d output from the throttle sensor 16 for detecting the opening of the throttle valve 2, the water temperature signal e output from the water temperature sensor 17 for detecting the cooling water temperature of the engine, O mentioned above
The voltage signal h or the like output from the 2 sensor 21 is input. On the other hand, from the output interface 11, the fuel injection signal f is sent to the fuel injection valve 5, and the spark plug 1
Ignition pulse g is output to eight.

【0010】電子制御装置6には、スロットルセンサ1
6から出力されるスロットル開度信号dとカムポジショ
ンセンサ14から出力される回転数信号Neとを主な情
報とし、エンジン状況に応じて決まる各種の補正係数で
基本噴射時間TPを補正して燃料噴射弁開成時間すなわ
ちインジェクタ最終通電時間Tを決定し、その決定され
た通電時間により燃料噴射弁5を制御して、エンジン負
荷に応じた燃料を該燃料噴射弁5から吸気系1に噴射さ
せるためのプログラムが内蔵してある。しかもこのプロ
グラムにおいては、過渡時初期の空燃比制御性をよくす
るために、スロットル開度TA及びエンジン回転数NE
を検出し、検出したスロットル開度TA及びエンジン回
転数NEに基づいて所定時間ごとに吸気管圧力及びその
圧力増加量を演算し、噴射量計算時期と吸気弁閉弁時期
とから行程の遅れ時間を演算し、得られた吸気管圧力と
圧力増加量と遅れ時間とに基づいて予測圧力PMTPを
演算し、得られた予測圧力PMTPとその時のエンジン
回転数NEとに基づいて基本噴射時間TPを所定期間ご
とに演算するするようにプログラミングされているもの
である。
The electronic control unit 6 includes a throttle sensor 1
The throttle opening signal d output from 6 and the rotation speed signal Ne output from the cam position sensor 14 are used as main information, and the basic injection time TP is corrected by various correction coefficients determined according to the engine condition. To determine the injection valve opening time, that is, the injector final energization time T, control the fuel injection valve 5 according to the determined energization time, and inject fuel according to the engine load from the fuel injection valve 5 to the intake system 1. The program is built in. Moreover, in this program, in order to improve the air-fuel ratio controllability at the initial stage of the transition, the throttle opening TA and the engine speed NE are set.
Is detected, the intake pipe pressure and the pressure increase amount thereof are calculated at predetermined time intervals based on the detected throttle opening TA and engine speed NE, and the stroke delay time is calculated from the injection amount calculation timing and the intake valve closing timing. Is calculated, and the predicted pressure PMTP is calculated based on the obtained intake pipe pressure, the pressure increase amount, and the delay time, and the basic injection time TP is calculated based on the obtained predicted pressure PMTP and the engine speed NE at that time. It is programmed so as to calculate every predetermined period.

【0011】この基本噴射量制御プログラムの概要は、
図2及び図3に示すようなものである。
The outline of this basic injection amount control program is as follows.
This is as shown in FIGS. 2 and 3.

【0012】まず、ステップ51では、スロットルセン
サ16から出力されるスロットル開度信号dからスロッ
トル開度TAを、また回転数センサ14から出力される
回転数信号bから回転数NEを読み込む。ステップ52
では、得られたスロットル開度TA及び回転数NEとか
ら(QNP,SP)マップをサーチして吸入空気量QN
と吸気管圧力SPとを決定する。ここで、吸入空
気量QNPは、単位回転数における定常吸入空気量と
して規定され、また、吸気管圧力SPは、スロットル
開度TAと回転数NEとで決まる定常の吸気管絶対圧力
として規定される。(QNP,SP)マップは、エンジ
ン回転数NEとスロットル開度TAとをパラメータとし
て吸入空気量QNPと吸気管圧力SPとを一対にし
て規定しており、その構成は図4に示す通りである。ス
テップ53では、チャージ遅れ係数KCHDを読み込
む。このチャージ遅れ係数KCHDは、実際に吸気系1
に吸入される吸入空気量の変化とサージタンク3にて検
出される吸気マニホルド4内の吸気管圧力の変化との間
の開始時間の遅れに基づいて設定される係数である。つ
まり、チャージ遅れ係数KCHDは、スロットルバルブ
2を介して吸気系1に吸入される空気量がその前の状態
から現在の状態に変化してから、サージタンク3内の吸
気管圧力が変化するまでの時間により設定されている。
First, at step 51, the throttle opening TA is read from the throttle opening signal d output from the throttle sensor 16, and the rotation speed NE is read from the rotation speed signal b output from the rotation speed sensor 14. Step 52
Then, the (QNP, SP) map is searched from the obtained throttle opening TA and rotational speed NE to obtain the intake air amount QN.
Determine P n and intake pipe pressure SP n . Here, the intake air amount QNP n is defined as a steady intake air amount at a unit rotation speed, and the intake pipe pressure SP n is defined as a steady intake pipe absolute pressure determined by the throttle opening TA and the rotation speed NE. To be done. The (QNP, SP) map defines the intake air amount QNP n and the intake pipe pressure SP n as a pair using the engine speed NE and the throttle opening TA as parameters, and the configuration thereof is as shown in FIG. Is. In step 53, the charge delay coefficient KCHD is read. This charge delay coefficient KCHD is actually the intake system 1
Is a coefficient that is set based on the delay of the start time between the change in the intake air amount sucked into the intake manifold and the change in the intake pipe pressure in the intake manifold 4 detected by the surge tank 3. That is, the charge delay coefficient KCHD is determined from the change in the amount of air taken into the intake system 1 via the throttle valve 2 from the previous state to the present state until the intake pipe pressure in the surge tank 3 changes. It is set by the time.

【0013】ステップ54では、所定時間例えば5mSEC
の間に変化した吸気管圧力の増加量ΔPMを、また、
所定時間ごとに得られた増加量ΔPMにより計算圧力
PMを、それぞれ次式により演算する。
In step 54, a predetermined time, for example, 5 mSEC
The increase amount ΔPM n of the intake pipe pressure changed during
The calculated pressure PM n is calculated by the following equation from the increase amount ΔPM n obtained every predetermined time.

【0014】[0014]

【数1】 PM=PMn−1+ΔPM (2) 次に、図3に示すフローチャートにおいて、気筒判別信
号G1により規定されるタイミング(Nタイミング)で
実行されて基本噴射量を演算するプログラムについて説
明する。まず、ステップ61では、この時点における最
新の計算圧力PM及び増加量ΔPMと、検出された
エンジン回転数NEとを読み込む。ステップ62では、
燃料噴射量を計算する時期と吸気弁が閉弁する時期との
時間差(行程遅れ時間)KTDLYを、次式により演算
する。
[Equation 1] PM n = PM n−1 + ΔPM n (2) Next, in the flowchart shown in FIG. 3, a program executed at the timing (N timing) defined by the cylinder determination signal G1 to calculate the basic injection amount will be described. First, in step 61, the latest calculated pressure PM n and increase amount ΔPM n at this time point and the detected engine speed NE are read. In step 62,
The time difference (stroke delay time) KTDLY between the timing of calculating the fuel injection amount and the timing of closing the intake valve is calculated by the following equation.

【0015】[0015]

【数2】 つまり、行程遅れ時間KTDLYは、クランク角度にし
て180°の回転所要時間T180を計測し、また、燃
料噴射量の計算タイミングと吸気弁が閉弁するタイミン
グとの間を行程遅れのクランク角度により測定し、この
クランク角度を時間に換算して求めるものである。
[Equation 2] That is, the stroke delay time KTDLY measures the required rotation time T180 of 180 ° in terms of crank angle, and also the stroke delay crank angle between the fuel injection amount calculation timing and the intake valve closing timing. Then, this crank angle is converted into time and obtained.

【0016】ステップ63では、読み込んだ計算圧力P
及び増加量ΔPM、及び得られた行程遅れ時間K
TDLYに基づいて、行程遅れを考慮した予測圧力PM
TPを演算する。 PMTP=PMC+ΔPM×KTDLY (4) ステップ64では、ステップ63で演算した予測圧力M
PTPと、読み込んだエンジン回転数NEとにより、通
常のTPマップ(エンジン回転数NEと吸気管圧力とを
パラメータとして基本噴射時間TPを設定したマップ)
より基本噴射時間TPを演算する。ステップ65では、
この時点におけるその他の補正量、例えばA/Fフィー
ドバック補正量や過渡時空燃比補正量など、及びウェッ
ト補正量を演算する。ステップ66では、基本噴射時間
TPと各補正係数とに基づいて、有効噴射時間TAUを
演算する。
In step 63, the read calculated pressure P
M n and increase amount ΔPM n , and obtained stroke delay time K
Predicted pressure PM considering stroke delay based on TDLY
Calculate TP. PMTP = PMC + ΔPM × KTDLY (4) In step 64, the predicted pressure M calculated in step 63
A normal TP map based on the PTP and the read engine speed NE (a map in which the basic injection time TP is set using the engine speed NE and the intake pipe pressure as parameters)
Then, the basic injection time TP is calculated. In step 65,
Other correction amounts at this time, such as A / F feedback correction amount and transient air-fuel ratio correction amount, and wet correction amount are calculated. In step 66, the effective injection time TAU is calculated based on the basic injection time TP and each correction coefficient.

【0017】以上の構成において、所定時間である5mS
ECごとに、ステップ51〜ステップ54を実行し、その
時点で検出したスロットル開度TAとエンジン回転数N
Eとにより、チャージ遅れ係数KCHDを加味した所定
時間内における吸気管圧力の増加量ΔPMを算出して、
基本噴射量TPを決定するための吸気管圧力となる計算
圧力PMを求め、その最新のものを記憶する。つまり、
エンジンの運転状態を検出し、その時点の吸気圧力に関
する遅れの補正係数としてのチャージ遅れ係数KCHD
を用いて吸気管圧力の増加量ΔPMを演算するので、
計算圧力PMは、吸入空気が変化した時点から実際に吸
気管圧力が変化するまでの遅れが補正されたものとな
り、変化開始から遅れ時間のない吸入空気量に対応する
ものになる。この場合、所定時間を短く設定すること
で、過渡時初期あるいは急加速時などの比較的急激な変
化が生じる場合においても確実にチャージ遅れの補正を
した計算圧力PMを演算することができる。しかして、
Nタイミングごとには、ステップ61〜66を実行し、
最新の計算圧力PMを行程遅れ要素により補正して予測
圧力PNTPを演算し、得られた予測圧力PNTPとそ
の時のエンジン回転数とで基本噴射時間TPを演算する
ので、吸気弁閉弁時期に応じた吸気管圧力により基本噴
射時間TPを演算することになる。したがって、電子回
路におけるフィルタなどでの信号の遅れで基本噴射時間
が実際に必要な時間とずれることが抑制され、噴射燃料
量が適正なものとなって空燃比制御性が向上する。
In the above structure, a predetermined time of 5 mS
Steps 51 to 54 are executed for each EC, and the throttle opening TA and engine speed N detected at that time
E is used to calculate the increase amount ΔPM of the intake pipe pressure within a predetermined time in consideration of the charge delay coefficient KCHD,
The calculated pressure PM that is the intake pipe pressure for determining the basic injection amount TP is calculated, and the latest value is stored. That is,
A charge delay coefficient KCHD as a correction coefficient for the delay related to the intake pressure at the time when the operating state of the engine is detected
Since the increase amount ΔPM n of the intake pipe pressure is calculated using
The calculated pressure PM is obtained by correcting the delay from the time when the intake air changes to the time when the intake pipe pressure actually changes, and corresponds to the intake air amount that has no delay time from the start of the change. In this case, by setting the predetermined time to be short, it is possible to reliably calculate the calculated pressure PM in which the charge delay is corrected even when a relatively rapid change occurs at the initial stage of transient or during rapid acceleration. Then,
Steps 61 to 66 are executed every N timings,
The predicted pressure PNTP is calculated by correcting the latest calculated pressure PM with the stroke delay element, and the basic injection time TP is calculated from the obtained predicted pressure PNTP and the engine speed at that time. The basic injection time TP is calculated from the intake pipe pressure. Therefore, the basic injection time is prevented from deviating from the actually required time due to the delay of the signal in the filter in the electronic circuit, the injection fuel amount becomes appropriate, and the air-fuel ratio controllability is improved.

【0018】なお、本発明は以上説明した実施例に限定
されるものではない。
The present invention is not limited to the embodiments described above.

【0019】その他、各部の構成は図示例に限定される
ものではなく、本発明の趣旨を逸脱しない範囲で種々変
形が可能である。
In addition, the configuration of each part is not limited to the illustrated example, and various modifications can be made without departing from the spirit of the present invention.

【0020】[0020]

【発明の効果】本発明は、以上に詳述したように、所定
時間ごとに検出されるスロットル開度とエンジン回転数
とに基づいて、チャージ遅れ及び行程遅れを補正した吸
気管圧力を演算し、その吸気管圧力により基本噴射時間
を決定するので、過渡時初期などにおける急激な変化時
においても適正な基本噴射時間を演算することができ、
空燃比制御性を向上させることができる。
As described above in detail, the present invention calculates the intake pipe pressure with the charge delay and the stroke delay corrected based on the throttle opening and the engine speed detected every predetermined time. Since the basic injection time is determined by the intake pipe pressure, an appropriate basic injection time can be calculated even when there is a sudden change in the initial stage of a transition,
The air-fuel ratio controllability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成説明図。FIG. 1 is a schematic configuration explanatory view showing an embodiment of the present invention.

【図2】同実施例の制御手順を示すフローチャート。FIG. 2 is a flowchart showing a control procedure of the embodiment.

【図3】同実施例の制御手順を示すフローチャート。FIG. 3 is a flowchart showing a control procedure of the embodiment.

【図4】同実施例における吸入空気量QNPと吸気管圧
力SPとを設定するマップの構成を示すマップ構成説明
図。
FIG. 4 is a map configuration explanatory view showing a configuration of a map for setting an intake air amount QNP and an intake pipe pressure SP in the embodiment.

【符号の説明】[Explanation of symbols]

2…スロットルバルブ 4…吸気マニホルド 5…燃料噴射弁 6…電子制御装置 7…中央演算処理装置 8…記憶装置 9…入力インターフェース 11…出力インターフェース 2 ... Throttle valve 4 ... Intake manifold 5 ... Fuel injection valve 6 ... Electronic control device 7 ... Central processing unit 8 ... Storage device 9 ... Input interface 11 ... Output interface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スロットル開度及びエンジン回転数を検出
し、 検出したスロットル開度及びエンジン回転数に基づいて
所定時間後に変化している吸気管圧力を予測し、 噴射量計算時期と吸気弁閉弁時期とから行程の遅れ時間
を演算し、 予測した吸気管圧力と遅れ時間とに基づいて予測圧力を
演算し、 得られた予測圧力とその時のエンジン回転数とに基づい
て基本噴射時間を所定期間ごとに演算することを特徴と
する基本燃料噴射方法。
1. A throttle opening and an engine speed are detected, and an intake pipe pressure which is changing after a predetermined time is predicted based on the detected throttle opening and the engine speed, and an injection amount calculation timing and an intake valve closing. The stroke delay time is calculated from the valve timing, the predicted pressure is calculated based on the predicted intake pipe pressure and the delay time, and the basic injection time is set based on the obtained predicted pressure and the engine speed at that time. A basic fuel injection method characterized in that it is calculated for each period.
JP33405792A 1992-12-15 1992-12-15 Basic fuel injection method Expired - Fee Related JP3295150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33405792A JP3295150B2 (en) 1992-12-15 1992-12-15 Basic fuel injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33405792A JP3295150B2 (en) 1992-12-15 1992-12-15 Basic fuel injection method

Publications (2)

Publication Number Publication Date
JPH06185396A true JPH06185396A (en) 1994-07-05
JP3295150B2 JP3295150B2 (en) 2002-06-24

Family

ID=18273030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33405792A Expired - Fee Related JP3295150B2 (en) 1992-12-15 1992-12-15 Basic fuel injection method

Country Status (1)

Country Link
JP (1) JP3295150B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004764A1 (en) * 1998-11-26 2000-05-31 MAGNETI MARELLI S.p.A. Method of controlling the direct injection of fuel into a combustion chamber of an internal combustion engine
FR2817914A1 (en) * 2000-10-10 2002-06-14 Bosch Gmbh Robert CONTROL AND REGULATION METHOD AND INSTALLATION FOR THE IMPLEMENTATION OF AN INTERNAL COMBUSTION ENGINE
US6497214B2 (en) * 2000-11-06 2002-12-24 Denso Corporation Control system for an internal combustion engine
WO2022073729A1 (en) * 2020-10-09 2022-04-14 Vitesco Technologies GmbH Method for estimating the pressure in an intake manifold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004764A1 (en) * 1998-11-26 2000-05-31 MAGNETI MARELLI S.p.A. Method of controlling the direct injection of fuel into a combustion chamber of an internal combustion engine
FR2817914A1 (en) * 2000-10-10 2002-06-14 Bosch Gmbh Robert CONTROL AND REGULATION METHOD AND INSTALLATION FOR THE IMPLEMENTATION OF AN INTERNAL COMBUSTION ENGINE
US6497214B2 (en) * 2000-11-06 2002-12-24 Denso Corporation Control system for an internal combustion engine
WO2022073729A1 (en) * 2020-10-09 2022-04-14 Vitesco Technologies GmbH Method for estimating the pressure in an intake manifold
FR3115076A1 (en) * 2020-10-09 2022-04-15 Vitesco Technologies Method for estimating the pressure in an intake manifold
US11808230B2 (en) 2020-10-09 2023-11-07 Vitesco Technologies GmbH Method for estimating the pressure in an intake manifold

Also Published As

Publication number Publication date
JP3295150B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JPH0634491A (en) Lean limit detecting method utilizing ion current
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JPH0251056B2 (en)
JPH0211729B2 (en)
US5664544A (en) Apparatus and method for control of an internal combustion engine
JP3544197B2 (en) Electronic control unit for internal combustion engine
JPS6231179B2 (en)
US6536414B2 (en) Fuel injection control system for internal combustion engine
JP3295150B2 (en) Basic fuel injection method
EP0161611B1 (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JP3209056B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0512538B2 (en)
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP4432572B2 (en) Control device for internal combustion engine
JP3234419B2 (en) Lean limit detection method
JP3017298B2 (en) Engine fuel control device
JP2006029194A (en) Controlling device for internal combustion engine
JPH0656112B2 (en) Fuel injection control device for internal combustion engine
JP2910528B2 (en) Acceleration determination device for internal combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPH07229441A (en) Intake device of internal combustion engine
JPH04365944A (en) Fuel injection amount control device for internal combustion engine
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees