JPH0656112B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH0656112B2
JPH0656112B2 JP5923886A JP5923886A JPH0656112B2 JP H0656112 B2 JPH0656112 B2 JP H0656112B2 JP 5923886 A JP5923886 A JP 5923886A JP 5923886 A JP5923886 A JP 5923886A JP H0656112 B2 JPH0656112 B2 JP H0656112B2
Authority
JP
Japan
Prior art keywords
fuel
engine
amount
correction
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5923886A
Other languages
Japanese (ja)
Other versions
JPS62218633A (en
Inventor
享 ▲吉▼村
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5923886A priority Critical patent/JPH0656112B2/en
Publication of JPS62218633A publication Critical patent/JPS62218633A/en
Publication of JPH0656112B2 publication Critical patent/JPH0656112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の再始動時及び過渡時の燃料噴射量
を最適に設定するようにした燃料噴射制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for optimally setting a fuel injection amount during restart and transition of an internal combustion engine.

〈従来の技術〉 従来、電子制御燃料噴射装置を備えた内燃機関の燃料噴
射制御装置にあっては、機関の始動性改善及び始動後の
安定回転確保のため、始動時及び始動後に燃料噴射量を
増量補正して空燃比を濃側に補正している。
<Prior Art> Conventionally, in a fuel injection control device for an internal combustion engine equipped with an electronically controlled fuel injection device, in order to improve the startability of the engine and ensure stable rotation after the start, the fuel injection amount at and after the start Is corrected to increase the air-fuel ratio on the dark side.

具体的には、始動(クランキング)時に機関冷却水温度
に応じた増量補正を行うと共に、始動直後から機関の所
定回転(例えば5回転)毎に増量補正係数を減少させる
補正制御が行われている。また、加速時にも応答性向上
のため燃料増量補正を行っている(特開昭58−144
632号,特開昭58−14463号等参照)。
Specifically, at the time of starting (cranking), an increase correction is performed according to the engine cooling water temperature, and correction control is performed immediately after the start to decrease the increase correction coefficient every predetermined rotation (for example, 5 rotations) of the engine. There is. In addition, the fuel amount is corrected to improve the response during acceleration (Japanese Patent Laid-Open No. 58-144).
632, JP-A-58-14463, etc.).

〈発明が解決しようとする問題点〉 しかしながら、このような従来の燃料噴射制御装置にあ
っては、吸気通路の上流位置に設けられた燃料噴射弁か
ら下流側の吸気マニホールド方向へ向けて燃料を噴射す
るいわゆるシングルポイントインジェクション方式の燃
料噴射装置の場合、機関停止直前の運転状態により吸気
系(吸気マニホールド及び吸気ポート)に付着及び浮遊
している燃料量がかなり異なり、例えばアイドリングや
減速運転時間が殆ど無い運転状態で機関停止された後の
再始動時においては、吸気系に付着,浮遊している燃料
が始動及び始動後増量補正された噴射燃料と共に機関燃
焼室内へ供給されるため、燃料の過剰供給によりHC,
CO等未燃焼排出物が増加したり点火栓のくすぶりを生
じ、再始動が困難になる等の問題を生じていた。
<Problems to be Solved by the Invention> However, in such a conventional fuel injection control device, fuel is injected from the fuel injection valve provided at the upstream position of the intake passage toward the intake manifold on the downstream side. In the case of a so-called single-point injection type fuel injection device that injects fuel, the amount of fuel adhering to and floating in the intake system (intake manifold and intake port) varies considerably depending on the operating state immediately before the engine is stopped. At the time of restarting after the engine has been stopped under almost no operating condition, the fuel adhering to and floating in the intake system is supplied to the engine combustion chamber together with the injected fuel that has been started and increased after the start of the engine. HC due to excessive supply,
There have been problems such as an increase in unburned emissions such as CO and smoldering of the spark plug, making restarting difficult.

また、各気筒の吸気ポートに燃料噴射弁を備えたものに
あっても吸気の吹き返し現象により吸気系に燃料が残留
するため、上記傾向は免れなかった。
Further, even in the case where a fuel injection valve is provided in the intake port of each cylinder, the above tendency is unavoidable because the fuel remains in the intake system due to the phenomenon of blowback of intake air.

また、特開昭56-154133号公報に示されるものでは、機
関の再始動時の冷却水温度と吸気管壁温度とを検出し、
冷却水温度が低いときは吸気管壁への燃料付着量が多い
として始動時増量補正を行い、冷却水温度と吸気管壁温
度が共に高いときは、吸気系内の燃料量が飽和している
として始動時燃料増量を停止するが、冷却状態温度が高
く吸気管壁温度は低いときは、吸気系内で気化された燃
料はキャニスタ等に吸着されているため吸気管壁への燃
料付着量が多いとして始動時増量補正を行うようにして
いる。
Further, in the one disclosed in JP-A-56-154133, the cooling water temperature and the intake pipe wall temperature when the engine is restarted are detected,
When the cooling water temperature is low, it is assumed that the amount of fuel adhering to the intake pipe wall is large, and the startup increase correction is performed. When both the cooling water temperature and the intake pipe wall temperature are high, the fuel amount in the intake system is saturated. However, when the cooling state temperature is high and the intake pipe wall temperature is low, the fuel vaporized in the intake system is adsorbed by the canister, etc. As the number is large, the increase correction at starting is performed.

しかしながら、上記のものは、始動時の2種類の温度の
組み合わせに応じて始動時の残留燃料が多いか少ないか
を大雑肥に判別して始動燃料増量の有無を決定している
だけで、始動時の残留燃料量を機関停止時の吸気系内の
残留燃料量及び停止後の残留燃料量の変化を算出しつつ
正確に予測するものではない。このため、始動時の燃料
増量補正量を残留燃料量に応じて高精度に設定できるも
のではなく、十分再始動性能を高めることができるもの
ではなかった。
However, the above-mentioned one simply determines whether or not the amount of residual fuel at the time of starting is large or small according to the combination of the two types of temperature at the time of starting, and determines whether or not to increase the amount of starting fuel. The residual fuel amount at the time of starting is not accurately predicted while calculating the change in the residual fuel amount in the intake system when the engine is stopped and the change in the residual fuel amount after the engine is stopped. Therefore, the fuel increase correction amount at the time of starting cannot be set with high accuracy according to the residual fuel amount, and the restart performance cannot be sufficiently improved.

また、加減速時にも吸気系内に残留する燃料量は変化す
るが、従来かかる燃料量の変化を吸気管圧力の変化等で
推定して燃料供給量を補正するものはあったが、残留燃
料量の変化は、吸気管圧力の絶対値,機関回転速度,機
関温度等にも依存するため、従来の推定は精度が低く、
十分適切な燃料補正量に設定することができなかったた
め、加減速性能を十分改善することができなかった。
Also, the amount of fuel remaining in the intake system changes during acceleration and deceleration. Conventionally, there has been a method of correcting the fuel supply amount by estimating such a change in the fuel amount by a change in intake pipe pressure, etc. Since the change in the amount depends on the absolute value of the intake pipe pressure, the engine rotation speed, the engine temperature, etc., the conventional estimation has low accuracy,
The acceleration / deceleration performance could not be sufficiently improved because the fuel correction amount could not be set to a sufficiently appropriate value.

本発明は、このような従来の問題点に鑑みなされたもの
で、機関の運転中のみなららず停止後も吸気系に付着及
び浮遊する燃料量を常に予測演算することにより、再始
動時や加減速時の燃料補正量を適切に設定し、もって良
好な空燃比に制御して始動性能,加減速性能を向上でき
ると共に、HC,CO等の排出量も低減できるようにし
た内燃機関の燃料噴射制御装置を提供することを目的と
する。
The present invention has been made in view of such conventional problems, and by constantly predicting and calculating the amount of fuel adhering to and floating in the intake system not only during engine operation but also after engine stop, it is A fuel for an internal combustion engine in which the fuel correction amount at the time of acceleration / deceleration is appropriately set and the air-fuel ratio is controlled to a good value to improve the starting performance and the acceleration / deceleration performance, and the emissions of HC, CO, etc. can be reduced. An object is to provide an injection control device.

〈問題点を解決するための手段〉 このため、本発明は第1図に示すように、機関の運転状
態を、少なくとも機関回転速度、機関負荷及び機関温度
を含むパラメータから検出する運転状態検出手段aと、
機関の運転状態に基づいて燃料の基本噴射量(T)を
演算する基本噴射量演算手段bと、機関回転速度、機関
負荷及び機関温度に基づいて吸気系の付着、浮遊燃料の
平衡量(M0)を演算する平衡量演算手段cと、平衡量
演算手段で演算した付着、浮遊燃料の平衡量(M0)と
その時点での吸気系の付着、浮遊燃料の予測変数との差
値(M0−M)を演算する差値演算手段dと、差値演算
手段で演算した差値(M0−M)を燃料噴射量の補正に
どの程度反映させるかを示す補正係数(DK)を、機関
回転速度、機関負荷及び機関温度に基づいて演算する補
正係数演算手段eと、前記差値(M0−M)と前記補正
係数(DK)とに基づいて補正量(DM)を演算する第
1の補正量演算手段fと、前記第1の補正量演算手段で
演算した補正量(DM)と前記付着、浮遊燃料の予測変
数(M)とを燃料噴射に同期して加算し、該加算値で予
測変数(M)を更新する第1の予測変数演算手段gと、
前記基本噴射量演算手段で演算した基本噴射量(T
と前記第1の補正量演算手段で演算した補正量(DM)
とに基づいて燃料噴射量(T)を演算して噴射信号を
出力する燃料噴射量演算手段hと、前記噴射信号に基づ
いて機関に燃料を供給する燃料供給手段iと、機関の停
止を検出する機関停止検出手段jと、機関の停止が検出
された後、機関停止時の補正量(DM)を、機関温度に
基づいて所定時間毎に演算する第2の補正量演算手段k
と、前記第2の補正量演算手段で演算した補正量(D
M)と前記付着、浮遊燃料の予測変数(M)とを所定時
間毎に加算し、該加算値で予測変数(M)を更新する第
2の予測変数演算手段lと、を備えた構成とする。
<Means for Solving Problems> Therefore, according to the present invention, as shown in FIG. 1, the operating state detecting means for detecting the operating state of the engine from parameters including at least the engine speed, the engine load and the engine temperature. a and
Basic injection amount calculation means b for calculating the basic injection amount (T P ) of fuel based on the operating state of the engine, and adhesion of the intake system and equilibrium amount of floating fuel (based on engine speed, engine load and engine temperature) M0) for calculating the equilibrium amount calculation means c, the adhesion calculated by the equilibrium amount calculation means, the floating fuel equilibrium amount (M0) and the intake system adhesion at that time, and the difference value (M0) between the predicted variables of the floating fuel. -M) and a correction coefficient (DK) indicating how much the difference value (M0-M) calculated by the difference value calculation means is reflected in the correction of the fuel injection amount. A correction coefficient calculation means e that calculates based on speed, engine load and engine temperature, and a first correction that calculates a correction amount (DM) based on the difference value (M0-M) and the correction coefficient (DK). Amount calculation means f and the correction amount calculated by the first correction amount calculation means DM) and the attachment, the first predictor calculation means g predictors floating fuel and (M) are added in synchronism with the fuel injection, to update the predictors (M) with said added value,
Basic injection amount (T P ) calculated by the basic injection amount calculation means
And the correction amount (DM) calculated by the first correction amount calculation means
On the basis of the fuel injection amount (T 1 ) and outputs an injection signal, fuel injection amount calculation means h for supplying fuel to the engine based on the injection signal, and stopping the engine. The engine stop detection means j for detecting, and the second correction amount calculation means k for calculating the correction amount (DM) at the time of engine stop at predetermined time intervals based on the engine temperature after the engine stop is detected.
And the correction amount calculated by the second correction amount calculation means (D
M) and the predictive variable (M) of the adhered and floating fuel are added at predetermined time intervals, and the predictive variable (M) is updated with the added value. To do.

〈作用〉 定常運転状態では、吸気系に残留する燃料量つまり予測
変数(M)は一定であるため、平衡量演算手段で演算し
た平衡量と一致し、燃料噴射量の補正は行われない。
<Operation> In the steady operation state, the amount of fuel remaining in the intake system, that is, the predictive variable (M) is constant, and therefore coincides with the equilibrium amount calculated by the equilibrium amount calculation means, and the fuel injection amount is not corrected.

過渡運転状態では、運転状態の変化により平衡量演算で
演算される平衡量(M0)が変化し、予測変数(M)と
の間に差を生じ、その差値(M0−M)が差値演算手段
により演算される。
In the transient operation state, the equilibrium amount (M0) calculated by the equilibrium amount calculation changes due to the change of the operation state, and a difference is generated between the estimated variable (M) and the difference value (M0-M) is the difference value. It is calculated by the calculation means.

次いで、前記差値(M0−M)をどの程度燃料噴射量の
補正に反映するかを示す補正係数が補正係数演算手段に
より、機関回転速度、機関負荷及び機関温度に基づいて
演算し、前記差値(M0−M)と前記補正係数(DK)
とに基づいて第1の補正量演算手段が、機関運転中の燃
料噴射量の補正量(DM)を演算する。
Next, a correction coefficient indicating how much the difference value (M0-M) is reflected in the correction of the fuel injection amount is calculated by the correction coefficient calculation means based on the engine speed, the engine load and the engine temperature, and the difference is calculated. Value (M0-M) and the correction coefficient (DK)
Based on the above, the first correction amount calculation means calculates the correction amount (DM) of the fuel injection amount during engine operation.

予測変数演算手段は、前記第1の補正量演算手段で演算
された補正量(DM)と現在の予測変数(M)とを加算
することにより、過渡運転時に変化する予測変数(M)
を補正する。
The prediction variable calculation means adds the correction amount (DM) calculated by the first correction amount calculation means and the current prediction variable (M) to change the prediction variable (M) during transient operation.
To correct.

一方、前記補正量(DM)は、吸気系内の残留燃料量の
変化量に対応する値であるから、この値に基づいて燃料
噴射量演算手段が燃料噴射量を補正して補正された燃料
噴射信号を出力し、該補正された量の燃料が燃料供給手
段から機関に供給される。
On the other hand, since the correction amount (DM) is a value corresponding to the amount of change in the residual fuel amount in the intake system, the fuel injection amount calculation means corrects the fuel injection amount based on this value and the corrected fuel amount is corrected. An injection signal is output, and the corrected amount of fuel is supplied to the engine from the fuel supply means.

このようにして、運転中に吸気系内に残留する燃料量を
逐次予測しつつ、機関停止後も第2の補正量演算手段が
残留燃料量の変化を機関温度に応じて予測して補正量
(DM)を所定時間毎に演算する。この場合、機関停止
時は機関回転速度,機関の負荷が共に0であるから、機
関停止後における付着、浮遊燃料の補正量(DM)を機
関温度の関数として近似的に求めることが可能となる。
そして、機関停止直前の予測変数(M)を初期値として
前記補正量(DM)で予測変数(M)を徐々に変化させ
ると、実際に吸気系に残留する燃料量に良く対応するた
め、短時間停止後の再始動時に燃料が残留している場合
は始動時の燃料補正増量を減少できる。
In this way, while the fuel amount remaining in the intake system during operation is sequentially predicted, the second correction amount calculation means predicts the change in the residual fuel amount according to the engine temperature even after the engine is stopped, and the correction amount is calculated. (DM) is calculated every predetermined time. In this case, since the engine speed and the engine load are both 0 when the engine is stopped, it is possible to approximately obtain the correction amount (DM) of adhered and floating fuel after the engine is stopped as a function of the engine temperature. .
When the predictive variable (M) immediately before the engine is stopped is used as an initial value and the predictive variable (M) is gradually changed by the correction amount (DM), it corresponds well to the actual amount of fuel remaining in the intake system. When the fuel remains at the time of restart after the time stop, the fuel correction increase at the time of start can be reduced.

〈実施例〉 以下、本発明の実施例を図に基づいて説明する。<Example> An example of the present invention will be described below with reference to the drawings.

一実施例の全体構成を示す第2図において、後述する各
種演算制御を行うためのマイクロコンピュータ1は、C
PU1A,ROM1B,RAM1C,I/Oポート1D
により構成される。I/Oポート1Dには、機関運転状
態の検出信号として機関の吸気通路2上流部に装着され
たエアフロメータ3からの吸入空気流量信号Qa,絞り
弁4の支軸に装着されたスロットルセンサ5からのスロ
ットル位置(絞り弁開度)信号θ及びスロットルスピー
ド(開閉速度)信号Vθ、クランク軸近傍に設けられた
クランク角センサ6からの機関回転速度信号N、ウォー
タジャケット7に設けられた水温センサ8からの冷却水
温度信号Tw,吸気マニホールド9壁に装着された温度
センサ9からの吸気通路壁温度信号Ti,排気マニホー
ルド10に設けられた空燃比センサ11からの空燃比信号等
が入力される。尚、これら各種センサ類が運転状態検出
手段を構成する。絞り弁4の上流近傍には燃料供給手段
としての燃料噴射弁12が装着され、該燃料噴射弁12には
前記I/Oポート1Dから燃料噴射信号Tが出力さ
れ、CPU1Aによって演算された量の燃料が機関回転
と同期して噴射供給される。また、吸気マニホールド2
Aには、機関の冷却水を循環させる吸気加熱用ウォータ
ジャケット13が設けられ、前記燃料噴射弁12から噴射さ
れた燃料を吸気マニホールド2A内を通過して燃焼室14
を流入するまでの間加熱し、微粒化を促進する。排気マ
ニホールド10には、排気浄化用触媒15が介装される。
In FIG. 2 showing the overall configuration of one embodiment, a microcomputer 1 for performing various arithmetic controls described later is C
PU1A, ROM1B, RAM1C, I / O port 1D
It is composed of The I / O port 1D has an intake air flow rate signal Qa from an air flow meter 3 installed upstream of an intake passage 2 of the engine as a detection signal of an engine operating state, and a throttle sensor 5 installed on a spindle of a throttle valve 4. Throttle position (throttle valve opening) signal θ and throttle speed (opening / closing speed) signal V θ , engine rotation speed signal N from a crank angle sensor 6 provided near the crankshaft, and water temperature provided in the water jacket 7. The cooling water temperature signal Tw from the sensor 8, the intake passage wall temperature signal Ti from the temperature sensor 9 mounted on the wall of the intake manifold 9, the air-fuel ratio signal from the air-fuel ratio sensor 11 provided in the exhaust manifold 10, etc. are input. It It should be noted that these various sensors form an operating state detecting means. A fuel injection valve 12 as a fuel supply means is mounted in the vicinity of the upstream side of the throttle valve 4, a fuel injection signal T 1 is output from the I / O port 1D to the fuel injection valve 12, and the amount calculated by the CPU 1A. Fuel is injected and supplied in synchronization with the engine rotation. In addition, the intake manifold 2
A is provided with an intake heating water jacket 13 for circulating engine cooling water, and the fuel injected from the fuel injection valve 12 passes through the intake manifold 2A to form a combustion chamber 14A.
Is heated until it flows in to accelerate atomization. An exhaust gas purification catalyst 15 is provided in the exhaust manifold 10.

次に、マイクロコンピュータ1による空燃比(燃料噴射
量)制御を第3図〜第6図に示したフローチャートに従
って演算する。
Next, the air-fuel ratio (fuel injection amount) control by the microcomputer 1 is calculated according to the flowcharts shown in FIGS.

第3図は、基本噴射量TPと該基本噴射量TPを補正す
るための平衡量M0,補正係数DK,第1の補正量DM
を演算するルーチンを示す。
FIG. 3 shows the basic injection amount TP, the equilibrium amount M0 for correcting the basic injection amount TP, the correction coefficient DK, and the first correction amount DM.
A routine for calculating is shown.

まずステップ1(図ではS1と記す。以下同様)では、
エアフロメータ3から読み込んだ吸入空気流量Qaと、
クランク角センサ6によって検出された機関回転速度N
とに基づいて燃料の基本噴射量TPを次式により演算す
る。このステップ1の機能が、基本噴射量演算手段を構
成する。
First, in step 1 (denoted as S1 in the figure, the same applies hereinafter),
Intake air flow rate Qa read from the air flow meter 3,
Engine rotation speed N detected by the crank angle sensor 6
Based on and, the basic fuel injection amount TP is calculated by the following equation. The function of step 1 constitutes the basic injection amount calculation means.

TP=Qa/N×K(但し、Kは定数) 次に、ステップ2では、機関の代表温度Tを演算する。TP = Qa / N × K (where K is a constant) Next, in step 2, the representative temperature T of the engine is calculated.

これは水温センサ8により検出される冷却水温度Twと
温度センサ9により検出される吸気通路壁温度Tiとに
基づいて次式により求められる。
This is calculated by the following equation based on the cooling water temperature Tw detected by the water temperature sensor 8 and the intake passage wall temperature Ti detected by the temperature sensor 9.

T=Tw×K1+Ti(1−K1) (K1は定数,K1<1) ステップ3では、機関運転状態に応じて、当該運転状態
を定常状態としたときに燃料噴射弁12下流の吸気マニホ
ールド2A,吸気ポート2B(以下吸気系という)に付
着及び浮遊する燃料量(以下平衡量という)M0を演算
する。即ち、このステップ3の機能が平衡量演算手段に
相当する。
T = Tw × K1 + Ti (1-K1) (K1 is a constant, K1 <1) In step 3, the intake manifold 2A downstream of the fuel injection valve 12 when the operating state is set to a steady state according to the engine operating state, A fuel amount (hereinafter referred to as an equilibrium amount) M0 that adheres to and floats in the intake port 2B (hereinafter referred to as an intake system) is calculated. That is, the function of step 3 corresponds to the equilibrium amount calculation means.

前記平衡量M0の演算は、例えば第4図に示すフローチ
ャートに従って行われる。
The calculation of the equilibrium amount M0 is performed, for example, according to the flowchart shown in FIG.

ここで、マイクロコンピータ1のROM1Bには夫々異
なる機関の代表温度T0〜T4に対し実験で求められた
平衡量M01〜M04の二次元のテーブルが記憶されて
いる(第7図参照)。
Here, the ROM 1B of the micro computer 1 stores a two-dimensional table of the equilibrium amounts M01 to M04 obtained by experiments for the representative temperatures T0 to T4 of different engines (see FIG. 7).

そして、ステップ11,15,19によってステップ2で決めた
代表温度TがT0〜T4で区画される4つの領域のいず
れに属しているかを判別し、属している領域を区画する
大小2つの代表温度に相当するテーブルから機関回転速
度Nと基本噴射量TPに応じた平衡量を検索し、実際の
代表温度Tと、検索した2つのテーブルの相当代表温度
とから直線近似の補間計算を行って平衡量M0を演算す
る。
Then, in Steps 11, 15, and 19, it is determined which of the four areas the representative temperature T determined in Step 2 belongs to is divided into T0 to T4, and two representative temperatures of large and small that partition the belonging area. The equilibrium amount corresponding to the engine rotation speed N and the basic injection amount TP is retrieved from the table corresponding to, and the linear approximation interpolation calculation is performed from the actual representative temperature T and the corresponding representative temperatures of the two retrieved tables to achieve equilibrium. Calculate the quantity M0.

例えば、代表温度TがT以上であれば、まずT0相当
のテーブル(M00)からN,TPに応じたM00を検
索し、次にT相当のテーブル(M01)から、N,T
Pに応じた値M01を検索する。次に、平衡量M0を次
式により補間演算する。
For example, if the representative temperature T is equal to or higher than T 1 , first, the table (M00) corresponding to T0 is searched for M00 corresponding to N, TP, and then the table (M01) corresponding to T 1 is searched for N, T.
The value M01 corresponding to P is searched. Next, the equilibrium amount M0 is interpolated by the following equation.

他の代表温度範囲の場合も同様にして求める。このよう
にして、M0の演算を終えると、第3図のステップ4へ
進んで、補正係数DKを演算する。補正係数DKの演算
は、第5図に示すフローチャートに従って行われる。こ
の第5図に示すーチンが、補正係数演算手段を構成す
る。
The same is true for other representative temperature ranges. When the calculation of M0 is completed in this way, the process proceeds to step 4 in FIG. 3 to calculate the correction coefficient DK. The calculation of the correction coefficient DK is performed according to the flowchart shown in FIG. The routine shown in FIG. 5 constitutes a correction coefficient calculating means.

まず、ステップ31では、第3図に示すフローチャートの
ステップ2で求めた代表温度Tと、同じく前回のフロー
のステップ5で求めたDMを用いてROM1Bに記憶さ
れたDK・Tテーブル(第8図参照)から、第1補正係
数DK・Tを求める。次に、ステップ32では、機関回転
速度N及び基本噴射量TPを用いて同じくROMに記憶
されたたテーブルから第2補正係数DK・N(第9図参
照)を求め、ステップ33で、最終的に補正係数DKを次
式により演算する。
First, in step 31, using the representative temperature T obtained in step 2 of the flowchart shown in FIG. 3 and the DM obtained in step 5 of the previous flow, the DK · T table (FIG. 8) stored in the ROM 1B is used. The first correction coefficient DK · T is obtained from Next, at step 32, the second correction coefficient DKN (see FIG. 9) is obtained from the table also stored in the ROM by using the engine rotation speed N and the basic injection amount TP, and at step 33, the final correction coefficient is obtained. Then, the correction coefficient DK is calculated by the following equation.

DK=DK・T×DK・N このようにして、補正係数DKを求めた後、第3図のス
テップ5へ進んで第1の補正量(以下単に補正量とい
う)DMを次式により求める。
DK = DK.multidot.T.times.DK.N. After obtaining the correction coefficient DK in this way, the routine proceeds to step 5 in FIG. 3 to obtain the first correction amount (hereinafter simply referred to as correction amount) DM by the following equation.

DM=DK(M0−M) このステップ4,5の機能が第1の補正量演算手段に相
当する。また、ステップ5では、後述する差値(M0−
M)を同時に演算しているから差値演算手段にも相当す
る。
DM = DK (M0-M) The functions of steps 4 and 5 correspond to the first correction amount calculation means. In step 5, a difference value (M0-
Since M) is calculated at the same time, it also corresponds to difference value calculation means.

ここで、上記Mは現在吸気系に付着及び浮遊していると
予測される残留燃料量(以下予測変数という)を示す。
この予測変数Mは、第6図のステップ44において、M=
旧M+DMなる演算式で逐次更新される。この式で明ら
かなように、定常状態ではMはM0に一致するが、加減
速等過渡運転時はM0の変化に応じて変化する。
Here, the M indicates the residual fuel amount (hereinafter referred to as a prediction variable) predicted to be presently attached to and floating in the intake system.
This predictor variable M is M = M in step 44 of FIG.
It is sequentially updated with the arithmetic expression of old M + DM. As is clear from this equation, M matches M0 in the steady state, but changes in response to changes in M0 during transient operation such as acceleration / deceleration.

次に、機関回転に同期して行われる燃料噴射パルス幅T
I演算ルーチンを第6図に示したフローチャートに従っ
て説明する。
Next, the fuel injection pulse width T that is performed in synchronization with the engine rotation
The I operation routine will be described with reference to the flowchart shown in FIG.

ステップ41では、第3図のステップ1で求めた基本噴射
量TPにステップ5で求めた補正量DMを加算すること
により、補正した基本噴射パルス幅TPFを演算する。
In step 41, the corrected basic injection pulse width TPF is calculated by adding the correction amount DM found in step 5 to the basic injection amount TP found in step 1 of FIG.

次いで、ステップ42において、空燃比センサ11から検出
される実際の空燃比に基づいて増減して求められたフィ
ードバック補正係数αと、冷却水温度等各種運転条件に
応じて求められる補正係数の総和である各種補正係数C
OEFと、バッテリ電圧に応じて燃料噴射弁の立ち上が
りと立ち下がりに要する無効パルス幅Tsとにより、燃
料噴射弁12に出力される最終的な燃料噴射パルス幅TI
を次式により演算する。
Next, at step 42, the feedback correction coefficient α obtained by increasing or decreasing based on the actual air-fuel ratio detected by the air-fuel ratio sensor 11 and the sum of the correction coefficients obtained according to various operating conditions such as cooling water temperature are calculated. Various correction factors C
The final fuel injection pulse width TI output to the fuel injection valve 12 is determined by the OEF and the invalid pulse width Ts required for rising and falling of the fuel injection valve according to the battery voltage.
Is calculated by the following equation.

TI=TP・α・COEF+Ts以上ステップ41〜ステ
ップ42までの機能が燃料噴射量演算手段を構成する。
TI = TP.alpha..COEF + Ts or more The functions from step 41 to step 42 constitute the fuel injection amount calculation means.

ステップ43では、上記のようにして求められたTIがI
/Oポート1Dの出力レジスタにストアされ、噴射開始
が命令される。その結果、燃料噴射弁12から演算値に対
応した量の燃料が噴射される。
In step 43, the TI obtained as described above is I
It is stored in the output register of the / O port 1D, and the start of injection is commanded. As a result, the fuel injection valve 12 injects an amount of fuel corresponding to the calculated value.

次いで、ステップ44でMの値を前回のMの値(旧M)に
補正量DMを加算して更新する。このステップ44の機能
が第1の予測変数演算手段を構成する。
Next, at step 44, the M value is updated by adding the correction amount DM to the previous M value (old M). The function of this step 44 constitutes the first predictive variable calculation means.

このようにすれば、加減速時には運転状態の変化に応じ
て吸気系に残留する燃料量を予測し、その変化に応じて
燃料噴射量が補正される。例えば、加速時はまず運転条
件の変化によりステップ3にて検索されるM0が増大
し、これに伴って加速前の予測変数Mとの間に正の差値
ΔMを生じ、これに補正係数DKを乗じて得られる補正
量DMが燃料残留量の増加に見合って増量される。この
結果、燃焼室14に供給される燃料量が燃料残留量の増加
によって不足することを防止でき、空燃比のリーン化を
防止して加速応答性が向上する。
With this configuration, during acceleration / deceleration, the amount of fuel remaining in the intake system is predicted according to the change in the operating state, and the fuel injection amount is corrected according to the change. For example, at the time of acceleration, M0 searched in step 3 first increases due to a change in operating conditions, and accordingly, a positive difference value ΔM with respect to the prediction variable M before acceleration is generated, and the correction coefficient DK is added to this. The correction amount DM obtained by multiplying by is increased in proportion to the increase in the residual fuel amount. As a result, it is possible to prevent the amount of fuel supplied to the combustion chamber 14 from becoming insufficient due to an increase in the residual fuel amount, prevent the air-fuel ratio from becoming lean, and improve the acceleration response.

減速時は、同様にしてM0が減少し、Mとの間に負の偏
差を生じて燃料噴射量が減少補正される。この場合も燃
料残留量の減少分に相当する燃料が燃焼室に流入するた
め、これに見合った量の燃料を減少時補正することによ
り、減速応答性が向上すると共に、空燃比のリッチ化を
防止して失火やCO,HC等未燃排出物の増大を防止で
きる。
At the time of deceleration, M0 similarly decreases, a negative deviation is generated between M and M, and the fuel injection amount is corrected to be decreased. In this case as well, the fuel corresponding to the decrease in the residual fuel amount flows into the combustion chamber, so by correcting the amount of fuel corresponding to this when reducing, the deceleration response is improved and the air-fuel ratio is enriched. It is possible to prevent misfire and increase unburned emissions such as CO and HC.

また、変速機のギアチェンジ時は、減速した後加速が行
われるため、前記減速時の燃料減量補正と加速時の増量
補正とが連続的に行われ、変速機のトルク変化を減少で
き、滑らかな変速切換が行われる。
Further, during gear change of the transmission, acceleration is performed after deceleration, so the fuel reduction correction during deceleration and the fuel increase correction during acceleration are continuously performed, and the torque change of the transmission can be reduced and smoothed. Gear shifting is performed.

これら加速,減速,ギアチェンジ時の各状態量は、第10
図で示されるように変する。
Each state quantity during acceleration, deceleration, and gear change is the 10th
Change as shown in the figure.

次に、機関停止中に再始動のために行われる制御を第11
図に示したフローチャートに従って説明する。
Next, the control performed for restarting while the engine is stopped
A description will be given according to the flowchart shown in the figure.

まず、機関停止後もしばらくの間マイクロコンピュータ
1に電流を供給し続けておく。このルーチンは、エンジ
ンキースイッチをOFFとすることにより開始され、マ
イクロコンピュータ1の内部タイマにより一定時間毎に
繰り返され、設定時間内に終了する。したがって、エン
ジンキースイッチが機関停止手段を構成する。
First, the current is continuously supplied to the microcomputer 1 for a while after the engine is stopped. This routine is started by turning off the engine key switch, is repeated at regular time intervals by the internal timer of the microcomputer 1, and ends within the set time. Therefore, the engine key switch constitutes the engine stopping means.

ステップ51では、機関の代表温度Tを算出する。In step 51, the representative temperature T of the engine is calculated.

ステップ53では、ステップ51で求めた代表温度Tに基づ
き、第12図に示した特性を記憶したROM1Bから補正
量DMを検索して求める。このステップ53の機能が第2
の補正量演算手段を構成する。ここで、機関停止時の付
着、浮遊燃料の平衡値は0であり、M0−Mが負の値と
なることに基づき、このDMは負の値に設定してある。
また、精度を良くするため実験値を使用する。なお、実
験値を用いない場合は、機関停止時の条件(機関回転速
度N及び基本噴射量Tが0)と代表温度Tとから機関
停止時の補正係数DKを設定し、付着、浮遊燃料の平衡
量M0を0として前述のDMを求める式から算出しても
よい。
In step 53, based on the representative temperature T obtained in step 51, the correction amount DM is retrieved from the ROM 1B storing the characteristics shown in FIG. The function of this step 53 is the second
Of the correction amount calculation means. Here, the equilibrium value of adhesion and floating fuel when the engine is stopped is 0, and this DM is set to a negative value because M0-M becomes a negative value.
Also, experimental values are used to improve accuracy. When the experimental value is not used, the correction coefficient DK when the engine is stopped is set based on the engine stop condition (the engine speed N and the basic injection amount T P are 0) and the representative temperature T. It may be calculated from the above-described equation for obtaining DM with the equilibrium amount M0 of 0 as 0.

ステップ54では、予測変数MをM=旧M+DMなる式で
求め、RAM(バックアップ機能付き)に記憶する。こ
の機能は、機関停止時の第2の予測変数演算手段に相当
する。
In step 54, the predictive variable M is obtained by the equation M = old M + DM and stored in the RAM (with backup function). This function corresponds to the second predictive variable calculation means when the engine is stopped.

ステップ55では、ステップ54で求めたMの値が0になっ
ったか否かを判定し、YESの場合は、ステップ56へ進
んで内部タイマをストップさせると同時に演算を終了す
る。
In step 55, it is determined whether or not the value of M obtained in step 54 has become 0. If YES, the process proceeds to step 56 to stop the internal timer and at the same time terminate the calculation.

第13図は、演算中の予測変数Mと補正量DMとの変化を
示す。演算周期tは、マイクロコンピュータの電流消費
量を考慮して1〜5分程度に設定する。
FIG. 13 shows changes in the prediction variable M and the correction amount DM during the calculation. The calculation cycle t is set to about 1 to 5 minutes in consideration of the current consumption of the microcomputer.

かかる制御において、予測変数Mはt時間毎に段階的に
0に近づいていく。予測変数Mが0となる前、つまり吸
気系に燃料が残留している間に機関を再始動すると、始
動前の状態に基づいて設定されるM0と始動直前のMの
値とに基づいてMが補正更新され、第13図に点線に示す
如く変化する。
In such control, the predictive variable M gradually approaches 0 every t hours. If the engine is restarted before the predictive variable M becomes 0, that is, while fuel remains in the intake system, M0 is set based on the value of M0 set based on the state before starting and the value of M immediately before starting. Is corrected and updated, and changes as shown by the dotted line in FIG.

一方、機関停止時間が長く、M=0となってから始動す
る場合は、一点鎖線で示すように変化する。
On the other hand, when the engine is stopped for a long time and the engine is started after M = 0, it changes as shown by the alternate long and short dash line.

点線と鎖線との間に挿まれた斜線で示す部分、つまり吸
気系に残留する燃料量が多い分だけ燃料消費を節約でき
る。
It is possible to save fuel consumption as much as the amount of fuel remaining in the intake system, that is, the portion indicated by the diagonal lines inserted between the dotted line and the chain line, that is, the large amount.

第14図は、始動時における各種波形を示し、機関停止時
間が短くM>0の間に再始動する場合(鎖線図示)は、
M=0で始動する場合(点線図示)に比較し、M0との
差が小さいのでDMが小さく始動前の補正増量が小さく
て済むため、燃料を節約でき、しかも燃料の過剰供給に
よる始動性不良やHC,CO等未燃排出物の排出量の低
減をできるのである。
FIG. 14 shows various waveforms at the time of starting. When the engine is stopped for a short time and restarted while M> 0 (shown by a chain line),
Compared to the case of starting with M = 0 (shown by the dotted line), the difference from M0 is small, so DM is small and the correction increase before starting is small, so fuel can be saved and startability is poor due to excessive supply of fuel. It is possible to reduce the amount of unburned exhaust such as HC, CO and the like.

また、本発明に係る燃料補正制御を所定の減速条件で燃
料カット(供給停止)を行い、その後燃料供給を再開す
るものに適用した実施例の制御動作を第15図のフローチ
ャートに示す。
A flowchart of FIG. 15 shows a control operation of an embodiment in which the fuel correction control according to the present invention is applied to a fuel cut (supply stop) under a predetermined deceleration condition and then the fuel supply is restarted.

第3図に示したものとの相違は、ステップ62において燃
料カット中か否かの判定を行い、カット中はステップ63
へ進んで、平衡量M0を一定値MFCに保持して燃料供
給再開時に備えるようにした点であり、それ以外の場合
はステップ64で第3図と同様にM0を演算する。
The difference from the one shown in FIG. 3 is that in step 62 it is judged whether the fuel is being cut or not, and when it is being cut, step 63
The point is that the equilibrium amount M0 is held at a constant value MFC so as to be prepared when the fuel supply is restarted. Otherwise, in step 64, M0 is calculated in the same manner as in FIG.

ここで、前記MFCの値は、0か又は通常のM0の値に
比べてはるかに小さな値に選定されている。
Here, the value of the MFC is selected to be 0 or a value much smaller than the normal value of M0.

このものの作用について説明する。通常燃料カット後の
燃料供給再開時においては、空燃比がリーン方向に誤差
を生じる。これは、吸気系に残留する燃料が燃料カット
中に機関の燃焼室に流入されてしまうため、燃料供給再
開時に吸入空気流量Qaに対する燃料噴射量では、吸気
系に再度付着したり浮遊する残留分だけ燃料供給量が不
足し、空燃比がリーン化されてしまうためである。
The operation of this one will be described. When the fuel supply is restarted after the normal fuel cut, the air-fuel ratio has an error in the lean direction. This is because the fuel remaining in the intake system flows into the combustion chamber of the engine during the fuel cut, and therefore the amount of residual fuel that adheres to the intake system again or floats in the fuel injection amount with respect to the intake air flow rate Qa when the fuel supply is restarted. This is because the fuel supply amount becomes insufficient and the air-fuel ratio becomes lean.

燃料カット中にM0を0とすることでMは少しずつ減少
し、M0即ち0に近づく。この結果、燃料供給再開時に
M0が増大すると、M0−Mが大きくなって、燃料が供
給系に残留する分増量補正がなされる。
By setting M0 to 0 during fuel cut, M gradually decreases and approaches M0, that is, 0. As a result, when M0 increases at the time of restarting the fuel supply, M0-M increases, and the amount increase correction is performed so that the fuel remains in the supply system.

これは、燃料カットの定常状態を考えれば燃料残留量は
当然0であるから、特別な例ではなく、予測変数Mも燃
料カット後次第に減少する実際の残留量を良好に予測し
た値となっているため、燃料カット時間が短く、M0と
の差がまだ大きい場合には、補正量DMも小さくなって
この場合でも良好な制御を行えるのである。
This is not a special example because the residual fuel amount is naturally 0 in view of the steady state of fuel cut, and the predictive variable M is also a value that well predicts the actual residual amount that gradually decreases after the fuel cut. Therefore, when the fuel cut time is short and the difference from M0 is still large, the correction amount DM also becomes small, and good control can be performed even in this case.

尚、第3図で示した第1の実施例において、ROM1B
に記憶されるM0のマップにTP=(燃料カット)に対
応するM0のデータを0または0に近い値に設定するよ
うにしてもよい。
In the first embodiment shown in FIG. 3, the ROM 1B
The data of M0 corresponding to TP = (fuel cut) may be set to 0 or a value close to 0 in the map of M0 stored in.

尚、燃料噴射弁を各気筒の吸気ポートに装着したマルチ
インジェクションタイプのものにも本発明を適用でき
る。また、基本噴射量を吸気圧力や絞り弁開度と機関回
転速度とに基づいて設定するものにも適用できることは
勿論である。
The present invention can also be applied to a multi-injection type in which a fuel injection valve is attached to the intake port of each cylinder. Further, it is needless to say that the present invention can be applied to the one in which the basic injection amount is set based on the intake pressure, the throttle valve opening and the engine rotation speed.

〈発明の目的〉 以上説明したように、本発明によれば機関運転時及び停
止後も吸気系に残留する燃料量を予測し、該残留燃料量
に応じた空燃比補正を行う構成としたため、再始動時に
燃料の過剰供給を防止して良好な始動性能が得られると
共に、燃料消費量を節約でき、CO,HC等未燃排出物
の排出量も低減できる。
<Object of the Invention> As described above, according to the present invention, the fuel amount remaining in the intake system is predicted during engine operation and after the engine is stopped, and the air-fuel ratio is corrected according to the residual fuel amount. It is possible to prevent excessive supply of fuel at the time of restart and obtain good starting performance, save fuel consumption, and reduce emissions of unburned emissions such as CO and HC.

また、加・減速時も残留燃料量の変化に応じた空燃比補
正が行われ、加・減速性能が向上する。
Further, during acceleration / deceleration, the air-fuel ratio is corrected according to the change in the residual fuel amount, and the acceleration / deceleration performance is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す構成図、第3図は同上実施例
の空燃比制御における基本噴射量演算ルーチンを示すフ
ローチャート、第4図は同じく平衡量演算ルーチンを示
すフローチャート、第5図は同じく補正割合演算ルーチ
ンを示すフローチャート、第6図は同じく燃料噴射パル
ス幅演算ルーチンを示すフローチャート、第7図は同上
制御に用いる平衡量のテーブルマップの一例を示す線
図、第8図は同じく第1補正割合テーブルマップを示す
線図、第9図は同じく第2補正割合テーブルマップを示
す線図、第10図は同上実施例の加速,減速,ギアチェン
ジ時の各種状態量の変化を示すタイムチャート、第11図
は同上実施例の機関停止時の制御を示すフローチャー
ト、第12図は同上制御に使用する補正量特性を示す線
図、第13図は同上制御中の定常燃料残留量と、予測変数
の変化を示す線図、第14図は同上制御中の各種状態量の
変化を示す線図、第15図は本発明の第2の実施例の制御
を示すフローチャート、第16図は同上制御中の各種状態
量の変化を示す線図である。 1……マイクロコンピュータ、2……吸気通路 3……エアフロメータ、6……クランク角センサ 8……水温センサ、9……温度センサ、11……空燃比セ
ンサ、12……燃料噴射弁
FIG. 1 is a block diagram showing a configuration of the present invention, FIG. 2 is a configuration diagram showing a configuration of an embodiment of the present invention, and FIG. 3 is a flowchart showing a basic injection amount calculation routine in air-fuel ratio control of the same embodiment. FIG. 4 is a flow chart showing a balance calculation routine, FIG. 5 is a flow chart showing a correction ratio calculation routine, FIG. 6 is a flow chart showing a fuel injection pulse width calculation routine, and FIG. FIG. 8 is a diagram showing an example of a balance amount table map, FIG. 8 is a diagram showing a first correction ratio table map, FIG. 9 is a diagram showing a second correction ratio table map, and FIG. An example of a time chart showing changes in various state quantities at the time of acceleration, deceleration, and gear change, FIG. 11 is a flow chart showing control when the engine is stopped in the same embodiment, and FIG. Fig. 13 is a diagram showing correction amount characteristics to be used, Fig. 13 is a diagram showing steady-state fuel residual amount during control and changes in predictive variables, and Fig. 14 is a diagram showing changes in various state variables during control. FIG. 15 is a flow chart showing the control of the second embodiment of the present invention, and FIG. 16 is a diagram showing changes in various state quantities during the control. 1 ... Microcomputer, 2 ... Intake passage 3 ... Air flow meter, 6 ... Crank angle sensor 8 ... Water temperature sensor, 9 ... Temperature sensor, 11 ... Air-fuel ratio sensor, 12 ... Fuel injection valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】a)機関の運転状態を、少なくとも機関回
転速度、機関負荷及び機関温度を含むパラメータから検
出する運転状態検出手段と、 b)機関の運転状態に基づいて燃料の基本噴射量
(T)を演算する基本噴射量演算手段と、 c)機関回転速度、機関負荷及び機関温度に基づいて吸
気系の付着、浮遊燃料の平衡量(M0)を演算する平衡
量演算手段と、 d)平衡量演算手段で演算した付着、浮遊燃料の平衡量
(M0)とその時点での吸気系の付着、浮遊燃料の予測
変数(M)との差値(M0−M)を演算する差値演算手
段と、 e)差値演算手段で演算した差値(M0−M)を燃料噴
射量の補正にどの程度反映させるかを示す補正係数(D
K)を、機関回転速度、機関負荷及び機関温度に基づい
て演算する補正係数演算手段と、 f)前記差値(M0−M)と前記補正係数(DK)とに
基づいて補正量(DM)を演算する第1の補正量演算手
段と、 g)前記第1の補正量演算手段で演算した補正量(D
M)と前記付着、浮遊燃料の予測変数(M)とを燃料噴
射に同期して加算し、該加算値で予測変数(M)を更新
する第1の予測変数演算手段と、 h)前記基本噴射量演算手段で演算した基本噴射量(T
)と前記第1の補正量演算手段で演算した補正量(D
M)とに基づいて燃料噴射量(T)を演算して噴射信
号を出力する燃料噴射量演算手段と、 i)前記噴射信号に基づいて機関に燃料を供給する燃料
供給手段と、 j)機関の停止を検出する機関停止検出手段と、 k)機関の停止が検出された後、機関停止時の補正量
(DM)を、機関温度に基づいて所定時間毎に演算する
第2の補正量演算手段と、 l)前記第2の補正量演算手段で演算した補正量(D
M)と前記付着、浮遊燃料の予測変数(M)とを所定時
間毎に加算し、該加算値で予測変数(M)を更新する第
2の予測変数演算手段と、 を備えたことを特徴とする内燃機関の燃料噴射制御装
置。
1. A) operating state detecting means for detecting an operating state of an engine from parameters including at least engine speed, engine load and engine temperature; and b) basic injection amount of fuel based on the operating state of the engine ( A basic injection amount calculation means for calculating T P ), c) a balance amount calculation means for calculating adhesion of the intake system and a balance amount (M0) of floating fuel based on the engine speed, engine load and engine temperature; ) A difference value for calculating a difference value (M0-M) between the adhesion amount calculated by the equilibrium amount calculation means, the equilibrium amount of the floating fuel (M0) and the adhesion of the intake system at that time, and the prediction variable (M) of the floating fuel. And a correction coefficient (D) indicating how much the difference value (M0-M) calculated by the difference value calculation means is reflected in the correction of the fuel injection amount.
Correction coefficient calculating means for calculating K) based on the engine speed, engine load and engine temperature; and f) correction amount (DM) based on the difference value (M0-M) and the correction coefficient (DK). And a correction amount (D) calculated by the first correction amount calculation unit.
M) and the predictive variable (M) of the adhered and floating fuel, which are added in synchronism with fuel injection, and the predictive variable (M) is updated with the added value, and h) the basic The basic injection amount (T
P ) and the correction amount calculated by the first correction amount calculation means (D
M) to calculate a fuel injection amount (T I ) and output an injection signal, i) fuel supply amount supply means for supplying fuel to the engine based on the injection signal, j) Engine stop detection means for detecting engine stop, and k) Second correction amount for calculating engine correction amount (DM) at predetermined time intervals based on engine temperature after engine stop is detected. And a correction amount (D) calculated by the second correction amount calculation unit.
M) and the predictive variable (M) of the adhered and floating fuel are added at predetermined time intervals, and the predictive variable (M) is updated with the added value. And a fuel injection control device for an internal combustion engine.
JP5923886A 1986-03-19 1986-03-19 Fuel injection control device for internal combustion engine Expired - Lifetime JPH0656112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5923886A JPH0656112B2 (en) 1986-03-19 1986-03-19 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5923886A JPH0656112B2 (en) 1986-03-19 1986-03-19 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62218633A JPS62218633A (en) 1987-09-26
JPH0656112B2 true JPH0656112B2 (en) 1994-07-27

Family

ID=13107602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5923886A Expired - Lifetime JPH0656112B2 (en) 1986-03-19 1986-03-19 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0656112B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233965A (en) * 1990-10-26 1993-08-10 Fuji Heavy Industries Ltd. Fuel injection quantity control system for starting a two-cycle engine
JPH08121211A (en) * 1994-10-27 1996-05-14 Honda Motor Co Ltd Fuel control device for internal combustion engine
JP6168097B2 (en) * 2015-05-08 2017-07-26 トヨタ自動車株式会社 Hybrid car

Also Published As

Publication number Publication date
JPS62218633A (en) 1987-09-26

Similar Documents

Publication Publication Date Title
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
US5701871A (en) Fuel supply control system for internal combustion engines
JP2707674B2 (en) Air-fuel ratio control method
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH08312413A (en) Air-fuel ratio control device of engine
JPH0656112B2 (en) Fuel injection control device for internal combustion engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP2841806B2 (en) Air-fuel ratio control device for engine
JPH09177578A (en) Air-fuel ratio control device for engine
JPS63109257A (en) Air-fuel ratio control device of internal combustion engine
JPH01305142A (en) Fuel injection controller of internal combustion engine
JPH0615828B2 (en) Fuel injection control device for internal combustion engine
JPH10110645A (en) Air-fuel ratio control device for engine
JP2657713B2 (en) Fuel leak diagnosis system for electronically controlled fuel injection type internal combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPH06185396A (en) Basic fuel injection method
JP2006029194A (en) Controlling device for internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JPS62341B2 (en)
JPH01211648A (en) Fuel injection controller of internal combustion engine
JPH0670386B2 (en) Air-fuel ratio controller for internal combustion engine
JP3561142B2 (en) Control device for internal combustion engine
JP3564923B2 (en) Engine air-fuel ratio control device
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term