JP2006046071A - Atmospheric pressure estimating device for vehicle - Google Patents

Atmospheric pressure estimating device for vehicle Download PDF

Info

Publication number
JP2006046071A
JP2006046071A JP2004223758A JP2004223758A JP2006046071A JP 2006046071 A JP2006046071 A JP 2006046071A JP 2004223758 A JP2004223758 A JP 2004223758A JP 2004223758 A JP2004223758 A JP 2004223758A JP 2006046071 A JP2006046071 A JP 2006046071A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
vehicle
downhill
estimated
low load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004223758A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
田中  誠
Hidehiko Asakuma
英彦 朝熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004223758A priority Critical patent/JP2006046071A/en
Publication of JP2006046071A publication Critical patent/JP2006046071A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve estimation precision of atmospheric pressure during downhill travel. <P>SOLUTION: The device determines whether or not a vehicle is under a downhill travel in which a vehicle travels downhill in an idling operation state on the basis of a continuous time in an idling operation state, a vehicle speed and a vehicle acceleration. At a normal time (when not under an idling downhill travel), an estimated atmospheric pressure is calculated on the basis of throttle opening, an intake pipe pressure, or the like. When a vehicle is under an idling downhill travel, an estimated road gradient is calculated in accordance with the change amount of the vehicle speed and the demand torque. The estimated atmospheric pressure is acquired by correcting the previous estimated atmospheric pressure by employing an estimated road gradient, a travel distance per prescribed period (vehicle speed × prescribed period) and a conversion factor. By so doing, the estimated atmospheric pressure is acquired by correcting the previous atmospheric pressure by a portion of the atmospheric pressure change resulting from a change in altitude. As a result, even if a vehicle travels downhill in an idling operation state where the throttle opening is reduced, the estimated atmospheric pressure is precisely calculated at a prescribed operation cycle to be updated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大気圧の推定精度向上を目的とした車両の大気圧推定装置に関するものである。   The present invention relates to a vehicle atmospheric pressure estimation device for the purpose of improving atmospheric pressure estimation accuracy.

一般に、車両の走行中は、高度の変化等によって大気圧が変化して吸入空気の密度(質量流量)が変化するため、内燃機関の空燃比制御精度を向上させるには、大気圧に応じて空燃比制御パラメータを補正する必要がある。しかし、大気圧を検出する大気圧センサを設けると、その分、コストアップしてしまう。   In general, while the vehicle is running, the atmospheric pressure changes due to a change in altitude and the like, and the density (mass flow rate) of the intake air changes. Therefore, in order to improve the air-fuel ratio control accuracy of the internal combustion engine, according to the atmospheric pressure It is necessary to correct the air-fuel ratio control parameter. However, if an atmospheric pressure sensor for detecting atmospheric pressure is provided, the cost increases accordingly.

そこで、低コスト化のために、特許文献1(特公平5−38894号公報)に記載されているように、大気圧センサを用いずに、スロットル開度が全開付近のときには、スロットルバルブ下流側の吸気管圧力センサで検出した吸気管圧力が大気圧とほぼ等しくなることに着目して、スロットル開度が全開付近になる毎に、吸気管圧力センサの検出値を大気圧と推定し、これをなまし処理した値を最終的に大気圧の検出値として更新記憶するようにしたものがある。   Therefore, in order to reduce the cost, as described in Patent Document 1 (Japanese Patent Publication No. 5-38894), when the throttle opening is close to full open without using the atmospheric pressure sensor, the throttle valve downstream side. Focusing on the fact that the intake pipe pressure detected by the intake pipe pressure sensor is almost equal to the atmospheric pressure, the detected value of the intake pipe pressure sensor is estimated to be the atmospheric pressure every time the throttle opening is nearly fully open. In some cases, the value obtained by performing the annealing process is finally updated and stored as a detected value of the atmospheric pressure.

また、特許文献2(特開2000−345910号公報)に記載されているように、大気圧センサを用いずに、スロットル開度センサで検出したスロットル開度と吸気管圧力センサで検出した吸気管圧力とに基づいて大気圧を推定するようにしたものもある。
特公平5−38894号公報(第1頁等) 特開2000−345910号公報(第2頁等)
Further, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2000-345910), the throttle opening detected by the throttle opening sensor and the intake pipe detected by the intake pipe pressure sensor without using the atmospheric pressure sensor. Some have estimated the atmospheric pressure based on the pressure.
Japanese Patent Publication No. 5-38894 (first page, etc.) JP 2000-345910 A (second page, etc.)

ところで、一般に、車両が下り坂を走行する降坂走行中は、スロットル開度が全開付近まで開かれることがほとんどないため、上記特許文献1のように、スロットル開度が全開付近のときの吸気管圧力センサの検出値を用いて大気圧の検出値を更新する方法では、降坂走行中に、実際に走行路の標高が低下して大気圧が変化しているにも拘らず、大気圧検出値が更新されない事態が生じてしまう。そのため、降坂走行中に大気圧検出値の誤差が増大するという欠点がある。   By the way, in general, when the vehicle travels on a downhill, the throttle opening is hardly opened to the vicinity of the fully open position, so that the intake air when the throttle opening is about the fully open position as in Patent Document 1 above. In the method of updating the detection value of the atmospheric pressure using the detection value of the pipe pressure sensor, the atmospheric pressure is changed even though the altitude of the road is actually decreasing and the atmospheric pressure is changing during downhill driving. A situation occurs in which the detection value is not updated. For this reason, there is a drawback that an error in the atmospheric pressure detection value increases during traveling downhill.

一方、上記特許文献2のように、スロットル開度と吸気管圧力とに基づいて大気圧を推定する方法では、降坂走行中でも、所定の演算周期で推定大気圧を算出して更新することができる。しかし、降坂走行中は、エンジンブレーキをきかせるために、スロットル開度を全閉付近まで閉じることが多いため、降坂走行による標高変化によって実際に大気圧が変化しても、その大気圧変化の影響がスロットルバルブ下流側の吸気管圧力センサの出力に現れ難くなる。また、スロットル全閉付近では、スロットル開度検出誤差・スロットルの機差ばらつきの影響を受けやすい。そのため、降坂走行中は、スロットル開度と吸気管圧力とに基づいた大気圧の推定精度が低下するという欠点がある。   On the other hand, in the method of estimating the atmospheric pressure based on the throttle opening and the intake pipe pressure as in Patent Document 2, the estimated atmospheric pressure can be calculated and updated at a predetermined calculation cycle even while traveling downhill. it can. However, during downhill driving, the throttle opening is often closed to close to close the engine brake, so even if the atmospheric pressure actually changes due to altitude change due to downhill driving, the atmospheric pressure change Is less likely to appear in the output of the intake pipe pressure sensor downstream of the throttle valve. Further, in the vicinity of the throttle fully closed, it is easily affected by a throttle opening detection error and a variation in the machine difference of the throttle. For this reason, during downhill traveling, there is a drawback that the estimation accuracy of the atmospheric pressure based on the throttle opening and the intake pipe pressure is reduced.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、降坂走行中の大気圧の推定精度を向上させることができる車両の大気圧推定装置を提供することにある。   The present invention has been made in consideration of these circumstances. Accordingly, an object of the present invention is to provide an atmospheric pressure estimation device for a vehicle that can improve the estimation accuracy of atmospheric pressure during downhill traveling. It is in.

上記目的を達成するために、本発明の請求項1に記載の車両の大気圧推定装置は、大気圧推定手段によって車両に搭載された内燃機関の運転状態に基づいて大気圧を推定するシステムにおいて、低負荷運転判定手段によって内燃機関のスロットル開度が所定値以下又は要求トルクが所定値以下の低負荷運転状態であるか否かを判定し、車速検出手段によって車速を検出する。更に、道路勾配検出手段によって車両が走行している道路の勾配を推定又は検出し、低負荷降坂走行判定手段によって低負荷運転状態の継続時間と車速と車速の変化速度とに基づいて低負荷運転状態で降坂走行する低負荷降坂走行中であるか否かを判定する。そして、低負荷降坂走行判定手段により低負荷降坂走行中と判定されている期間に、道路勾配検出手段で推定又は検出した道路勾配と車速とに基づいて、大気圧推定手段による前回の推定大気圧を補正して今回の推定大気圧を求めるようにしたものである。   In order to achieve the above object, an atmospheric pressure estimation device for a vehicle according to claim 1 of the present invention is a system for estimating atmospheric pressure based on the operating state of an internal combustion engine mounted on a vehicle by atmospheric pressure estimation means. Then, it is determined whether the throttle opening degree of the internal combustion engine is a predetermined value or less or the required torque is a predetermined value or less by the low load operation determination means, and the vehicle speed is detected by the vehicle speed detection means. Further, the road gradient detecting unit estimates or detects the road gradient on which the vehicle is traveling, and the low load downhill traveling determination unit calculates the low load based on the duration of the low load driving state, the vehicle speed, and the vehicle speed change rate. It is determined whether or not the vehicle is running on a low-load downhill running downhill in the driving state. Based on the road gradient and the vehicle speed estimated or detected by the road gradient detection means during the period when the low load downhill travel determination means determines that the vehicle is running at a low load downhill, the previous estimation by the atmospheric pressure estimation means is performed. The estimated atmospheric pressure of this time is obtained by correcting the atmospheric pressure.

車両の降坂走行中は、スロットル開度が所定値以下又は要求トルクが所定値以下の低負荷運転状態(例えばアイドル運転状態)が継続しても、車速や車速の変化速度(つまり加速度)がある程度大きい状態に維持される。従って、低負荷運転状態の継続時間と車速と車速の変化速度とを用いれば、低負荷運転状態で降坂走行する低負荷降坂走行中であるか否かを判定することができる。   While the vehicle is running on a downhill, the vehicle speed and the speed of change of the vehicle speed (that is, the acceleration) are maintained even if the throttle opening is less than the predetermined value or the low load operation state (for example, the idle operation state) where the required torque is less than the predetermined value continues. It is maintained in a somewhat large state. Therefore, by using the duration of the low load operation state, the vehicle speed, and the change speed of the vehicle speed, it is possible to determine whether or not the vehicle is running on a low load downhill traveling downhill in the low load operation state.

また、走行道路の勾配とその走行距離(車速×時間)とに応じて標高が変化して大気圧が変化するため、低負荷降坂走行中と判定されている期間に、道路勾配検出手段で推定又は検出した道路勾配と車速とを用いて前回の推定大気圧を補正すれば、前回の推定大気圧を標高変化による大気圧変化分だけ補正して今回の推定大気圧を求めることができる。これにより、スロットル開度が小さくなる低負荷運転状態で降坂走行する場合でも、適宜の周期で推定大気圧を精度良く算出して更新することができ、降坂走行中の大気圧の推定精度を向上させることができる。   Moreover, since the altitude changes and the atmospheric pressure changes according to the gradient of the traveling road and the distance traveled (vehicle speed × time), the road gradient detecting means is used during the period when it is determined that the vehicle is traveling on a low load downhill. If the previous estimated atmospheric pressure is corrected using the estimated or detected road gradient and the vehicle speed, the previous estimated atmospheric pressure can be corrected by an amount corresponding to the change in atmospheric pressure due to the change in altitude. This makes it possible to accurately calculate and update the estimated atmospheric pressure at an appropriate cycle even when traveling downhill in a low-load operation state where the throttle opening is small, and the estimated accuracy of atmospheric pressure during downhill traveling Can be improved.

この場合、請求項2のように、低負荷降坂走行中でないと判定されている期間(つまり低負荷降坂走行以外の運転状態のとき)は、内燃機関のスロットル開度と吸気管圧力等に基づいて大気圧を推定するようにすると良い。このように、低負荷降坂走行以外の運転状態のときは、スロットル開度と吸気管圧力等に基づいて大気圧を推定すれば、低負荷降坂走行以外の運転状態のときにも、大気圧を精度良く推定することができる。   In this case, as in claim 2, during a period in which it is determined that the vehicle is not traveling on a low load downhill (that is, in an operating state other than the low load downhill traveling), the throttle opening of the internal combustion engine, the intake pipe pressure, etc. It is preferable to estimate the atmospheric pressure based on. In this way, when operating in a state other than low-load downhill traveling, if atmospheric pressure is estimated based on the throttle opening and intake pipe pressure, etc., The atmospheric pressure can be estimated with high accuracy.

尚、上記請求項1では、低負荷運転状態の継続時間と車速と車速の変化速度(つまり加速度)とに基づいて低負荷降坂走行中であるか否かを判定するようにしたが、請求項3のように、低負荷運転状態の継続時間と道路勾配検出手段で推定又は検出した道路勾配とに基づいて低負荷降坂走行中であるか否かを判定するようにしても良い。このようにしても、低負荷降坂走行中であるか否かを精度良く判定することができる。   In the above claim 1, it is determined whether or not the vehicle is traveling on a low load downhill on the basis of the duration of the low load operation state, the vehicle speed, and the speed of change of the vehicle speed (that is, acceleration). As in item 3, it may be determined whether or not the vehicle is traveling on a low load downhill on the basis of the duration of the low load operation state and the road gradient estimated or detected by the road gradient detection means. Even in this case, it is possible to accurately determine whether or not the vehicle is traveling on a low load downhill.

以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等によって開度調節されるスロットルバルブ15と、スロットル開度を検出するスロットル開度センサ16とが設けられている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a DC motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 21.

一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst that purifies CO, HC, NOx, etc. in the exhaust gas. / An exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting lean or the like is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ25や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ26が取り付けられている。このクランク角センサ26の出力信号に基づいてクランク角やエンジン回転速度が検出される。更に、アクセル開度(運転者のアクセル操作量)がアクセルセンサ28によって検出され、車速が車速センサ29(車速検出手段)によって検出される。   A cooling water temperature sensor 25 that detects the cooling water temperature and a crank angle sensor 26 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 26, the crank angle and the engine speed are detected. Further, the accelerator opening (the driver's accelerator operation amount) is detected by the accelerator sensor 28, and the vehicle speed is detected by the vehicle speed sensor 29 (vehicle speed detecting means).

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 20 according to the engine operating state. The ignition timing of the spark plug 21 is controlled.

その際、ECU27は、アクセルセンサ28で検出したアクセル開度等に基づいて要求トルクを算出し、この要求トルクに基づいてエンジン11の発生トルクを制御するようにしている。   At that time, the ECU 27 calculates a required torque based on the accelerator opening detected by the accelerator sensor 28 and controls the generated torque of the engine 11 based on the required torque.

また、ECU27は、後述する図3に示す大気圧推定プログラムを実行することで、次のようにして推定大気圧Pa を算出する。まず、アイドル運転状態の継続時間と、車速センサ29で検出した車速と、車両加速度(車速の変化速度)とに基づいて、アイドル運転状態で降坂走行するアイドル降坂走行中であるか否かを判定する。ここで、アイドル運転状態は、アイドルスイッチがオンされる運転状態であり、例えば、アクセル開度が0になってスロットル開度が所定値以下(全閉付近)又は要求トルクが所定値以下となる運転状態である。   Further, the ECU 27 calculates an estimated atmospheric pressure Pa as follows by executing an atmospheric pressure estimation program shown in FIG. 3 described later. First, based on the duration of the idle operation state, the vehicle speed detected by the vehicle speed sensor 29, and the vehicle acceleration (change speed of the vehicle speed), it is determined whether or not the vehicle is in the idle downhill traveling that travels downhill in the idle operation state. Determine. Here, the idle operation state is an operation state in which the idle switch is turned on. For example, the accelerator opening becomes 0 and the throttle opening becomes less than a predetermined value (near full close) or the required torque becomes less than a predetermined value. It is a driving state.

車両の降坂走行中は、アイドル運転状態が継続しても、車速や車両加速度が、ある程度大きい状態に維持される。従って、アイドル運転状態の継続時間と車速と車両加速度とを用いれば、アイドル運転状態で降坂走行するアイドル降坂走行中であるか否かを判定することができる。   While the vehicle is traveling downhill, the vehicle speed and the vehicle acceleration are maintained at a certain level even if the idling operation state continues. Therefore, using the duration of the idling operation state, the vehicle speed, and the vehicle acceleration, it can be determined whether or not the idling downhill traveling in the idling driving state is in progress.

そして、図2に示すように、通常時(アイドル降坂走行中ではないと判定された場合)には、スロットル開度センサ16で検出したスロットル開度φと、吸気管圧力センサ18で検出した吸気管圧力Pm と、エアフローメータ14で検出した吸入空気量Ga とに基づいて、例えば下記の理論式を利用して推定大気圧Pa を算出する。   Then, as shown in FIG. 2, in normal times (when it is determined that the vehicle is not running on an idling downhill), the throttle opening φ detected by the throttle opening sensor 16 and the intake pipe pressure sensor 18 are detected. Based on the intake pipe pressure Pm and the intake air amount Ga detected by the air flow meter 14, the estimated atmospheric pressure Pa is calculated using the following theoretical formula, for example.

Figure 2006046071
Figure 2006046071

ここで、Cは流量係数、A(φ)はスロットル断面積(スロットル開度φに応じて変化する吸気流路断面積)、Rは気体定数、Tは吸気温度である。   Here, C is a flow coefficient, A (φ) is a throttle cross-sectional area (intake flow passage cross-sectional area that changes according to the throttle opening φ), R is a gas constant, and T is an intake air temperature.

尚、推定大気圧Pa の算出方法は、適宜変更しても良く、例えば、スロットル開度φと吸気管圧力Pm とに基づいて推定大気圧Pa を算出するようにしても良い。また、スロットル開度φが所定値よりも大きいときには、吸気管圧力センサ18で検出した吸気管圧力Pm (サージタンク17内の圧力)が大気圧とほぼ等しくなるため、吸気管圧力センサ18で検出した吸気管圧力Pm を推定大気圧Pa として採用しても良い。   The method for calculating the estimated atmospheric pressure Pa may be changed as appropriate. For example, the estimated atmospheric pressure Pa may be calculated based on the throttle opening φ and the intake pipe pressure Pm. When the throttle opening φ is larger than a predetermined value, the intake pipe pressure sensor 18 detects the intake pipe pressure Pm (pressure in the surge tank 17) almost equal to the atmospheric pressure. The intake pipe pressure Pm may be adopted as the estimated atmospheric pressure Pa.

一方、図2に示すように、アイドル降坂走行中であると判定された場合には、車速センサ29で検出した車速の所定期間当りの変化量を算出すると共に、アクセルセンサ28で検出したアクセル開度等に基づいて要求トルクを算出し、車速の変化量と要求トルクとに応じた推定道路勾配をマップ又は数式等により算出する。推定道路勾配のマップは、予め、設計データや実験データ等に基づいて設定され、ECU29のROMに記憶されている。要求トルクに応じてエンジン11の発生トルクが変化して車速が変化するが、そのときの走行道路の勾配によって要求トルクと車速の変化量との関係が変化する。従って、要求トルクと車速の変化量とを用いれば、推定道路勾配を算出することができる。   On the other hand, as shown in FIG. 2, when it is determined that the vehicle is traveling on an idle downhill, the amount of change in the vehicle speed detected by the vehicle speed sensor 29 per predetermined period is calculated, and the accelerator detected by the accelerator sensor 28 is calculated. The required torque is calculated based on the opening degree and the like, and the estimated road gradient according to the amount of change in the vehicle speed and the required torque is calculated using a map or a mathematical expression. The estimated road gradient map is set in advance based on design data, experimental data, and the like, and is stored in the ROM of the ECU 29. Although the generated torque of the engine 11 changes according to the required torque and the vehicle speed changes, the relationship between the required torque and the amount of change in the vehicle speed changes depending on the gradient of the traveling road at that time. Therefore, the estimated road gradient can be calculated by using the required torque and the amount of change in the vehicle speed.

推定道路勾配の算出後、前回の推定大気圧Pa (i-1) を、推定道路勾配と所定期間当りの走行距離(車速×所定期間)と変換係数とを用いて次式により補正して今回の推定大気圧Pa (i) を求める。   After calculating the estimated road gradient, the previous estimated atmospheric pressure Pa (i-1) is corrected by the following equation using the estimated road gradient, travel distance per predetermined period (vehicle speed x predetermined period), and conversion coefficient. Estimated atmospheric pressure Pa (i) is obtained.

推定大気圧Pa (i) =推定大気圧Pa (i-1) +変換係数×推定道路勾配×走行距離
ここで、[推定道路勾配×走行距離]は所定期間当りの走行道路の標高変化に相当する値であり、変換係数は標高変化を大気圧変化に変換するための係数である。これにより、前回の推定大気圧Pa (i-1) を標高変化による大気圧変化分だけ補正して今回の推定大気圧Pa (i) を求める。
Estimated atmospheric pressure Pa (i) = Estimated atmospheric pressure Pa (i-1) + Conversion coefficient x Estimated road slope x Travel distance Here, [Estimated road slope x Travel distance] corresponds to the elevation change of the travel road per predetermined period. The conversion coefficient is a coefficient for converting an altitude change into an atmospheric pressure change. Thereby, the previous estimated atmospheric pressure Pa (i-1) is corrected by an amount corresponding to the change in atmospheric pressure due to the altitude change, and the current estimated atmospheric pressure Pa (i) is obtained.

以下、ECU27が実行する図3の大気圧推定プログラムの処理内容を説明する。
図3に示す大気圧推定プログラムは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう大気圧推定手段としての役割を果たす。本プログラムが起動されると、まず、ステップ101で、アイドル運転状態であるか否かを判定する。このステップ101の処理が特許請求の範囲でいう低負荷運転判定手段としての役割を果たす。
Hereinafter, the processing content of the atmospheric pressure estimation program of FIG. 3 executed by the ECU 27 will be described.
The atmospheric pressure estimation program shown in FIG. 3 is executed at predetermined intervals during engine operation, and serves as atmospheric pressure estimation means in the claims. When this program is started, first, in step 101, it is determined whether or not the engine is in an idle operation state. The process of step 101 serves as a low load operation determination means in the claims.

その結果、アイドル運転状態であると判定された場合には、ステップ202に進み、アイドル運転状態の継続時間を算出する。
この後、ステップ103〜104で、アイドル運転状態で降坂走行するアイドル降坂走行中であるか否かを、例えば、次の(1) 〜(3) の条件を全て満たしているか否かによって判定する。
As a result, when it is determined that the engine is in the idle operation state, the process proceeds to step 202, and the duration of the idle operation state is calculated.
After this, in steps 103 to 104, whether or not the vehicle is in an idle downhill running in an idling state is determined by whether or not all of the following conditions (1) to (3) are satisfied, for example: judge.

(1) アイドル運転状態の継続時間が所定値を越えていること(ステップ103)
(2) 車速が所定値を越えていること(ステップ104)
(3) 車両加速度(車速の変化速度)が所定値を越えていること(ステップ105)
上記(1) 〜(3) の条件を全て満たせば、アイドル降坂走行中であると判定するが、上記(1) 〜(3) の条件のうちの1つでも満たさない条件があれば、アイドル降坂走行中ではないと判定する。これらのステップ103〜105の処理が特許請求の範囲でいう低負荷降坂走行判定手段としての役割を果たす。
(1) The duration of the idle operation state exceeds a predetermined value (step 103)
(2) The vehicle speed exceeds a predetermined value (step 104)
(3) The vehicle acceleration (change speed of the vehicle speed) exceeds a predetermined value (step 105).
If all of the above conditions (1) to (3) are satisfied, it is determined that the vehicle is traveling on an idling downhill, but if there is a condition that does not satisfy one of the above conditions (1) to (3), It is determined that the vehicle is not idling downhill. The processing of these steps 103 to 105 serves as a low-load downhill traveling determination means referred to in the claims.

その結果、アイドル降坂走行中であると判定された場合には、ステップ106に進み、要求トルクと車速の変化量とに応じた推定道路勾配をマップ(図2参照)又は数式等により算出する。このステップ106の処理が特許請求の範囲でいう道路勾配検出手段としての役割を果たす。   As a result, if it is determined that the vehicle is traveling on an idling downhill, the process proceeds to step 106, and an estimated road gradient corresponding to the required torque and the amount of change in vehicle speed is calculated using a map (see FIG. 2) or a mathematical expression. . The processing in step 106 serves as road gradient detection means in the claims.

この後、ステップ107に進み、前回の推定大気圧Pa (i-1) を、推定道路勾配と所定期間当りの走行距離(車速×所定期間)と変換係数とを用いて次式により補正して今回の推定大気圧Pa (i) を求める。
推定大気圧Pa (i) =推定大気圧Pa (i-1) +変換係数×推定道路勾配×走行距離
Thereafter, the routine proceeds to step 107, where the previous estimated atmospheric pressure Pa (i-1) is corrected by the following equation using the estimated road gradient, the travel distance per predetermined period (vehicle speed × predetermined period), and the conversion coefficient. The estimated atmospheric pressure Pa (i) is obtained.
Estimated atmospheric pressure Pa (i) = Estimated atmospheric pressure Pa (i-1) + Conversion coefficient x Estimated road gradient x Travel distance

一方、上記ステップ101でアイドル運転状態ではないと判定された場合、又は、上記ステップ103〜105でアイドル降坂走行中ではないと判定された場合には、ステップ108に進み、スロットル開度センサ16で検出したスロットル開度φと、吸気管圧力センサ18で検出した吸気管圧力Pm と、エアフローメータ14で検出した吸入空気量Ga とに基づいて、例えば上記(1)式を利用して推定大気圧Pa を算出する。   On the other hand, if it is determined in step 101 that the vehicle is not idling, or if it is determined in steps 103 to 105 that the vehicle is not idling downhill, the routine proceeds to step 108 where the throttle opening sensor 16 Based on the throttle opening φ detected in step S1, the intake pipe pressure Pm detected by the intake pipe pressure sensor 18, and the intake air amount Ga detected by the air flow meter 14, for example, using the above equation (1), The atmospheric pressure Pa is calculated.

以上説明した本実施例では、アイドル運転状態で降坂走行するアイドル降坂走行中に、前回の推定大気圧Pa (i-1) を推定道路勾配と所定期間当りの走行距離(車速×所定期間)と変換係数とを用いて補正して今回の推定大気圧Pa (i) を求めることで、前回の推定大気圧Pa (i-1) を標高変化による大気圧変化分だけ補正して今回の推定大気圧Pa (i) を求めるようにしたので、スロットル開度が小さくなるアイドル運転状態で降坂走行する場合でも、所定の演算周期で推定大気圧Pa を精度良く算出して更新することができ、降坂走行中の大気圧の推定精度を向上させることができる。   In the present embodiment described above, during the idling downhill traveling in the idling state, the previous estimated atmospheric pressure Pa (i-1) is calculated based on the estimated road gradient and the traveling distance per predetermined period (vehicle speed × predetermined period). ) And the conversion coefficient to obtain the current estimated atmospheric pressure Pa (i), and the previous estimated atmospheric pressure Pa (i-1) is corrected by the atmospheric pressure change due to the altitude change. Since the estimated atmospheric pressure Pa (i) is obtained, the estimated atmospheric pressure Pa can be accurately calculated and updated at a predetermined calculation cycle even when the vehicle is traveling downhill in an idling state where the throttle opening is small. It is possible to improve the estimation accuracy of atmospheric pressure during downhill travel.

また、本実施例では、アイドル降坂走行中と判定されていない期間には、従来と同じようにスロットル開度と吸気管圧力等に基づいて大気圧を推定するようにしたので、従来と同じように大気圧を精度良く推定することができる。   In the present embodiment, the atmospheric pressure is estimated based on the throttle opening, the intake pipe pressure, etc. in the same manner as in the past during the period when it is not determined that the vehicle is running on an idling downhill. Thus, the atmospheric pressure can be estimated with high accuracy.

尚、上記実施例では、アイドル運転状態の継続時間と車速と車両加速度とに基づいてアイドル降坂走行中であるか否かを判定するようにしたが、アイドル運転状態の継続時間と推定道路勾配とに基づいてアイドル降坂走行中であるか否かを判定するようにしても良い。このようにしても、アイドル運転状態で降坂走行するアイドル降坂走行中であることを精度良く判定することができる。   In the above-described embodiment, it is determined whether or not the vehicle is running on an idling downhill based on the duration of the idle operation state, the vehicle speed, and the vehicle acceleration. However, the duration of the idle operation state and the estimated road gradient are determined. Based on the above, it may be determined whether or not the vehicle is traveling on an idling downhill. Even in this case, it is possible to accurately determine that the vehicle is in the idle downhill traveling in the idle operation state.

また、上記実施例では、要求トルクと車速とに基づいて道路勾配を推定するようにしたが、例えば車両の傾斜を検出するセンサ等で道路勾配を検出するようにしても良い。
また、上記実施例では、アイドル運転状態で降坂走行するアイドル降坂走行中の大気圧推定に本発明を適用したが、アイドル降坂走行中に限定されず、スロットル開度が所定値以下又は要求トルクが所定値以下となる低負荷運転状態(例えばアクセル開度が0よりも少し大きい運転状態)で降坂走行する低負荷降坂走行中の大気圧推定に本発明を適用しても良い。
In the above embodiment, the road gradient is estimated based on the required torque and the vehicle speed. However, the road gradient may be detected by, for example, a sensor that detects the inclination of the vehicle.
Further, in the above embodiment, the present invention is applied to the atmospheric pressure estimation during idling downhill traveling downhill in the idling operation state, but is not limited to idling downhill traveling, and the throttle opening is equal to or less than a predetermined value or The present invention may be applied to atmospheric pressure estimation during low load downhill traveling that travels downhill in a low load operation state where the required torque is a predetermined value or less (for example, an operation state where the accelerator opening is slightly larger than 0). .

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. ECUの大気圧推定機能を説明するためのブロック図である。It is a block diagram for demonstrating the atmospheric pressure estimation function of ECU. 大気圧推定プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an atmospheric pressure estimation program.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、16…スロットル開度センサ、18…吸気管圧力センサ、20…燃料噴射弁、21…点火プラグ、22…排気管、27…ECU(大気圧推定手段,低負荷運転判定手段,道路勾配検出手段,低負荷降坂走行判定手段)、28…アクセルセンサ、29…車速センサ29(車速検出手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 16 ... Throttle opening sensor, 18 ... Intake pipe pressure sensor, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 27 ... ECU (atmospheric pressure estimation means, low load operation determination means, road gradient detection means, low load downhill travel determination means), 28 ... accelerator sensor, 29 ... vehicle speed sensor 29 (vehicle speed detection means)

Claims (3)

車両に搭載された内燃機関の運転状態に基づいて大気圧を推定する大気圧推定手段を備えた車両の大気圧推定装置において、
前記内燃機関のスロットル開度が所定値以下又は要求トルクが所定値以下の低負荷運転状態であるか否かを判定する低負荷運転判定手段と、
車速を検出する車速検出手段と、
前記車両が走行している道路の勾配を推定又は検出する道路勾配検出手段と、
前記低負荷運転状態の継続時間と前記車速と前記車速の変化速度とに基づいて、前記低負荷運転状態で降坂走行する低負荷降坂走行中であるか否かを判定する低負荷降坂走行判定手段とを備え、
前記大気圧推定手段は、前記低負荷降坂走行判定手段により低負荷降坂走行中と判定されている期間に、前記道路勾配検出手段で推定又は検出した道路勾配と前記車速とに基づいて、当該大気圧推定手段による前回の推定大気圧を補正して今回の推定大気圧を求めることを特徴とする車両の大気圧推定装置。
In an atmospheric pressure estimation device for a vehicle provided with an atmospheric pressure estimating means for estimating an atmospheric pressure based on an operating state of an internal combustion engine mounted on the vehicle,
Low load operation determination means for determining whether or not the throttle opening of the internal combustion engine is a low load operation state with a predetermined value or less or a required torque being a predetermined value or less;
Vehicle speed detection means for detecting the vehicle speed;
Road gradient detecting means for estimating or detecting the gradient of the road on which the vehicle is traveling;
A low-load downhill that determines whether or not the vehicle is running on a low-load downhill traveling downhill in the low-load operation state based on the duration of the low-load operation state, the vehicle speed, and the speed of change of the vehicle speed Traveling determination means,
The atmospheric pressure estimating means is based on the road gradient and the vehicle speed estimated or detected by the road gradient detecting means during the period when the low load downhill running judging means is judged to be running at a low load downhill. An atmospheric pressure estimation device for a vehicle, wherein the estimated atmospheric pressure of the vehicle is obtained by correcting the estimated atmospheric pressure of the previous time by the atmospheric pressure estimating means.
前記大気圧推定手段は、前記低負荷降坂走行判定手段により低負荷降坂走行中でないと判定されている期間に、前記内燃機関のスロットル開度と吸気管圧力等に基づいて大気圧を推定することを特徴とする請求項1に記載の車両の大気圧推定装置。   The atmospheric pressure estimation means estimates the atmospheric pressure based on the throttle opening of the internal combustion engine, the intake pipe pressure, and the like during a period when the low load downhill running judgment means determines that the low load downhill running is not running. The atmospheric pressure estimation device for a vehicle according to claim 1, wherein: 車両に搭載された内燃機関の運転状態に基づいて大気圧を推定する大気圧推定手段を備えた大気圧推定装置において、
前記内燃機関のスロットル開度が所定値以下又は要求トルクが所定値以下の低負荷運転状態であるか否かを判定する低負荷運転判定手段と、
車速を検出する車速検出手段と、
前記車両が走行している道路の勾配を推定又は検出する道路勾配検出手段と、
前記低負荷運転状態の継続時間と前記道路勾配検出手段で推定又は検出した道路勾配とに基づいて、前記低負荷運転状態で降坂走行する低負荷降坂走行中であるか否かを判定する低負荷降坂走行判定手段とを備え、
前記大気圧推定手段は、前記低負荷降坂走行判定手段により低負荷降坂走行中と判定されている期間に、前記道路勾配検出手段で推定又は検出した道路勾配と前記車速とに基づいて、当該大気圧推定手段による前回の推定大気圧を補正して今回の推定大気圧を求めることを特徴とする車両の大気圧推定装置。
In an atmospheric pressure estimation device comprising atmospheric pressure estimation means for estimating atmospheric pressure based on the operating state of an internal combustion engine mounted on a vehicle,
Low load operation determination means for determining whether or not the throttle opening of the internal combustion engine is a low load operation state with a predetermined value or less or a required torque being a predetermined value or less;
Vehicle speed detection means for detecting the vehicle speed;
Road gradient detecting means for estimating or detecting the gradient of the road on which the vehicle is traveling;
Based on the duration of the low load operation state and the road gradient estimated or detected by the road gradient detection means, it is determined whether or not the vehicle is running on a low load downhill traveling downhill in the low load operation state. A low load downhill traveling determination means,
The atmospheric pressure estimating means is based on the road gradient and the vehicle speed estimated or detected by the road gradient detecting means during the period when the low load downhill running judging means is judged to be running at a low load downhill. An atmospheric pressure estimation device for a vehicle, wherein the estimated atmospheric pressure of the vehicle is obtained by correcting the estimated atmospheric pressure of the previous time by the atmospheric pressure estimating means.
JP2004223758A 2004-07-30 2004-07-30 Atmospheric pressure estimating device for vehicle Pending JP2006046071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223758A JP2006046071A (en) 2004-07-30 2004-07-30 Atmospheric pressure estimating device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223758A JP2006046071A (en) 2004-07-30 2004-07-30 Atmospheric pressure estimating device for vehicle

Publications (1)

Publication Number Publication Date
JP2006046071A true JP2006046071A (en) 2006-02-16

Family

ID=36024963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223758A Pending JP2006046071A (en) 2004-07-30 2004-07-30 Atmospheric pressure estimating device for vehicle

Country Status (1)

Country Link
JP (1) JP2006046071A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173126A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Vehicle, its control method, and drive unit
WO2010090060A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Atmospheric pressure estimation device
JP2011117770A (en) * 2009-12-01 2011-06-16 Advics Co Ltd Vehicle control apparatus
KR20120059954A (en) * 2010-12-01 2012-06-11 현대자동차주식회사 Apparatus and method for controlling ISG logic of ISG vehicles by angle of inclination modeling
JP2015045293A (en) * 2013-08-29 2015-03-12 三菱電機株式会社 Atmospheric pressure estimation device for outboard motor
JP2015203308A (en) * 2014-04-10 2015-11-16 マツダ株式会社 Atmospheric pressure estimating device
CN115163301A (en) * 2022-05-30 2022-10-11 东风柳州汽车有限公司 Driving environment atmospheric pressure monitoring method, device, equipment and storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173126A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Vehicle, its control method, and drive unit
WO2010090060A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Atmospheric pressure estimation device
CN102308075A (en) * 2009-02-06 2012-01-04 本田技研工业株式会社 Atmospheric pressure estimation device
JP5291726B2 (en) * 2009-02-06 2013-09-18 本田技研工業株式会社 Atmospheric pressure estimation device
US8676472B2 (en) 2009-02-06 2014-03-18 Honda Motor Co., Ltd. Atmospheric pressure estimating apparatus
JP2011117770A (en) * 2009-12-01 2011-06-16 Advics Co Ltd Vehicle control apparatus
KR20120059954A (en) * 2010-12-01 2012-06-11 현대자동차주식회사 Apparatus and method for controlling ISG logic of ISG vehicles by angle of inclination modeling
KR101628398B1 (en) * 2010-12-01 2016-06-09 현대자동차주식회사 Apparatus and method for controlling ISG logic of ISG vehicles by angle of inclination modeling
JP2015045293A (en) * 2013-08-29 2015-03-12 三菱電機株式会社 Atmospheric pressure estimation device for outboard motor
JP2015203308A (en) * 2014-04-10 2015-11-16 マツダ株式会社 Atmospheric pressure estimating device
CN115163301A (en) * 2022-05-30 2022-10-11 东风柳州汽车有限公司 Driving environment atmospheric pressure monitoring method, device, equipment and storage medium
CN115163301B (en) * 2022-05-30 2023-10-31 东风柳州汽车有限公司 Driving environment atmospheric pressure monitoring method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP4462142B2 (en) Control device for internal combustion engine
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
JP4600932B2 (en) Control device for internal combustion engine
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP2001152928A (en) Air-fuel ratio control device for internal combustion engine
EP2527629A2 (en) Fuel injection control apparatus for an internal combustion engine
JP2000314342A (en) Air-fuel ratio control device for internal combustion engine
US7178494B2 (en) Variable valve timing controller for internal combustion engine
JP2009115012A (en) Air-fuel ratio control device of internal combustion engine
US7131321B2 (en) Throttle system abnormality determination apparatus
JP2006029084A (en) Control device of internal combustion engine
JPH10148152A (en) Temperature estimating device for oxygen sensor in engine
JP2003314350A (en) Exhaust gas purifying device of internal combustion engine
US20060025916A1 (en) Vehicle control system having atmospheric pressure estimating function
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP2006057523A (en) Failure diagnosis device for engine control system
JP2003161200A (en) Electronic control system of internal-combustion engine
JP2004019629A (en) Controller for internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JP3323733B2 (en) Air-fuel ratio learning control method when traveling downhill
JPH07158425A (en) Exhaust emission control device for internal combustion engine
JP2002364345A (en) Exhaust emission control device for internal combustion engine
JP2006029194A (en) Controlling device for internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine