JP2006057523A - Failure diagnosis device for engine control system - Google Patents

Failure diagnosis device for engine control system Download PDF

Info

Publication number
JP2006057523A
JP2006057523A JP2004239806A JP2004239806A JP2006057523A JP 2006057523 A JP2006057523 A JP 2006057523A JP 2004239806 A JP2004239806 A JP 2004239806A JP 2004239806 A JP2004239806 A JP 2004239806A JP 2006057523 A JP2006057523 A JP 2006057523A
Authority
JP
Japan
Prior art keywords
air amount
intake air
detection means
detected
pipe pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004239806A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004239806A priority Critical patent/JP2006057523A/en
Publication of JP2006057523A publication Critical patent/JP2006057523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To execute accurate failure diagnosis of an air flow meter without using an atmospheric pressure sensor. <P>SOLUTION: The output of the air flow meter 14 is used for calculating the detected amount of air filled in a cylinder in accordance with a model expression (Step 101), and a fuel injection amount and an air/fuel ratio detected by an air/fuel ratio sensor are used for calculating the estimated amount of air filled in the cylinder (Step 102). Then, a deviation between the detected amount of air filled in the cylinder and the estimated amount of air filled in the cylinder (an air amount deviation) is calculated, and an absolute value for the air amount deviation is compared with a determined value which is set in consideration of a dispersion range in a normal condition. If the absolute value for the air amount deviation is smaller than the determined value, the air flow meter 14 is determined normal, and if the absolute value for the air amount deviation is not smaller than the determined value, the air flow meter 14 is determined abnormal (Steps 103-106). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、実吸入空気量又は吸気管圧力を検出するセンサ類の異常診断を行う機能を備えたエンジン制御システムの異常診断装置に関する発明である。   The present invention relates to an abnormality diagnosis device for an engine control system having a function of performing abnormality diagnosis of sensors for detecting an actual intake air amount or intake pipe pressure.

従来のエンジン制御システムの異常診断装置は、例えば特許文献1(実開平1−124352号公報)に記載されているように、エンジン回転速度とアクセル開度とに基づいて推定吸入空気量を算出し、この推定吸入空気量をエアフローメータの検出値(検出吸入空気量)と比較して異常診断を行うようにしたものがある。
実開平1−124352号公報(第1頁等)
A conventional abnormality diagnosis device for an engine control system calculates an estimated intake air amount based on an engine rotation speed and an accelerator opening, as described in, for example, Japanese Patent Application Laid-Open No. 1-124352. In some cases, the estimated intake air amount is compared with a detected value (detected intake air amount) of an air flow meter to perform abnormality diagnosis.
Japanese Utility Model Publication No. 1-1124352 (first page, etc.)

しかし、上記特許文献1のように、エンジン回転速度とアクセル開度とに基づいて推定吸入空気量を算出する方法では、推定吸入空気量が大気圧変化の影響を受けて変化するため、これを実用化するには、大気圧センサを車両に搭載して、推定吸入空気量を大気圧で補正する必要がある。そのため、部品点数・適合工数が増加して、コスト高になるという問題があった。   However, as in Patent Document 1, in the method of calculating the estimated intake air amount based on the engine speed and the accelerator opening, the estimated intake air amount changes under the influence of atmospheric pressure change. To put it to practical use, it is necessary to mount an atmospheric pressure sensor on the vehicle and correct the estimated intake air amount with the atmospheric pressure. For this reason, there is a problem that the number of parts and the number of conforming man-hours increase, resulting in high costs.

そこで、本発明の第1の目的は、大気圧センサを用いることなく吸入空気量検出手段(エアフローメータ等)の異常診断を精度良く実行できるようにすることであり、また、第2の目的は、低コスト化の要求を満たしながら、吸入空気量検出手段の異常と吸気管圧力検出手段の異常とを区別して精度良く診断できるようにすることである。   Accordingly, a first object of the present invention is to enable an abnormality diagnosis of an intake air amount detection means (such as an air flow meter) to be accurately performed without using an atmospheric pressure sensor, and a second object is Thus, it is possible to distinguish between an abnormality in the intake air amount detection means and an abnormality in the intake pipe pressure detection means while accurately satisfying the demand for cost reduction.

前記第1の目的を達成するために、請求項1に係る発明は、実吸入空気量を検出する吸入空気量検出手段と、排出ガスの空燃比を検出する空燃比検出手段とを備えたエンジン制御システムの異常診断装置において、前記空燃比検出手段で検出した空燃比と燃料噴射量に基づいて推定吸入空気量算出手段により推定吸入空気量を算出し、この推定吸入空気量と前記吸入空気量検出手段の検出値(検出吸入空気量)とを比較することで前記吸入空気量検出手段の異常の有無を異常診断手段により判定するようにしたものである。   In order to achieve the first object, an invention according to claim 1 is an engine including intake air amount detection means for detecting an actual intake air amount and air-fuel ratio detection means for detecting an air-fuel ratio of exhaust gas. In the abnormality diagnosis device of the control system, the estimated intake air amount is calculated by the estimated intake air amount calculation means based on the air-fuel ratio detected by the air-fuel ratio detection means and the fuel injection amount, and the estimated intake air amount and the intake air amount are calculated. By comparing the detected value (detected intake air amount) of the detecting means, the abnormality diagnosing means determines whether the intake air amount detecting means is abnormal.

本発明によれば、推定吸入空気量を算出するのに用いる空燃比と燃料噴射量は、大気圧に依存しないため、大気圧変化の影響を受けずに推定吸入空気量を精度良く算出することができ、この推定吸入空気量と吸入空気量検出手段の検出値(検出吸入空気量)とを比較することで、大気圧に依存しない吸入空気量検出手段の異常診断が可能となる。本発明で用いる空燃比検出手段は、排出ガス浄化のために排気系に設置されている空燃比センサを使用すれば良いため、空燃比検出のために新たなセンサ類を設ける必要はない。従って、本発明では、大気圧センサ等の新たなセンサ類を用いることなく吸入空気量検出手段の異常診断を精度良く行うことが可能となり、低コスト化と診断精度向上の要求を同時に満たすことができる。   According to the present invention, the air-fuel ratio and the fuel injection amount used to calculate the estimated intake air amount do not depend on the atmospheric pressure, and therefore the estimated intake air amount can be accurately calculated without being affected by changes in the atmospheric pressure. By comparing this estimated intake air amount with the detected value (detected intake air amount) of the intake air amount detection means, it is possible to diagnose abnormality of the intake air amount detection means that does not depend on the atmospheric pressure. Since the air-fuel ratio detection means used in the present invention may use an air-fuel ratio sensor installed in the exhaust system for exhaust gas purification, it is not necessary to provide new sensors for air-fuel ratio detection. Therefore, according to the present invention, it is possible to accurately perform abnormality diagnosis of the intake air amount detection means without using new sensors such as an atmospheric pressure sensor, and the requirements for cost reduction and diagnosis accuracy improvement can be satisfied at the same time. it can.

また、前記第2の目的を達成するために、請求項2に係る発明は、吸入空気量を検出する吸入空気量検出手段と、吸気管圧力を検出する吸気管圧力検出手段と、エンジン回転速度を検出するエンジン回転速度検出手段と、排出ガスの空燃比を検出する空燃比検出手段とを備えたエンジン制御システムの異常診断装置において、前記空燃比検出手段で検出した空燃比と燃料噴射量に基づいて推定吸入空気量を算出する推定吸入空気量算出手段を設け、前記吸入空気量検出手段と前記吸気管圧力検出手段と前記エンジン回転速度検出手段による3つの検出値の関係が正常時のばらつき範囲から外れているか否かで前記吸入空気量検出手段と前記吸気管圧力検出手段のどちらかが異常であるか否かを判定する一次診断を実行し、この一次診断で異常有りと判定されたときに、前記吸入空気量検出手段による検出吸入空気量と前記推定吸入空気量算出手段による推定吸入空気量との差を所定の判定値と比較して該差が判定値以上であれば前記吸入空気量検出手段の異常と確定診断し、該差が判定値未満であれば前記吸気管圧力検出手段の異常と確定診断するようにしたものである。   In order to achieve the second object, an invention according to claim 2 includes an intake air amount detecting means for detecting an intake air amount, an intake pipe pressure detecting means for detecting an intake pipe pressure, an engine speed. In an abnormality diagnosis apparatus for an engine control system, comprising an engine speed detecting means for detecting the air-fuel ratio and an air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas, the air-fuel ratio and the fuel injection amount detected by the air-fuel ratio detecting means There is provided an estimated intake air amount calculating means for calculating an estimated intake air amount on the basis of which the relationship between the three detected values by the intake air amount detecting means, the intake pipe pressure detecting means, and the engine rotation speed detecting means is normal. A primary diagnosis is performed to determine whether either the intake air amount detection means or the intake pipe pressure detection means is abnormal depending on whether or not it is out of range. If the difference between the intake air amount detected by the intake air amount detection means and the estimated intake air amount by the estimated intake air amount calculation means is compared with a predetermined determination value, the difference is equal to or greater than the determination value. If so, the abnormality diagnosis of the intake air amount detection means is confirmed, and if the difference is less than the determination value, the abnormality diagnosis of the intake pipe pressure detection means is confirmed.

エンジン制御システムが正常であれば、吸入空気量と吸気管圧力とエンジン回転速度の3つのパラメータは、互いに相関関係を保って変化し、2つのパラメータから残り1つのパラメータが一義的に決定されるという関係が保たれる。従って、これら3つのパラメータの検出値の関係が正常時のばらつき範囲内であれば、エンジン制御システムが正常であると判断できる。一方、3つのパラメータの検出値の関係が正常時のばらつき範囲から外れていれば、エンジン制御システムが異常であると判断できるが、3つのパラメータの検出値の関係のみでは、3つのパラメータの検出値のいずれが異常であるかは特定することができない。一般に、吸入空気量検出手段や吸気管圧力検出手段と比較して、エンジン回転速度検出手段は故障しにくいため、本発明では、3つのパラメータの検出値の関係からエンジン制御システムの異常と判断される場合は、吸入空気量検出手段と吸気管圧力検出手段のどちらかが異常であると一次診断する。その後、吸入空気量検出手段と吸気管圧力検出手段のうちのいずれが異常であるかを特定する確定診断において、空燃比と燃料噴射量に基づいて算出した推定吸入空気量と吸入空気量検出手段の検出値(検出吸入空気量)との差が判定値以上であれば吸入空気量検出手段の異常と確定診断し、該差が判定値未満であれば吸気管圧力検出手段の異常と確定診断する。これにより、本発明では、大気圧センサ等の新たなセンサ類を用いることなく吸入空気量検出手段の異常と吸気管圧力検出手段の異常とを区別して精度良く診断することが可能となり、低コスト化と診断精度向上の要求を同時に満たすことができる。   If the engine control system is normal, the three parameters of the intake air amount, the intake pipe pressure, and the engine speed change while maintaining correlation with each other, and the remaining one parameter is uniquely determined from the two parameters. This relationship is maintained. Therefore, if the relationship between the detected values of these three parameters is within the normal variation range, it can be determined that the engine control system is normal. On the other hand, if the relationship between the detected values of the three parameters is out of the normal variation range, it can be determined that the engine control system is abnormal. However, only the relationship between the detected values of the three parameters can detect the three parameters. It cannot be specified which of the values is abnormal. In general, the engine rotation speed detection means is unlikely to fail as compared with the intake air amount detection means and the intake pipe pressure detection means. Therefore, in the present invention, it is determined that the engine control system is abnormal from the relationship between the detected values of the three parameters. If this is the case, a primary diagnosis is made that either the intake air amount detection means or the intake pipe pressure detection means is abnormal. Thereafter, in the definite diagnosis for identifying which of the intake air amount detection means and the intake pipe pressure detection means is abnormal, the estimated intake air amount and the intake air amount detection means calculated based on the air-fuel ratio and the fuel injection amount If the difference between the detected value (detected intake air amount) and the detected value is greater than or equal to the determination value, the intake air amount detection means is diagnosed as abnormal, and if the difference is less than the determination value, the intake pipe pressure detection means as abnormal To do. Accordingly, in the present invention, it is possible to distinguish between the abnormality of the intake air amount detection means and the abnormality of the intake pipe pressure detection means without using a new sensor such as an atmospheric pressure sensor, and to make a diagnosis with high accuracy. Can meet the demands of computerization and improved diagnostic accuracy at the same time.

前述したように、エンジン制御システムが正常であれば、吸入空気量と吸気管圧力とエンジン回転速度の3つのパラメータは、互いに相関関係を保って変化し、2つのパラメータから残り1つのパラメータが一義的に決定されるという関係があることを考慮して、3つのパラメータの検出値の関係が正常時のばらつき範囲から外れているか否かを判定する一次診断は、請求項3〜5のいずれかの方法で行えば良い。   As described above, if the engine control system is normal, the three parameters of the intake air amount, the intake pipe pressure, and the engine speed change while maintaining correlation with each other, and the remaining one parameter is unambiguous. The primary diagnosis for determining whether or not the relationship between the detected values of the three parameters is out of the normal variation range in consideration of the fact that there is a relationship that is automatically determined is any one of claims 3 to 5. You can do this.

例えば、請求項3のように、一次診断を行う際に、前記吸入空気量検出手段による検出吸入空気量とエンジン回転速度とに基づいて推定吸気管圧力を算出し、この推定吸気管圧力と前記吸気管圧力検出手段による検出吸気管圧力との関係が正常時のばらつき範囲から外れているか否かを判定するようにしても良い。   For example, as in claim 3, when performing a primary diagnosis, an estimated intake pipe pressure is calculated based on a detected intake air amount detected by the intake air amount detection means and an engine speed, and the estimated intake pipe pressure and the It may be determined whether or not the relationship with the detected intake pipe pressure by the intake pipe pressure detection means is out of the normal variation range.

或は、請求項4のように、一次診断を行う際に、前記吸気管圧力検出手段による検出吸気管圧力とエンジン回転速度とに基づいて推定吸入空気量を算出し、この推定吸入空気量と前記吸入空気量検出手段による検出吸入空気量との関係が正常時のばらつき範囲から外れているか否かを判定するようにしても良い。   Alternatively, as in claim 4, when performing the primary diagnosis, an estimated intake air amount is calculated based on the intake pipe pressure detected by the intake pipe pressure detecting means and the engine speed, and the estimated intake air amount It may be determined whether or not the relationship between the intake air amount detected by the intake air amount detection means is out of the normal variation range.

或は、請求項5のように、一次診断を行う際に、前記吸入空気量検出手段による検出吸入空気量と前記吸気管圧力検出手段による検出吸気管圧力とに基づいて推定エンジン回転速度を算出し、この推定吸入空気量と前記エンジン回転速度検出手段による検出エンジン回転速度との関係が正常時のばらつき範囲から外れているか否かを判定するようにしても良い。   Alternatively, as in claim 5, when the primary diagnosis is performed, the estimated engine rotation speed is calculated based on the intake air amount detected by the intake air amount detection means and the intake pipe pressure detected by the intake pipe pressure detection means. Then, it may be determined whether or not the relationship between the estimated intake air amount and the detected engine speed detected by the engine speed detecting means is out of the normal variation range.

これら請求項3〜5のいずれの方法でも、大気圧センサ等の新たなセンサ類を用いることなく一次診断を精度良く行うことができる。   In any of these methods, primary diagnosis can be performed accurately without using new sensors such as an atmospheric pressure sensor.

以下、本発明を実施するための最良の形態を具体化した5つの実施例1〜5を説明する。   Hereinafter, five examples 1 to 5 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1及び図2に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14(吸入空気量検出手段)が設けられている。このエアフローメータ14の下流側には、DCモータ等によって開度調節されるスロットルバルブ15と、スロットル開度を検出するスロットル開度センサ16とが設けられている。   A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 (intake air amount detection means) for detecting the intake air amount is provided downstream of the air cleaner 13. ing. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a DC motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18(吸気管圧力検出手段)が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 (intake pipe pressure detecting means) for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 21.

また、エンジン11の吸気バルブ32には、該吸気バルブ32の開閉タイミング及び/又はリフト量を可変する可変吸気バルブ装置33が設けられ、排気バルブ34には、該排気バルブ34の開閉タイミング及び/又はリフト量を可変する可変排気バルブ装置35が設けられている。   The intake valve 32 of the engine 11 is provided with a variable intake valve device 33 that varies the opening / closing timing and / or lift amount of the intake valve 32, and the exhaust valve 34 has an opening / closing timing of the exhaust valve 34 and / or Alternatively, a variable exhaust valve device 35 that varies the lift amount is provided.

一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比を検出する空燃比センサ24(空燃比検出手段)が設けられている。   On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst that purifies CO, HC, NOx, etc. in the exhaust gas, and detects the air-fuel ratio of the exhaust gas upstream of the catalyst 23. An air-fuel ratio sensor 24 (air-fuel ratio detection means) is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ25や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ26(エンジン回転速度検出手段)が取り付けられ、このクランク角センサ26の出力パルスの間隔(パルス周波数)に基づいてエンジン回転速度が検出される。   The cylinder block of the engine 11 includes a coolant temperature sensor 25 that detects the coolant temperature, and a crank angle sensor 26 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle (engine speed detection means). Is attached, and the engine speed is detected based on the output pulse interval (pulse frequency) of the crank angle sensor 26.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、CPU28、ROM29、RAM30、バックアップRAM31等を備えたマイクロコンピュータを主体として構成され、ROM30に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer including a CPU 28, a ROM 29, a RAM 30, a backup RAM 31, and the like. The ECU 27 executes various engine control programs stored in the ROM 30, so that the fuel injection valve 20 corresponds to the engine operating state. The fuel injection amount and the ignition timing of the spark plug 21 are controlled.

更に、このECU27は、エンジン運転中に図2の異常診断ルーチンを所定周期で実行することで、エアフローメータ14の異常診断を次のようにして実行する。まず、ステップ101で、エアフローメータ14の出力を用いて検出筒内充填空気量(検出吸入空気量)を算出する。この検出筒内充填空気量は、筒内に充填される空気量の検出値であり、エアフローメータ14を通過した空気が吸気通路を流れて筒内に充填されるまでの遅れを考慮したモデル式等を用いて、エアフローメータ14の出力から検出筒内充填空気量を算出すると良い。   Further, the ECU 27 executes the abnormality diagnosis routine of FIG. 2 at a predetermined period during engine operation, thereby executing the abnormality diagnosis of the air flow meter 14 as follows. First, in step 101, the amount of air in the detection cylinder (detected intake air amount) is calculated using the output of the air flow meter 14. The detected amount of air filled in the cylinder is a detected value of the amount of air filled in the cylinder, and is a model formula that takes into account the delay until the air that has passed through the air flow meter 14 flows through the intake passage and is filled in the cylinder. It is preferable to calculate the amount of air charged in the detection cylinder from the output of the air flow meter 14 using, for example.

この後、ステップ102に進み、燃料噴射量と空燃比センサ24で検出した空燃比とを用いて推定筒内充填空気量を次式により算出する。
推定筒内充填空気量=燃料噴射量×空燃比
Thereafter, the routine proceeds to step 102 where the estimated cylinder air charge amount is calculated by the following equation using the fuel injection amount and the air-fuel ratio detected by the air-fuel ratio sensor 24.
Estimated in-cylinder charged air amount = fuel injection amount x air-fuel ratio

上式において、燃料噴射量は、ECU27でエンジン運転状態等に基づいて算出された要求噴射量(燃料噴射弁20から噴射する燃料量)を用いれば良い。或は、精度を向上させるために、吸気ポート等の壁面に付着する燃料(ウエット)を考慮して筒内に吸入される正味の燃料量を算出して、これを“燃料噴射量”として用いるようにしても良い。また、筒内で燃焼したガスが排気管22を流れて空燃比センサ24周辺に達して空燃比が検出されるまでの遅れを考慮して、空燃比検出タイミングを設定すると良い。このステップ102の処理が特許請求の範囲でいう推定吸入空気量算出手段としての役割を果たす。   In the above equation, the fuel injection amount may be the required injection amount (fuel amount injected from the fuel injection valve 20) calculated by the ECU 27 based on the engine operating state or the like. Alternatively, in order to improve accuracy, the net amount of fuel sucked into the cylinder is calculated in consideration of the fuel (wet) adhering to the wall surface of the intake port or the like, and this is used as the “fuel injection amount”. You may do it. Further, it is preferable to set the air-fuel ratio detection timing in consideration of the delay until the gas burned in the cylinder flows through the exhaust pipe 22 and reaches the vicinity of the air-fuel ratio sensor 24 and the air-fuel ratio is detected. The processing in step 102 serves as an estimated intake air amount calculation means in the claims.

推定筒内充填空気量の算出後、ステップ103に進み、検出筒内充填空気量と推定筒内充填空気量との偏差(以下「空気量偏差」という)を算出する。
空気量偏差=検出筒内充填空気量−推定筒内充填空気量
After calculating the estimated in-cylinder charged air amount, the process proceeds to step 103, and a deviation between the detected in-cylinder charged air amount and the estimated in-cylinder charged air amount (hereinafter referred to as “air amount deviation”) is calculated.
Air amount deviation = Detected in-cylinder charged air amount-Estimated in-cylinder charged air amount

この後、ステップ104に進み、空気量偏差の絶対値を正常時のばらつき範囲を考慮して設定された所定の判定値と比較して、空気量偏差の絶対値が判定値よりも小さければ、空気量偏差が正常時のばらつき範囲内と判断して、ステップ105に進み、エアフローメータ14が正常と判定する。これに対して、空気量偏差の絶対値が判定値以上であれば、空気量偏差が正常時のばらつき範囲を越えていると判断して、ステップ106に進み、エアフローメータ14の異常と判定する。尚、ステップ103〜106の処理が特許請求の範囲でいう異常診断手段としての役割を果たす。   Thereafter, the process proceeds to step 104, where the absolute value of the air amount deviation is compared with a predetermined determination value set in consideration of the variation range at the normal time, and if the absolute value of the air amount deviation is smaller than the determination value, It is determined that the air amount deviation is within the normal variation range, the process proceeds to step 105, and it is determined that the air flow meter 14 is normal. On the other hand, if the absolute value of the air amount deviation is equal to or greater than the determination value, it is determined that the air amount deviation exceeds the normal variation range, and the routine proceeds to step 106 where it is determined that the air flow meter 14 is abnormal. . The processes in steps 103 to 106 serve as abnormality diagnosis means in the scope of claims.

以上説明した本実施例1によれば、推定筒内充填空気量を算出するのに用いる空燃比と燃料噴射量は、大気圧に依存しないため、大気圧変化の影響を受けずに推定筒内充填空気量を精度良く算出することができ、この推定筒内充填空気量とエアフローメータ14の出力から求めた検出筒内充填空気量とを比較することで、大気圧に依存しないエアフローメータ14の異常診断が可能となる。ここで、推定筒内充填空気量を算出するのに用いる空燃比を検出する空燃比センサ24は、排出ガス浄化のために排気系に設置されている空燃比センサを使用すれば良いため、空燃比検出のために新たなセンサ類を設ける必要はない。従って、本実施例1では、大気圧センサ等の新たなセンサ類を用いることなくエアフローメータ14の異常診断を精度良く行うことが可能となり、低コスト化と診断精度向上の要求を同時に満たすことができる。   According to the first embodiment described above, the air-fuel ratio and the fuel injection amount used to calculate the estimated in-cylinder charged air amount do not depend on the atmospheric pressure. The amount of charged air can be calculated with high accuracy, and the estimated amount of charged air in the cylinder is compared with the amount of air charged in the detected cylinder determined from the output of the air flow meter 14, so that the air flow meter 14 that does not depend on atmospheric pressure can be used. Abnormal diagnosis is possible. Here, the air-fuel ratio sensor 24 that detects the air-fuel ratio used to calculate the estimated cylinder air charge amount may be an air-fuel ratio sensor installed in the exhaust system for exhaust gas purification. There is no need to provide new sensors for detecting the fuel ratio. Therefore, in the first embodiment, it is possible to accurately diagnose the abnormality of the air flow meter 14 without using new sensors such as an atmospheric pressure sensor, and simultaneously satisfy the demands for cost reduction and improvement of diagnosis accuracy. it can.

上記実施例1では、エアフローメータ14の異常診断のみを行うようにしたが、図3に示す本発明の実施例2では、エアフローメータ14と吸気管圧力センサ18の両方の異常を区別して診断できるようにしている。以下、本実施例2の診断手法を説明する。   In the first embodiment, only the abnormality diagnosis of the air flow meter 14 is performed. However, in the second embodiment of the present invention shown in FIG. 3, the abnormality of both the air flow meter 14 and the intake pipe pressure sensor 18 can be distinguished and diagnosed. I am doing so. Hereinafter, the diagnostic method of the second embodiment will be described.

エンジン制御システムが正常であれば、吸入空気量と吸気管圧力とエンジン回転速度の3つのパラメータは、互いに相関関係を保って変化し、2つのパラメータから残り1つのパラメータが一義的に決定されるという関係が保たれる。従って、これら3つのパラメータの検出値の関係が正常時のばらつき範囲内であれば、エンジン制御システムが正常であると判断できる。一方、3つのパラメータの検出値の関係が正常時のばらつき範囲から外れていれば、エンジン制御システムが異常であると判断できるが、3つのパラメータの検出値の関係のみでは、3つのパラメータの検出値のいずれが異常であるかは特定することができない。一般に、エアフローメータ14や吸気管圧力センサ18と比較して、クランク角センサ26は故障しにくいため、本発明では、3つのパラメータの検出値の関係からエンジン制御システムの異常と判断される場合は、エアフローメータ14と吸気管圧力センサ18のどちらかが異常であると一次診断する。その後、エアフローメータ14と吸気管圧力センサ18のうちのいずれが異常であるかを特定する確定診断において、空燃比と燃料噴射量に基づいて算出した推定吸入空気量とエアフローメータ14の検出値(検出吸入空気量)との差が判定値以上であればエアフローメータ14の異常と確定診断し、該差が判定値未満であれば吸気管圧力センサ18の異常と確定診断する。   If the engine control system is normal, the three parameters of the intake air amount, the intake pipe pressure, and the engine speed change while maintaining correlation with each other, and the remaining one parameter is uniquely determined from the two parameters. This relationship is maintained. Therefore, if the relationship between the detected values of these three parameters is within the normal variation range, it can be determined that the engine control system is normal. On the other hand, if the relationship between the detected values of the three parameters is out of the normal variation range, it can be determined that the engine control system is abnormal. However, only the relationship between the detected values of the three parameters can detect the three parameters. It cannot be specified which of the values is abnormal. In general, the crank angle sensor 26 is less likely to fail than the air flow meter 14 and the intake pipe pressure sensor 18. Therefore, in the present invention, when it is determined that the engine control system is abnormal from the relationship between the detected values of the three parameters. The primary diagnosis is made when either the air flow meter 14 or the intake pipe pressure sensor 18 is abnormal. Thereafter, in the definite diagnosis for identifying which of the air flow meter 14 and the intake pipe pressure sensor 18 is abnormal, the estimated intake air amount calculated based on the air-fuel ratio and the fuel injection amount and the detected value of the air flow meter 14 ( If the difference from the detected intake air amount is equal to or greater than the determination value, the air flow meter 14 is determined to be abnormal, and if the difference is less than the determination value, the intake pipe pressure sensor 18 is determined to be abnormal.

この場合、吸入空気量と吸気管圧力とエンジン回転速度の3つのパラメータの検出値の関係が正常時のばらつき範囲から外れているか否かを判定する一次診断では、3つのパラメータのうちの2つのパラメータから残り1つのパラメータが一義的に決定されるという関係があることを考慮して、本実施例2では、エアフローメータ14による検出吸入空気量とエンジン回転速度とに基づいて推定吸気管圧力を算出し、この推定吸気管圧力と吸気管圧力センサ18による検出吸気管圧力との関係(偏差等)が正常時のばらつき範囲から外れているか否かを判定する。   In this case, in the primary diagnosis for determining whether the relationship between the detected values of the three parameters of the intake air amount, the intake pipe pressure, and the engine rotational speed is out of the normal variation range, two of the three parameters are determined. In consideration of the fact that the remaining one parameter is uniquely determined from the parameters, in the second embodiment, the estimated intake pipe pressure is calculated based on the detected intake air amount by the air flow meter 14 and the engine rotational speed. It is calculated and it is determined whether or not the relationship (deviation, etc.) between the estimated intake pipe pressure and the intake pipe pressure detected by the intake pipe pressure sensor 18 is out of the normal variation range.

以上説明した本実施例2の異常診断は、図3の異常診断ルーチンによって実行される。本ルーチンは、エンジン運転中に所定周期で実行される。本ルーチンが起動されると、まずステップ201で、エアフローメータ14による検出吸入空気量とエンジン回転速度とに基づいて推定吸気管圧力をマップ等により算出した後、ステップ202に進み、吸気管圧力センサ18による検出吸気管圧力と推定吸気管圧力との偏差(以下「吸気管圧力偏差」という)を算出する。
吸気管圧力偏差=検出吸気管圧力−推定吸気管圧力
The abnormality diagnosis of the second embodiment described above is executed by the abnormality diagnosis routine of FIG. This routine is executed at a predetermined cycle during engine operation. When this routine is started, first, in step 201, the estimated intake pipe pressure is calculated by a map or the like based on the detected intake air amount by the air flow meter 14 and the engine speed, and then the process proceeds to step 202, where the intake pipe pressure sensor 18 calculates a deviation between the detected intake pipe pressure and the estimated intake pipe pressure (hereinafter referred to as “intake pipe pressure deviation”).
Intake pipe pressure deviation = Detected intake pipe pressure-Estimated intake pipe pressure

この後、ステップ203に進み、吸気管圧力偏差の絶対値を正常時のばらつき範囲を考慮して設定された判定値K1と比較し、吸気管圧力偏差の絶対値が判定値K1よりも大きいか否かでエアフローメータ14と吸気管圧力センサ18のどちらかが異常であるか否かを判定する一次診断を行う。上記ステップ202、203の処理が特許請求の範囲でいう一次診断手段としての役割を果たす。   Thereafter, the process proceeds to step 203, where the absolute value of the intake pipe pressure deviation is compared with a determination value K1 set in consideration of a normal variation range, and whether the absolute value of the intake pipe pressure deviation is larger than the determination value K1. The primary diagnosis which determines whether one of the air flow meter 14 and the intake pipe pressure sensor 18 is abnormal by the failure is performed. The processes in steps 202 and 203 serve as primary diagnostic means in the claims.

このステップ203で、吸気管圧力偏差の絶対値が判定値K1以下であると判定されれば、吸気管圧力偏差が正常時のばらつき範囲内と判断して、ステップ209に進み、エアフローメータ14と吸気管圧力センサ18の両方が正常と判定して本ルーチンを終了する。   If it is determined in step 203 that the absolute value of the intake pipe pressure deviation is equal to or less than the determination value K1, it is determined that the intake pipe pressure deviation is within a normal variation range, and the process proceeds to step 209. The routine is terminated when it is determined that both of the intake pipe pressure sensors 18 are normal.

これに対して、上記ステップ203で、吸気管圧力偏差の絶対値が判定値K1よりも大きいと判定されれば、エアフローメータ14と吸気管圧力センサ18のどちらかが異常であると判断して、ステップ204〜208の処理によってエアフローメータ14と吸気管圧力センサ18のいずれが異常であるかを特定する確定診断を次のようにして実行する。   On the other hand, if it is determined in step 203 that the absolute value of the intake pipe pressure deviation is larger than the determination value K1, it is determined that either the air flow meter 14 or the intake pipe pressure sensor 18 is abnormal. The definite diagnosis for identifying which of the air flow meter 14 and the intake pipe pressure sensor 18 is abnormal by the processing of steps 204 to 208 is executed as follows.

まず、ステップ204で、燃料噴射量と空燃比センサ24で検出した空燃比とを用いて推定吸入空気量を次式により算出する。
推定吸入空気量=燃料噴射量×空燃比
First, in step 204, the estimated intake air amount is calculated by the following equation using the fuel injection amount and the air-fuel ratio detected by the air-fuel ratio sensor 24.
Estimated intake air amount = Fuel injection amount x Air-fuel ratio

上式において、燃料噴射量は、ECU27でエンジン運転状態等に基づいて算出された要求噴射量(燃料噴射弁20から噴射する燃料量)を用いれば良い。或は、精度を向上させるために、吸気ポート等の壁面に付着する燃料(ウエット)を考慮して筒内に吸入される正味の燃料量を算出して、これを“燃料噴射量”として用いるようにしても良い。また、筒内で燃焼したガスが排気管22を流れて空燃比センサ24周辺に達して空燃比が検出されるまでの遅れを考慮して、空燃比検出タイミングを設定すると良い。   In the above equation, the fuel injection amount may be the required injection amount (fuel amount injected from the fuel injection valve 20) calculated by the ECU 27 based on the engine operating state or the like. Alternatively, in order to improve accuracy, the net amount of fuel sucked into the cylinder is calculated in consideration of the fuel (wet) adhering to the wall surface of the intake port or the like, and this is used as the “fuel injection amount”. You may do it. Further, it is preferable to set the air-fuel ratio detection timing in consideration of the delay until the gas burned in the cylinder flows through the exhaust pipe 22 and reaches the vicinity of the air-fuel ratio sensor 24 and the air-fuel ratio is detected.

そして、次のステップ205で、エアフローメータ14による検出吸入空気量と推定吸入空気量との偏差(以下「空気量偏差」という)を算出する。
空気量偏差=検出吸入空気量−推定吸入空気量
In the next step 205, a deviation (hereinafter referred to as “air amount deviation”) between the intake air amount detected by the air flow meter 14 and the estimated intake air amount is calculated.
Air amount deviation = Detected intake air amount-Estimated intake air amount

この後、ステップ206に進み、空気量偏差の絶対値を正常時のばらつき範囲を考慮して設定された判定値K2と比較して、空気量偏差の絶対値が判定値K2以上であれば、空気量偏差が正常時のばらつき範囲を越えていると判断して、ステップ208に進み、エアフローメータ14の異常と判定する。   Thereafter, the process proceeds to step 206, where the absolute value of the air amount deviation is compared with the determination value K2 set in consideration of the variation range at the normal time, and if the absolute value of the air amount deviation is not less than the determination value K2, It is determined that the air amount deviation exceeds the normal variation range, and the process proceeds to step 208 to determine that the air flow meter 14 is abnormal.

これに対して、上記ステップ206で、空気量偏差の絶対値が判定値K2よりも小さいと判定されれば、空気量偏差が正常時のばらつき範囲内(エアフローメータ14が正常)と判断して、ステップ207に進み、吸気管圧力センサ18の異常と判定する。尚、ステップ204〜208の処理が特許請求の範囲でいう確定診断手段としての役割を果たす。   On the other hand, if it is determined in step 206 that the absolute value of the air amount deviation is smaller than the determination value K2, it is determined that the air amount deviation is within a normal variation range (the air flow meter 14 is normal). In step 207, it is determined that the intake pipe pressure sensor 18 is abnormal. The processing in steps 204 to 208 serves as a definite diagnosis means in the claims.

以上説明した本実施例2では、エアフローメータ14による検出吸入空気量とエンジン回転速度とに基づいて推定吸気管圧力を算出し、この推定吸気管圧力と吸気管圧力センサ18による検出吸気管圧力との関係(偏差等)が正常時のばらつき範囲から外れているか否かを判定する一次診断を行い、この一次診断で異常有りと判定されたときに、空燃比と燃料噴射量に基づいて算出した推定吸入空気量とエアフローメータ14の検出値(検出吸入空気量)との差が判定値以上であるか否かで、エアフローメータ14の異常と吸気管圧力センサ18の異常とを区別して確定診断するようにしたので、大気圧センサ等の新たなセンサ類を用いることなくエアフローメータ14の異常と吸気管圧力センサ18の異常とを区別して精度良く診断することが可能となり、低コスト化と診断精度向上の要求を同時に満たすことができる。   In the second embodiment described above, the estimated intake pipe pressure is calculated based on the detected intake air amount by the air flow meter 14 and the engine speed, and the estimated intake pipe pressure and the detected intake pipe pressure by the intake pipe pressure sensor 18 are calculated. The primary diagnosis is performed to determine whether the relationship (deviation, etc.) is outside the normal variation range. When the primary diagnosis determines that there is an abnormality, the calculation is based on the air-fuel ratio and the fuel injection amount. A definite diagnosis is made by discriminating between the abnormality of the air flow meter 14 and the abnormality of the intake pipe pressure sensor 18 depending on whether or not the difference between the estimated intake air amount and the detected value (detected intake air amount) of the air flow meter 14 is equal to or larger than the determination value. Therefore, the abnormality of the air flow meter 14 and the abnormality of the intake pipe pressure sensor 18 can be distinguished and diagnosed with high accuracy without using new sensors such as an atmospheric pressure sensor. Becomes possible, it can meet the requirements of low cost and diagnostic accuracy simultaneously.

尚、本実施例2においては、一次診断を行う際に、推定吸気管圧力と吸気管圧力センサ18による検出吸気管圧力との関係(偏差等)が正常時のばらつき範囲から外れているか否かを判定するようにしたが、これに代えて、次のいずれかの方法で一次診断を行うようにしても良い。   In the second embodiment, when the primary diagnosis is performed, whether or not the relationship (deviation, etc.) between the estimated intake pipe pressure and the intake pipe pressure detected by the intake pipe pressure sensor 18 is out of the normal variation range. However, instead of this, primary diagnosis may be performed by any of the following methods.

[他の一次診断法(その1)]
一次診断を行う際に、吸気管圧力センサ18による検出吸気管圧力とエンジン回転速度とに基づいて推定吸入空気量をマップ等により算出し、この推定吸入空気量とエアフローメータ14による検出吸入空気量との関係(偏差等)が正常時のばらつき範囲から外れているか否かを判定するようにしても良い。
[Other primary diagnostic methods (1)]
When performing the primary diagnosis, an estimated intake air amount is calculated by a map or the like based on the intake pipe pressure detected by the intake pipe pressure sensor 18 and the engine speed, and the estimated intake air amount and the detected intake air amount by the air flow meter 14 are calculated. It may be determined whether or not the relationship (deviation, etc.) is out of the normal variation range.

[他の一次診断法(その2)]
一次診断を行う際に、エアフローメータ14による検出吸入空気量と吸気管圧力センサ18による検出吸気管圧力とに基づいて推定エンジン回転速度をマップ等により算出し、この推定吸入空気量とクランク角センサ26の信号による検出エンジン回転速度との関係(偏差等)が正常時のばらつき範囲から外れているか否かを判定するようにしても良い。
[Other primary diagnostic methods (2)]
When performing a primary diagnosis, an estimated engine rotation speed is calculated by a map or the like based on the detected intake air amount detected by the air flow meter 14 and the detected intake pipe pressure detected by the intake pipe pressure sensor 18, and the estimated intake air amount and the crank angle sensor are calculated. It may be determined whether or not the relationship (deviation, etc.) with the detected engine rotation speed by the signal 26 is out of the normal variation range.

図1のシステム構成では、吸気バルブ32の開閉タイミング及び/又はリフト量を可変する可変吸気バルブ装置33が搭載されている。前記実施例2では、検出吸入空気量とエンジン回転速度とに基づいて推定吸気管圧力を算出するようにしたが、可変吸気バルブ装置33を搭載した車両では、可変バルブ量(バルブタイミング及び/又はリフト量)の変化によっても吸気管圧力が変化する。   In the system configuration of FIG. 1, a variable intake valve device 33 that varies the opening / closing timing and / or lift amount of the intake valve 32 is mounted. In the second embodiment, the estimated intake pipe pressure is calculated based on the detected intake air amount and the engine rotational speed. However, in a vehicle equipped with the variable intake valve device 33, the variable valve amount (valve timing and / or The intake pipe pressure also changes depending on the change in the lift amount.

この点を考慮して、本実施例3で実行する図4の異常診断ルーチンでは、まずステップ201aで、エアフローメータ14による検出吸入空気量とエンジン回転速度と可変バルブ量に基づいて推定吸気管圧力をマップ等により算出する。これ以降のステップ202〜209の処理は、前記実施例2(図3)と同じである。   In consideration of this point, in the abnormality diagnosis routine of FIG. 4 executed in the third embodiment, first, in step 201a, the estimated intake pipe pressure is estimated based on the detected intake air amount by the air flow meter 14, the engine rotational speed, and the variable valve amount. Is calculated by a map or the like. The subsequent steps 202 to 209 are the same as those in the second embodiment (FIG. 3).

以上説明した本実施例3では、可変吸気バルブ装置33を搭載した車両において、可変バルブ量の変化による吸気管圧力の変化を考慮して推定吸気管圧力を算出できるので、推定吸気管圧力の精度を高めることができる。   In the third embodiment described above, in the vehicle equipped with the variable intake valve device 33, the estimated intake pipe pressure can be calculated in consideration of the change in the intake pipe pressure due to the change in the variable valve amount. Can be increased.

図5に示す本発明の実施例4は、可変吸気バルブ装置33の他に、排出ガスの一部を吸気系に環流させるEGR装置(図示せず)を搭載した車両に本発明を適用する場合の実施例である。EGR装置を搭載した車両では、EGR流量によっても吸気管圧力が変化するため、本実施例4では、図5のステップ301〜303の処理によって、EGR流量を推定して、これを吸気管圧力の推定に反映させる。具体的には、まずステップ301で、吸気管圧力センサ18による検出吸気管圧力とEGR弁デューティに基づいてマップ又はモデル式等により推定EGR流量を算出する。この後、ステップ302に進み、エアフローメータ14による検出吸入空気量に推定EGR流量を加算して筒内充填ガス量を求める。
筒内充填ガス量=検出吸入空気量+推定EGR流量
In the fourth embodiment of the present invention shown in FIG. 5, in addition to the variable intake valve device 33, the present invention is applied to a vehicle equipped with an EGR device (not shown) that circulates part of the exhaust gas to the intake system. This is an example. In a vehicle equipped with an EGR device, the intake pipe pressure also changes depending on the EGR flow rate. Therefore, in the fourth embodiment, the EGR flow rate is estimated by the processing of steps 301 to 303 in FIG. Reflect in the estimation. Specifically, first, in step 301, an estimated EGR flow rate is calculated by a map or a model formula based on the intake pipe pressure detected by the intake pipe pressure sensor 18 and the EGR valve duty. Thereafter, the routine proceeds to step 302 where the estimated EGR flow rate is added to the detected intake air amount by the air flow meter 14 to determine the in-cylinder charged gas amount.
In-cylinder charged gas amount = detected intake air amount + estimated EGR flow rate

この後、ステップ303に進み、筒内充填ガス量とエンジン回転速度と可変バルブ量に基づいて推定吸気管圧力をマップ等により算出する。これ以降の処理は、図3のテップ202〜209の処理と同じである。   Thereafter, the routine proceeds to step 303, where the estimated intake pipe pressure is calculated from a map or the like based on the cylinder charge gas amount, the engine speed, and the variable valve amount. The subsequent processing is the same as the processing of Steps 202 to 209 in FIG.

以上説明した本実施例4では、EGR装置と可変吸気バルブ装置33を搭載した車両において、EGR流量と可変バルブ量の変化による吸気管圧力の変化を考慮して推定吸気管圧力を算出できるので、推定吸気管圧力の精度を高めることができる。   In the fourth embodiment described above, in the vehicle equipped with the EGR device and the variable intake valve device 33, the estimated intake pipe pressure can be calculated in consideration of the change in the intake pipe pressure due to the change in the EGR flow rate and the variable valve amount. The accuracy of the estimated intake pipe pressure can be increased.

図6乃至図8に示す本発明の実施例5では、吸気温度によって吸気管圧力が変化することを考慮して、吸気温度に応じた吸気温度補正係数によって筒内充填ガス量を補正して吸気管圧力を推定するようにしている。ここで、図7は一次診断の機能(ステップ301〜303→ステップ202〜203)を説明するブロック図であり、図8は一次診断で異常と判断された場合に実施される確定診断の機能(ステップ204〜208)を説明するブロック図である。   In the fifth embodiment of the present invention shown in FIG. 6 to FIG. 8, taking into account that the intake pipe pressure changes depending on the intake air temperature, the in-cylinder charged gas amount is corrected by the intake air temperature correction coefficient corresponding to the intake air temperature. The pipe pressure is estimated. 7 is a block diagram for explaining the function of the primary diagnosis (steps 301 to 303 → steps 202 to 203), and FIG. 8 is the function of the definite diagnosis (when the primary diagnosis is judged to be abnormal) ( It is a block diagram explaining steps 204-208).

本実施例5で実行する図6の異常診断ルーチンでは、まずステップ301、302で、前記実施例4と同様の方法で、筒内充填ガス量を算出した後、ステップ302aに進み、吸気温度センサ(図示せず)で検出した吸気温度に応じた吸気温度補正係数をマップ(図7参照)等により算出する。この後、ステップ302bに進み、ステップ302で算出した筒内充填ガス量に吸気温度補正係数を掛け合わせることで、筒内充填ガス量を吸気温度補正する。
筒内充填ガス量=筒内充填ガス量×吸気温度補正係数
In the abnormality diagnosis routine of FIG. 6 executed in the fifth embodiment, first, in steps 301 and 302, the in-cylinder charged gas amount is calculated by the same method as in the fourth embodiment. An intake air temperature correction coefficient corresponding to the intake air temperature detected in (not shown) is calculated from a map (see FIG. 7) or the like. Thereafter, the process proceeds to step 302b, where the cylinder charge gas amount calculated in step 302 is multiplied by the intake air temperature correction coefficient to correct the cylinder charge gas amount.
In-cylinder charged gas amount = In-cylinder charged gas amount x intake air temperature correction coefficient

この後、ステップ303に進み、吸気温度補正後の筒内充填ガス量とエンジン回転速度と可変バルブ量に基づいて推定吸気管圧力をマップ等により算出する。これ以降の処理は、図3のテップ202〜209の処理と同じである。   Thereafter, the process proceeds to step 303, and the estimated intake pipe pressure is calculated by a map or the like based on the cylinder charge gas amount after the intake air temperature correction, the engine speed, and the variable valve amount. The subsequent processing is the same as the processing of Steps 202 to 209 in FIG.

以上説明した本実施例5では、筒内充填ガス量を吸気温度補正して推定吸気管圧力を算出するようにしたので、推定吸気管圧力の精度を高めることができる。   In the fifth embodiment described above, since the estimated intake pipe pressure is calculated by correcting the intake gas temperature in the cylinder, the accuracy of the estimated intake pipe pressure can be increased.

尚、本実施例5では、筒内充填ガス量を吸気温度補正するようにしたが、前記図5のステップ301〜303の処理によって算出した推定吸気管圧力に吸気温度補正係数を掛け合わせることで、推定吸気管圧力を吸気温度補正するようにしても良い。
推定吸気管圧力=推定吸気管圧力×吸気温度補正係数
In the fifth embodiment, the in-cylinder charged gas amount is corrected for the intake air temperature. However, by multiplying the estimated intake pipe pressure calculated by the processing in steps 301 to 303 in FIG. 5 with the intake air temperature correction coefficient. The estimated intake pipe pressure may be corrected for the intake air temperature.
Estimated intake pipe pressure = Estimated intake pipe pressure x Intake temperature correction factor

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の異常診断ルーチンの処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of processing of an abnormality diagnosis routine according to the first embodiment. 実施例2の異常診断ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of an abnormality diagnosis routine of Example 2. 実施例3の異常診断ルーチンの処理の流れを示すフローチャートである。10 is a flowchart showing a flow of processing of an abnormality diagnosis routine of Example 3. 実施例4の異常診断ルーチンの処理の流れを示すフローチャートである。10 is a flowchart showing a flow of processing of an abnormality diagnosis routine of Example 4. 実施例5の異常診断ルーチンの処理の流れを示すフローチャートである。10 is a flowchart showing a flow of processing of an abnormality diagnosis routine of Example 5. 実施例5の一次診断の機能(ステップ301〜303→ステップ202〜203)を説明するブロック図である。It is a block diagram explaining the function (step 301-303-> step 202-203) of the primary diagnosis of Example 5. 確定診断の機能(ステップ204〜208)を説明するブロック図である。It is a block diagram explaining the function (steps 204-208) of a definite diagnosis.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ(吸入空気量検出手段)、15…スロットルバルブ、18…吸気管圧力センサ(吸気管圧力検出手段)、20…燃料噴射弁、21…点火プラグ、24…空燃比センサ(空燃比検出手段)、26…クランク角センサ(エンジン回転速度検出手段)、27…ECU(推定吸入空気量算出手段,異常診断手段,一次診断手段,確定診断手段)、33…可変吸気バルブ装置、35…可変排気バルブ装置   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter (intake air amount detection means), 15 ... Throttle valve, 18 ... Intake pipe pressure sensor (intake pipe pressure detection means), 20 ... Fuel injection valve, DESCRIPTION OF SYMBOLS 21 ... Spark plug, 24 ... Air-fuel ratio sensor (air-fuel ratio detection means), 26 ... Crank angle sensor (engine speed detection means), 27 ... ECU (Estimated intake air amount calculation means, abnormality diagnosis means, primary diagnosis means, confirmation Diagnostic means), 33 ... variable intake valve device, 35 ... variable exhaust valve device

Claims (5)

吸入空気量を検出する吸入空気量検出手段と、排出ガスの空燃比を検出する空燃比検出手段とを備えたエンジン制御システムの異常診断装置において、
前記空燃比検出手段で検出した空燃比と燃料噴射量に基づいて推定吸入空気量を算出する推定吸入空気量算出手段と、
前記吸入空気量検出手段による検出吸入空気量と前記推定吸入空気量算出手段による推定吸入空気量とを比較することで前記吸入空気量検出手段の異常の有無を判定する異常診断手段と
を備えていることを特徴とするエンジン制御システムの異常診断装置。
In an abnormality diagnosis device for an engine control system, comprising an intake air amount detection means for detecting an intake air amount and an air / fuel ratio detection means for detecting an air / fuel ratio of exhaust gas,
Estimated intake air amount calculation means for calculating an estimated intake air amount based on the air-fuel ratio detected by the air-fuel ratio detection means and the fuel injection amount;
An abnormality diagnosing unit for determining whether or not the intake air amount detecting unit is abnormal by comparing an intake air amount detected by the intake air amount detecting unit and an estimated intake air amount by the estimated intake air amount calculating unit; An abnormality diagnosis device for an engine control system,
吸入空気量を検出する吸入空気量検出手段と、吸気管圧力を検出する吸気管圧力検出手段と、エンジン回転速度を検出するエンジン回転速度検出手段と、排出ガスの空燃比を検出する空燃比検出手段とを備えたエンジン制御システムの異常診断装置において、
前記空燃比検出手段で検出した空燃比と燃料噴射量に基づいて推定吸入空気量を算出する推定吸入空気量算出手段と、
前記吸入空気量検出手段と前記吸気管圧力検出手段と前記エンジン回転速度検出手段による3つの検出値の関係が正常時のばらつき範囲から外れているか否かで前記吸入空気量検出手段と前記吸気管圧力検出手段のどちらかが異常であるか否かを判定する一次診断を実行する一次診断手段と、
前記一次診断手段により異常有りと判定されたときに、前記吸入空気量検出手段による検出吸入空気量と前記推定吸入空気量算出手段による推定吸入空気量との差を所定の判定値と比較して該差が判定値以上であれば前記吸入空気量検出手段の異常と確定診断し、該差が判定値未満であれば前記吸気管圧力検出手段の異常と確定診断する確定診断手段と
を備えていることを特徴とするエンジン制御システムの異常診断装置。
Intake air amount detection means for detecting intake air amount, intake pipe pressure detection means for detecting intake pipe pressure, engine rotation speed detection means for detecting engine rotation speed, and air-fuel ratio detection for detecting the air-fuel ratio of exhaust gas In an abnormality diagnosis device for an engine control system comprising means,
Estimated intake air amount calculation means for calculating an estimated intake air amount based on the air-fuel ratio detected by the air-fuel ratio detection means and the fuel injection amount;
The intake air amount detection means and the intake pipe are determined depending on whether or not the relationship between the three detection values by the intake air amount detection means, the intake pipe pressure detection means, and the engine rotation speed detection means is out of the normal variation range. Primary diagnosis means for executing primary diagnosis for determining whether one of the pressure detection means is abnormal;
When the primary diagnosis means determines that there is an abnormality, the difference between the intake air amount detected by the intake air amount detection means and the estimated intake air amount by the estimated intake air amount calculation means is compared with a predetermined determination value. If the difference is greater than or equal to a determination value, a definite diagnosis unit is provided for definite diagnosis as an abnormality in the intake air amount detection unit, and if the difference is less than a delimitation value, a definite diagnosis unit is provided for definite diagnosis as an abnormality in the intake pipe pressure detection unit. An abnormality diagnosis device for an engine control system,
前記一次診断手段は、前記一次診断を行う際に、前記吸入空気量検出手段による検出吸入空気量と前記エンジン回転速度検出手段による検出エンジン回転速度とに基づいて推定吸気管圧力を算出し、この推定吸気管圧力と前記吸気管圧力検出手段による検出吸気管圧力との関係が正常時のばらつき範囲から外れているか否かを判定することを特徴とする請求項2に記載のエンジン制御システムの異常診断装置。   The primary diagnosis means calculates an estimated intake pipe pressure based on the intake air amount detected by the intake air amount detection means and the detected engine rotation speed by the engine rotation speed detection means when performing the primary diagnosis, The engine control system abnormality according to claim 2, wherein it is determined whether or not a relationship between an estimated intake pipe pressure and a detected intake pipe pressure by the intake pipe pressure detecting means is out of a normal variation range. Diagnostic device. 前記一次診断手段は、前記一次診断を行う際に、前記吸気管圧力検出手段による検出吸気管圧力と前記エンジン回転速度検出手段による検出エンジン回転速度とに基づいて推定吸入空気量を算出し、この推定吸入空気量と前記吸入空気量検出手段による検出吸入空気量との関係が正常時のばらつき範囲から外れているか否かを判定することを特徴とする請求項2に記載のエンジン制御システムの異常診断装置。   The primary diagnosis means calculates an estimated intake air amount based on the detected intake pipe pressure by the intake pipe pressure detection means and the detected engine rotation speed by the engine rotation speed detection means when performing the primary diagnosis, 3. The engine control system abnormality according to claim 2, wherein it is determined whether or not a relationship between the estimated intake air amount and the intake air amount detected by the intake air amount detection means is out of a normal variation range. Diagnostic device. 前記一次診断手段は、前記一次診断を行う際に、前記吸入空気量検出手段による検出吸入空気量と前記吸気管圧力検出手段による検出吸気管圧力とに基づいて推定エンジン回転速度を算出し、この推定エンジン回転速度と前記エンジン回転速度検出手段による検出エンジン回転速度との関係が正常時のばらつき範囲から外れているか否かを判定することを特徴とする請求項2に記載のエンジン制御システムの異常診断装置。   When the primary diagnosis is performed, the primary diagnosis means calculates an estimated engine rotation speed based on the intake air amount detected by the intake air amount detection means and the intake pipe pressure detected by the intake pipe pressure detection means. The abnormality of the engine control system according to claim 2, wherein it is determined whether or not a relationship between the estimated engine rotation speed and the detected engine rotation speed by the engine rotation speed detection means is out of a normal variation range. Diagnostic device.
JP2004239806A 2004-08-19 2004-08-19 Failure diagnosis device for engine control system Pending JP2006057523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239806A JP2006057523A (en) 2004-08-19 2004-08-19 Failure diagnosis device for engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239806A JP2006057523A (en) 2004-08-19 2004-08-19 Failure diagnosis device for engine control system

Publications (1)

Publication Number Publication Date
JP2006057523A true JP2006057523A (en) 2006-03-02

Family

ID=36105208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239806A Pending JP2006057523A (en) 2004-08-19 2004-08-19 Failure diagnosis device for engine control system

Country Status (1)

Country Link
JP (1) JP2006057523A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051015A (en) * 2006-08-25 2008-03-06 Denso Corp Abnormality diagnostic device for intake system of internal combustion engine
JP2008267175A (en) * 2007-04-17 2008-11-06 Denso Corp Control device of internal combustion engine
JP2009121475A (en) * 2007-11-12 2009-06-04 Iveco Motorenforschung Ag Process for determination of correct fuel flow rate to vehicle engine for carrying out diagnostic test
JP2010071251A (en) * 2008-09-22 2010-04-02 Hitachi Automotive Systems Ltd Control device of engine
JP2010190090A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Deterioration determining device for intake pressure sensor
WO2011092805A1 (en) * 2010-01-27 2011-08-04 トヨタ自動車株式会社 Anomaly assessment device and anomaly assessment method of control system
WO2012147193A1 (en) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 Control device for internal-combustion engine
JP2013024121A (en) * 2011-07-20 2013-02-04 Nissan Motor Co Ltd Internal state estimation apparatus for intake air collector
JP2019094873A (en) * 2017-11-27 2019-06-20 株式会社デンソー Internal combustion engine control system
JP2019113048A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Abnormality diagnosis device of airflow meter
CN112523886A (en) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 Control method for ensuring air intake flow accuracy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051015A (en) * 2006-08-25 2008-03-06 Denso Corp Abnormality diagnostic device for intake system of internal combustion engine
JP4655229B2 (en) * 2006-08-25 2011-03-23 株式会社デンソー Abnormality diagnosis apparatus for intake system of internal combustion engine
JP2008267175A (en) * 2007-04-17 2008-11-06 Denso Corp Control device of internal combustion engine
JP4697473B2 (en) * 2007-04-17 2011-06-08 株式会社デンソー Control device for internal combustion engine
JP2009121475A (en) * 2007-11-12 2009-06-04 Iveco Motorenforschung Ag Process for determination of correct fuel flow rate to vehicle engine for carrying out diagnostic test
JP2010071251A (en) * 2008-09-22 2010-04-02 Hitachi Automotive Systems Ltd Control device of engine
JP2010190090A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Deterioration determining device for intake pressure sensor
CN102713778A (en) * 2010-01-27 2012-10-03 丰田自动车株式会社 Anomaly assessment device and anomaly assessment method of control system
WO2011092805A1 (en) * 2010-01-27 2011-08-04 トヨタ自動車株式会社 Anomaly assessment device and anomaly assessment method of control system
JP5299525B2 (en) * 2010-01-27 2013-09-25 トヨタ自動車株式会社 Control system abnormality determination device and abnormality determination method
US8762791B2 (en) 2010-01-27 2014-06-24 Toyota Jidosha Kabushiki Kaisha Error determination device and error determination method of control system
WO2012147193A1 (en) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 Control device for internal-combustion engine
JP2013024121A (en) * 2011-07-20 2013-02-04 Nissan Motor Co Ltd Internal state estimation apparatus for intake air collector
JP2019094873A (en) * 2017-11-27 2019-06-20 株式会社デンソー Internal combustion engine control system
JP2019113048A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Abnormality diagnosis device of airflow meter
CN112523886A (en) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 Control method for ensuring air intake flow accuracy

Similar Documents

Publication Publication Date Title
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
JP4831015B2 (en) Abnormality diagnosis device for internal combustion engine
US7367330B2 (en) Internal combustion engine controller
US7243532B2 (en) Misfire detector for internal combustion engines
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JPH0771299A (en) Self-diagnosable device in air-fuel ratio control device for internal combustion engine
JP4577211B2 (en) Method and apparatus for determining Wiebe function parameters
JP2005194891A (en) Engine controller
JP2008069690A (en) Exhaust gas recirculation control device
EP2527629A2 (en) Fuel injection control apparatus for an internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP2006057587A (en) Malfunction diagnosing device for air/fuel ratio sensor
WO2016035498A1 (en) Engine control apparatus
JP2006057523A (en) Failure diagnosis device for engine control system
JP2010174872A (en) Malfunction diagnosis device for internal combustion engine secondary air supply system
JP2006029084A (en) Control device of internal combustion engine
JP2010270678A (en) Oxygen sensor diagnostic device for internal combustion engine
JP2004019629A (en) Controller for internal combustion engine
JP2008180225A (en) Engine control device
JP5427715B2 (en) Engine control device
JPH07310585A (en) Diagnostic device for cylinder internal pressure sensor
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP5654514B2 (en) Engine intake air volume measuring device
JP2006037924A (en) Control unit of vehicle