JPH01305142A - Fuel injection controller of internal combustion engine - Google Patents
Fuel injection controller of internal combustion engineInfo
- Publication number
- JPH01305142A JPH01305142A JP13669988A JP13669988A JPH01305142A JP H01305142 A JPH01305142 A JP H01305142A JP 13669988 A JP13669988 A JP 13669988A JP 13669988 A JP13669988 A JP 13669988A JP H01305142 A JPH01305142 A JP H01305142A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- fuel
- fuel injection
- engine
- transient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 75
- 238000002347 injection Methods 0.000 title claims abstract description 46
- 239000007924 injection Substances 0.000 title claims abstract description 46
- 238000002485 combustion reaction Methods 0.000 title claims description 9
- 230000001052 transient effect Effects 0.000 claims abstract description 23
- 238000012937 correction Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims 1
- 230000001133 acceleration Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、自動車等内燃機関の燃料噴射制御装置に係り
、特に燃料付着部の温度を予測し、その結果で過渡補正
量を求める燃料噴射制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel injection control device for internal combustion engines such as automobiles, and in particular to a fuel injection control device that predicts the temperature of a fuel adhesion part and uses the result to obtain a transient correction amount. Regarding a control device.
(従来の技術)
自動車等車両のエンジンに対する要求出力が変化した際
には、その要求程度に応じて応答性よく燃料噴射量を制
御することが必要であり、これは特に過渡運転時におけ
る空燃比に影響を与えドライブフィーリングや排気組成
等の運転性能を左右する。(Prior art) When the required output for the engine of a vehicle such as an automobile changes, it is necessary to control the fuel injection amount with good responsiveness according to the degree of the request. This affects driving performance such as drive feeling and exhaust composition.
一般に、機関の加減速時における空燃比の目標空燃比か
らのずれは、吸気系の吸気マニホルドや吸気ボートに付
着した付着燃料および浮遊燃料の量的変化に起因するも
のであり、この付着、浮遊燃料量は機関の運転状態に応
じて大きく変化する。Generally, the deviation of the air-fuel ratio from the target air-fuel ratio during engine acceleration/deceleration is due to changes in the amount of adhering fuel and floating fuel adhering to the intake manifold and intake boat of the intake system. The amount of fuel varies greatly depending on the operating state of the engine.
このような背景下、従来の内燃機関の燃料噴射制御装置
としては、例えば特開昭58−18758号公報に記載
のものがある。この装置では、絞弁上流側に設けたエア
フローメータの出力からエンジンの単位回転当たりの要
求負荷を求め、これから燃料噴射量を演算している。ま
た、過渡時には過渡補正量によって該燃料噴射量を補正
し、いわゆる壁流骨への配慮を行っている。なお、過渡
補正量は壁流補正骨であり、必ずしも加減速時に用いら
れる訳でなく、例えば壁流の影響が大きい始動直後やツ
ユニルカットからのりカバ直後にも用いられる。Against this background, as a conventional fuel injection control device for an internal combustion engine, there is one described, for example, in Japanese Patent Application Laid-open No. 18758/1983. In this device, the required load per unit rotation of the engine is determined from the output of an air flow meter provided upstream of the throttle valve, and the fuel injection amount is calculated from this. In addition, during a transient period, the fuel injection amount is corrected using a transient correction amount to take into account so-called wall flow. It should be noted that the transient correction amount is a wall flow correction bone, and is not necessarily used during acceleration/deceleration, but is also used, for example, immediately after starting, when the influence of wall flow is large, or immediately after gluing from a trundle cut.
(発明が解決しようとする課題)
しかしながら、このような従来の内燃機関の燃料噴射制
御装置にあっては、過渡補正量に対応する壁流骨を冷却
水温度から求める構成となっていたため、十分な過渡補
正を行うことができないという問題点があった。(Problem to be Solved by the Invention) However, in such a conventional fuel injection control device for an internal combustion engine, since the wall flow bone corresponding to the transient correction amount is determined from the cooling water temperature, it is not possible to There was a problem in that it was not possible to perform accurate transient correction.
すなわち、壁流の蒸発においては付着部壁温が重要なパ
ラメータであるが、付着部温度は第7図に示すように運
転条件毎に大きく異なり、しかも第8図に示すように遅
れをもつ。言い換えれば、運転条件により付着部温度の
上昇傾向が異なるということであり、これは遅れ時定数
の相違となって現れる。したがって、加速等する前の運
転条件によって付着部温度が異なり、加速や減速等の過
渡時の空燃比が不適切なものとなって運転性が悪化する
。That is, in the evaporation of a wall flow, the wall temperature of the adhering part is an important parameter, but the adhering part temperature varies greatly depending on the operating conditions as shown in FIG. 7, and has a lag as shown in FIG. 8. In other words, the tendency for the temperature of the deposited portion to rise differs depending on the operating conditions, and this appears as a difference in the delay time constant. Therefore, the adhering part temperature varies depending on the operating conditions before acceleration etc., and the air-fuel ratio during transients such as acceleration and deceleration becomes inappropriate, resulting in poor drivability.
特に、マルチポイントインジェクションタイプのエンジ
ンにあっては、第11図に示すようにシリンダヘッド3
1に対してインジェクタAが吸気弁32に向けて直接燃
料を噴射する場合と、インジェクタBが吸気ボートの壁
面に向けて燃料を噴射する場合とでは第12図に示すよ
うに始動後の空燃比の変化が両者で異なり、吸気弁32
に噴射する場合の方が空燃比の変化が著しい。すなわち
、吸気弁32の温度による誤差が太き(、このような現
象は始動直後のみならず、昇温度が通常と異なる運転条
件、例えば燃料カントリカバ直後においても同様の傾向
がある。したがって、加速時にはへジテーションが起き
やすく、また、空燃比の変動から三元触媒における三元
点からのズレが生じ、排気浄化性能が低下する。In particular, in multi-point injection type engines, the cylinder head 3
1, when injector A injects fuel directly toward the intake valve 32 and when injector B injects fuel toward the wall of the intake boat, the air-fuel ratio after startup differs as shown in FIG. The change in the intake valve 32 is different between the two.
The change in air-fuel ratio is more significant when the fuel is injected. In other words, the error due to the temperature of the intake valve 32 is large (such a phenomenon tends to occur not only immediately after starting, but also under operating conditions where the temperature rise is different from normal, for example, immediately after fuel cant recovery. Therefore, during acceleration Hesitation is likely to occur, and variations in the air-fuel ratio cause a deviation from the three-way point in the three-way catalyst, resulting in a decrease in exhaust purification performance.
なお、付着部温度を検出するため、例えば壁温センサを
設けることも考えられるが、コストアップを招くのみな
らず、取付の生産性も悪いので好ましくない。Although it is conceivable to provide a wall temperature sensor, for example, to detect the temperature of the adhesion part, this is not preferable because it not only increases cost but also reduces the productivity of installation.
(発明の目的)
そこで本発明は、各種運転条件から付着部温度を適切に
予測することにより、過渡補正量を適切なものとしてコ
ストアップを招くことなく運転性能および排気浄化性能
を向上させることを目的としている。(Objective of the Invention) Therefore, the present invention aims to improve the operating performance and exhaust purification performance without increasing costs by appropriately predicting the adhesion part temperature from various operating conditions and making the amount of transient correction appropriate. The purpose is
(課題を解決するための手段)
本発明による内燃機関の燃料噴射制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの運転状態を検出する運転状態検出手段aと、エン
ジンの運転状態に基づいて吸気管内の燃料付着部の平衡
状態温度を求める平衡温度演算手段すと、エンジンの運
転状態に基づいて吸気管内の燃料付着部の温度の遅れ時
定数を求める遅れ演算手段Cと、平衡温度演算手段すお
よび遅れ演算手段Cの出力に基づいて吸気管内の燃料付
着部の温度を予測する予測手段dと、エンジンが所定の
温度状態にあるとき、少なくとも予測手段dの出力を用
いて燃料の噴射量を補正する過渡補正量を演算する補正
量演算手段eと、エンジンの運転状態に基づいて燃料の
噴射量を演算し、過渡状態に移行すると前記過渡補正量
に応じて燃料の噴射量を補正する噴射量演算手段fと、
噴射量演算手段fの出力に基づいて燃料を噴射する燃料
噴射手段gと、を備えている。(Means for Solving the Problems) In order to achieve the above object, the fuel injection control device for an internal combustion engine according to the present invention has an operating state detection means for detecting the operating state of the engine, as a basic conceptual diagram thereof is shown in FIG. a, an equilibrium temperature calculation means for calculating the equilibrium state temperature of the fuel adhesion part in the intake pipe based on the operating state of the engine; a delay calculating means C; a predicting means d for predicting the temperature of the fuel adhesion part in the intake pipe based on the outputs of the equilibrium temperature calculating means and the delay calculating means C; and at least the predicting means when the engine is in a predetermined temperature state. correction amount calculation means e for calculating a transient correction amount for correcting the fuel injection amount using the output of d; injection amount calculation means f for correcting the fuel injection amount according to;
The fuel injection device g injects fuel based on the output of the injection amount calculation device f.
(作用)
本発明では、エンジンの運転状態に基づいて吸気管内の
燃料付着部の平衡状態温度および該付着部温度の遅れ時
定数が求められ、これから付着部温度が予測される。そ
して、過渡補正量の演算に際しては少なくとも付着部温
度の予測値が演算パラメータの1つに加えられる。(Operation) In the present invention, the equilibrium state temperature of the fuel adhesion part in the intake pipe and the delay time constant of the adhesion part temperature are determined based on the operating state of the engine, and the adhesion part temperature is predicted from this. When calculating the transient correction amount, at least the predicted value of the adhesion part temperature is added to one of the calculation parameters.
したがって、コストアップを招くことなく、過渡補正量
が適切なものとなり、運転性能および排気浄化性能が向
上する。Therefore, the amount of transient correction becomes appropriate without increasing costs, and driving performance and exhaust gas purification performance are improved.
(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.
第2〜10図は本発明に係る内燃機関の燃料噴射制御装
置の一実施例を示す図である。2 to 10 are diagrams showing an embodiment of a fuel injection control device for an internal combustion engine according to the present invention.
まず、構成を説明する。第2図は本装置の全体的構成を
示す図である。第2図において、1はエンジンであり、
吸入空気はエアクリーナ2から吸気管3を通り、燃料は
噴射信号Stに基づきインジェクタ(燃料噴射手段)4
から噴射される。そして、気筒内で燃焼した排気は排気
管5を通して触媒コンバータ6に導入され、触媒コンバ
ータ6内で排気中の有害成分(COlHC,N0x)を
三元触媒により清浄化して排出される。First, the configuration will be explained. FIG. 2 is a diagram showing the overall configuration of this device. In Fig. 2, 1 is an engine;
Intake air passes through an intake pipe 3 from an air cleaner 2, and fuel is injected into an injector (fuel injection means) 4 based on an injection signal St.
is sprayed from. Then, the exhaust gas combusted in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5, where the harmful components (COlHC, NOx) in the exhaust gas are purified by a three-way catalyst and then discharged.
吸入空気の流IQaはホットワイヤ弐のエアフローメー
タ7により検出され、吸気管3内の絞弁8によって制御
される。なお、エアフローメータ7のタイプとしては、
ホットフィルム式でもよく、要は吸入空気の流量を測定
するものであればよい。The intake air flow IQa is detected by an air flow meter 7 in the hot wire 2 and controlled by a throttle valve 8 in the intake pipe 3. The types of air flow meter 7 are as follows:
A hot film type may be used, as long as it measures the flow rate of intake air.
絞弁8の開度TVOは絞弁開度センサ9により検出され
、エンジン1の回転数Nはクランク角センサ10により
検出される。また、ウォータジャケットを流れる冷却水
の温度Twは水温センサ11により検出され、排気中の
酸素濃度は酸素センサ12により検出される。酸素セン
サ12はリッチからリーンまで幅広く空燃比を検出する
特性をもつもの等が用いられる。さらに、スタータモー
タの作動はスタートスイッチ13により検出される。The opening TVO of the throttle valve 8 is detected by a throttle valve opening sensor 9, and the rotation speed N of the engine 1 is detected by a crank angle sensor 10. Further, the temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 12. The oxygen sensor 12 used has a characteristic of detecting a wide range of air-fuel ratios from rich to lean. Furthermore, the operation of the starter motor is detected by the start switch 13.
上記エアフローメータ7、絞弁開度センサ9、クランク
角センサ10、水温センサ11、酸素センサ12および
スタートスイッチ13は運転状態検出手段14を構成し
ており、運転状態検出手段14からの出力はコントロー
ルユニット20に入力される。The air flow meter 7, throttle valve opening sensor 9, crank angle sensor 10, water temperature sensor 11, oxygen sensor 12, and start switch 13 constitute an operating state detecting means 14, and the output from the operating state detecting means 14 is controlled. input to unit 20.
コントロールユニット20は平衡温度演算手段、遅れ演
算手段、予測手段、補正量演算手段および噴射量演算手
段としての機能を有し、CPU21、ROM22、RA
M23およびI10ボート24により構成される。CP
U21はROM22に書き込まれているプログラムに
従ってI10ボート24より必要とする外部データを取
り込んだり、またRAM23との間でデータの授受を行
ったりしながら燃料噴射制御に必要な処理値を演算処理
し、必要に応じて処理したデータをI10ボート24へ
出力する。The control unit 20 has functions as an equilibrium temperature calculation means, a delay calculation means, a prediction means, a correction amount calculation means, and an injection amount calculation means, and includes a CPU 21, a ROM 22, an RA
It is composed of M23 and I10 boats 24. C.P.
The U21 takes in necessary external data from the I10 boat 24 according to the program written in the ROM 22, and performs arithmetic processing on processing values necessary for fuel injection control while exchanging data with the RAM 23. The processed data is output to the I10 boat 24 as necessary.
I10ボート24には運転状態検出手段14からの信号
が入力されるとともに、I10ポート24からは噴射信
号Siが出力される。ROM22はCP U21におけ
る演算プログラムを格納しており、RAM23は演算に
使用するデータをマツプ等の形で記憶している。A signal from the operating state detection means 14 is input to the I10 boat 24, and an injection signal Si is output from the I10 port 24. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.
次に、作用を説明する。Next, the effect will be explained.
第3図は吸気管3内における燃料の付着の温度(以下、
単に付着温度という)Thおよび遅れ時定数5PTFを
算出するプログラムを示すフローチャートであり、本プ
ログラムはタイマ同期で、例えば1 sec毎に一度実
行される。Figure 3 shows the temperature of fuel adhesion inside the intake pipe 3 (hereinafter referred to as
This is a flowchart showing a program for calculating Th (simply referred to as adhesion temperature) and a delay time constant 5PTF, and this program is executed in synchronization with a timer, for example, once every 1 sec.
まず、P、でスタートスイッチ13がONであるか否か
を判別し、スタートスイッチ13がONであるときはク
ランキング中であると判断し、P、で付着温度Thをそ
のときの冷却水温度Twに等しいとおいてP、に進む。First, P determines whether or not the start switch 13 is ON, and when the start switch 13 is ON, it is determined that cranking is in progress, and P determines the adhesion temperature Th at the cooling water temperature at that time. Assuming that it is equal to Tw, proceed to P.
一方、スタートスイッチ13がONでないときは既にク
ランキング終了したと判断し、P2で燃料付着部の平衡
付着温度ThOを求める。平衡付着温度Thoは第7図
に示すマツプからそのときの吸入空気1tQcyl(吸
入負圧を吸入空気量に置き換えても同様のマツプ特性と
なる)およびエンジン回転数Nをパラメータとする運転
条件に基づいてルックアップして算出する。なお、Qc
ylはシリンダに吸入される空気量ということであり、
エンジン負荷に対応している。第7図に示すマツプは予
め実験等を通じて作成され、実際の平衡付着温度Tho
と精度良くマツチングしている。On the other hand, when the start switch 13 is not ON, it is determined that cranking has already been completed, and the equilibrium adhesion temperature ThO of the fuel adhesion portion is determined at P2. Equilibrium adhesion temperature Tho is determined from the map shown in Fig. 7 based on the operating conditions using the intake air 1 tQcyl at that time (the same map characteristics are obtained even if the intake negative pressure is replaced with the intake air amount) and the engine speed N as parameters. Lookup and calculate. In addition, Qc
yl is the amount of air sucked into the cylinder,
It corresponds to the engine load. The map shown in Figure 7 was created in advance through experiments, etc., and the actual equilibrium adhesion temperature Tho
It matches with good accuracy.
次いで、P3でフェニルカット中であるか否かを判別し
、ツユニルカット中のときはP、に分岐し、ツユニルカ
ット中でないときはP4に進む。Next, in P3, it is determined whether or not phenyl cutting is in progress, and if the phenyl cutting is in progress, the process branches to P, and if the phenyl cutting is not in progress, the process proceeds to P4.
P4では付着温度Thを次式■に従って演算する。In P4, the adhesion temperature Th is calculated according to the following equation (2).
Th=Tho−(80−Tw)XCI
−(25−Ta)XC2−・−・・・■但し、C1、C
l定数
TW:冷却水温度
Ta:吸気温度
■弐の演算により平衡付着温度Thoを基としてそのと
きの運転条件に対応した付着温度Thが正確に求められ
る。次いで、Pbで遅れ時定数5PTFを第8図に示す
マツプから運転条件Qcy1、Nに基づきルックアンプ
して求める。遅れ時定数5PTFは付着温度Thの変化
速度に相当しており、第8図ではこれが〔%〕をもって
表される。Th=Tho-(80-Tw)XCI-(25-Ta)XC2-... ■However, C1, C
By calculating l constant TW: cooling water temperature Ta: intake air temperature, the adhesion temperature Th corresponding to the operating conditions at that time can be accurately determined based on the equilibrium adhesion temperature Tho. Next, the delay time constant 5PTF for Pb is determined by look-amplification based on the operating conditions Qcy1 and N from the map shown in FIG. The delay time constant 5PTF corresponds to the rate of change of the deposition temperature Th, and this is expressed in [%] in FIG.
第4図は燃料の付着部の温度の予測値(以下、付着温度
予測値という)Tfを算出するプログラムを示すフロー
チャートであり、本プログラムもタイマ同期で、例えば
1 sec毎に一度実行される。FIG. 4 is a flowchart showing a program for calculating a predicted temperature value (hereinafter referred to as a predicted deposition temperature value) Tf of the temperature of the fuel adhesion part, and this program is also executed in synchronization with a timer, for example, once every 1 sec.
pH、pHzでは前記第3図のサブルーチンでそれぞれ
求めた付着温度Th、遅れ時定数5PTFを入力し、P
I3で次式■に従って付着温度予測値Tfを演算する。For pH and pHZ, input the adhesion temperature Th and delay time constant 5PTF, which were respectively obtained in the subroutine of Fig. 3 above, and
At I3, a predicted adhesion temperature value Tf is calculated according to the following equation (2).
Tf =ThxSPTF+Tf−。Tf=ThxSPTF+Tf-.
x (l−3PTF) ・・・・・・■但し、Tf−
、:前回の値
■式の演算により付着温度Thの一次遅れとして付着温
度予測値Tfが求められる。x (l-3PTF) ・・・・・・■However, Tf-
, :Previous value (2) By calculating the equation, the predicted adhesion temperature value Tf is obtained as a first-order lag of the adhesion temperature Th.
第5図は過渡補正量Kathosを算出するプログラム
を示すフローチャートであり、本プログラムは10m5
ec毎に一度実行される。まず、pz+で吸気管3内に
おける燃料壁流骨の平衡付着量Mfhを求める。これは
、例えば
AvTpXMfhtvo −−・−・・■なる式に、
さらに付着温度予測値Tfに基づく補正を加えて算出す
る。0式中、Avtpは平滑噴射量であり、インジェク
タ4の部分を流れる空気量を精度良く求めるためにエア
フローメータ7の出力を一次遅れで平滑化し、その平滑
化した空気量を基に燃料噴射量として演算したものであ
る。FIG. 5 is a flowchart showing a program for calculating the transient correction amount Kathos.
Executed once per ec. First, the equilibrium adhesion amount Mfh of fuel wall flow bones in the intake pipe 3 is determined using pz+. For example, this can be expressed as AvTpXMfhtvo −−・−・・■,
Furthermore, the calculation is performed by adding a correction based on the predicted adhesion temperature value Tf. In formula 0, Avtp is the smooth injection amount, and in order to accurately determine the amount of air flowing through the injector 4, the output of the air flow meter 7 is smoothed with a first-order lag, and the fuel injection amount is calculated based on the smoothed air amount. It is calculated as follows.
したがって、Avtpはシリンダ空気量相当パルス幅(
m s )として演算される。なお、Avtpの演算方
法については本願と略同時期に本出願人が他の出願で既
に開示している。一方、Mfhtvoは付着倍率〔単位
は倍〕であり、冷却水温度TW毎に負荷と回転数から求
められる。このような処理ではMfhの演算に際して従
来と異なり付着温度予測値Tfが要いられているから、
平衡付着量Mfhの精度が高いものとなる。Therefore, Avtp is the cylinder air amount equivalent pulse width (
m s ). Note that the method for calculating Avtp has already been disclosed by the present applicant in another application approximately at the same time as the present application. On the other hand, Mfhtvo is the adhesion magnification [unit: times], and is determined from the load and rotation speed for each cooling water temperature TW. In such processing, when calculating Mfh, the predicted adhesion temperature value Tf is required, unlike the conventional method.
The accuracy of the equilibrium adhesion amount Mfh becomes high.
次いで、P2□で分量割合Kmf(%〕を求める。Next, the quantity ratio Kmf (%) is determined in P2□.
これは、例えば
KmfatxKmfn ・−・−■
なる式に、さらに付着温度予測値Tfに基づく補正を加
えて演算する。0式中、Kmfatは基本分量割合〔%
〕でα−N流量Qhoと冷却水温度Twとを用い、補間
計算付で所定のマツプから求める。なお、α−N流量と
は絞弁開度TVOと回転数Nから空気流量を求めるもの
であり、既に公知のものである。また、Kmfn[倍]
は分量割合回転補正率であり、回転数Nから補間計算付
で所定のテーブルから求める。分量割合Kmfの演算に
際しても従来と異なり付着温度予測値Tfが用いられて
いるから、その算出精度が高いものとなる。次いで、P
X3で付着速度Vmf (ms)を次式■に従って演算
する。This is calculated, for example, by adding a correction based on the predicted adhesion temperature value Tf to the equation KmfatxKmfn. In formula 0, Kmfat is the basic amount ratio [%
] is obtained from a predetermined map using the α-N flow rate Qho and the cooling water temperature Tw with interpolation calculation. Note that the α-N flow rate is the air flow rate determined from the throttle valve opening TVO and the rotational speed N, and is already known. Also, Kmfn [times]
is the quantity ratio rotation correction rate, which is obtained from a predetermined table with interpolation calculation from the rotation speed N. Unlike the conventional method, the deposition temperature predicted value Tf is used when calculating the quantity ratio Kmf, so that the calculation accuracy is high. Then, P
At X3, the adhesion speed Vmf (ms) is calculated according to the following equation (2).
Vmf= (Mf h−Mf) ×Kmf・・−・−0
0式中、Mfは付着量(m s )であり、例えばMf
= (Mf−1ref)+Vmf−・・・・−■なる弐
によって求められる。(Mf−1ref)とは1回転前
のときく前回噴射時)の付着量である。付着速度Vmf
は壁流に取られる燃料の流量であり、1回転当たりの流
量として求められる。Vmf= (Mf h−Mf) ×Kmf・・−・−0
In the formula 0, Mf is the adhesion amount (m s ), for example, Mf
= (Mf-1ref)+Vmf-...-■. (Mf-1ref) is the adhesion amount (at the time of the previous injection, which is one revolution before). Adhesion speed Vmf
is the flow rate of fuel taken up by the wall flow, and is determined as the flow rate per rotation.
次いで、pzaで補正率Ghf(%〕を次式〇に従って
求める。Next, the correction factor Ghf (%) is determined using pza according to the following formula.
Ghf=GhfgenXKtgKL’−−−’−■■式
中、Ghfgenは:f#、量補正率であり、加速(V
mf≧0のとき)にはGh f gen=Qとし、そう
でないときは補正率負荷項GhfgとGhfdnとのう
ち何れか大きい値を用いる。ここに、Ghfgは平衡噴
射量Avtpに基づき補間無しのテーブルをルックアッ
プして求める。また、KtgKLは過渡学習低周波係数
であり、例えば1゜0@後の値を用いる。次いでP□で
次式〇に従って過渡補正量Kathosを求める。Ghf=Ghfgen
When mf≧0), Gh f gen=Q is used; otherwise, the larger value of the correction factor load terms Ghfg and Ghfdn is used. Here, Ghfg is determined by looking up a table without interpolation based on the equilibrium injection amount Avtp. Further, KtgKL is a transient learning low frequency coefficient, and uses a value after 1°0@, for example. Next, at P□, the transient correction amount Kathos is determined according to the following formula 〇.
Kathos=VmfxGhf−・−・−0以上の処理
でKa t ho sを求めた後は、実際の噴射量Ti
を第6図に示すプログラムのステップP31で次式〇に
従って演算する。After calculating Kathos by the above process, the actual injection amount Ti
is calculated according to the following equation in step P31 of the program shown in FIG.
Ti= (TpXαm+Kathos)Xcr+’l’
s・・・・・・■
但し、Tp:基本噴射量
αは酸素センサ12の出力に基づく空燃比のλ制御補正
計数であり、αmは混合比学習制御補正計数である。T
Sは無効パルス幅である。Ti= (TpXαm+Kathos)Xcr+'l'
s...■ However, Tp: Basic injection amount α is a λ control correction factor for the air-fuel ratio based on the output of the oxygen sensor 12, and αm is a mixture ratio learning control correction factor. T
S is the invalid pulse width.
上記各プログラムの実行による実際の作動は第9図のタ
イミングチャートのように示される。第9図はエンジン
1の始動後4分程度経過した時点で加速した場合の例で
ある。壁流の付着温度Thはあくまでも定常状態で平衡
した場合の値であるから図示のように始動と同時にステ
ップ状に上昇し、加速時にもステップ状に上昇する。し
かし、このようなステップ状の変化は実際の付着温度に
はマツチングしていない。The actual operation by executing each of the above programs is shown in the timing chart of FIG. FIG. 9 shows an example in which the engine 1 is accelerated about 4 minutes after starting. Since the adhesion temperature Th of the wall flow is a value in equilibrium in a steady state, as shown in the figure, it increases in a stepwise manner at the same time as the engine starts, and also increases in a stepwise manner during acceleration. However, such a step change does not match the actual deposition temperature.
これに対し、本実施例では付着温度予測値Tfが用いら
れており、これによると実際の付着温度に極めて精度良
くマツチングしたものとなる。ここで、特に第9図のA
で示す時点で加速をした場合の空燃比の変化は第10図
のようになる。従来例であれば、冷却水温度TVから付
着温度を求めているので、過渡補正量KathosO値
が不適切になり加速時に空燃比が大きく変動する。一方
、本実施例では冷却水の温度Twのように時定数が極め
て大きく定常状態で平衡した場合とは異なり、付着温度
予測値Tfを用いているため、壁流の補正が適切に行わ
れ過渡補正量が実際の状況に精度良く対応したものとな
る。したがって、空燃比の変化が少なく抑えられる。以
上のことから、次のような効果が得られる。On the other hand, in this embodiment, the predicted deposition temperature value Tf is used, which matches the actual deposition temperature with extremely high accuracy. Here, in particular, A in Figure 9
The change in air-fuel ratio when the vehicle is accelerated at the time shown in FIG. 10 is as shown in FIG. In the conventional example, since the adhesion temperature is determined from the cooling water temperature TV, the transient correction amount KathosO value becomes inappropriate and the air-fuel ratio fluctuates greatly during acceleration. On the other hand, in this example, unlike the case where the time constant is extremely large and equilibrium is achieved in a steady state, such as the cooling water temperature Tw, the predicted adhesion temperature value Tf is used, so the wall flow is appropriately corrected and the transient The amount of correction corresponds to the actual situation with high accuracy. Therefore, changes in the air-fuel ratio can be suppressed to a small level. From the above, the following effects can be obtained.
(1)加速する前の運転条件に拘らず、適切な加速補正
により運転性が改善される。また、三元点からの空燃比
のズレが少なくなるため、エミッションのヒゲが少なく
なって排気浄化性能が向上する。(1) Regardless of the driving conditions before acceleration, drivability is improved by appropriate acceleration correction. Furthermore, since the deviation of the air-fuel ratio from the ternary point is reduced, there are fewer emissions gaps and the exhaust gas purification performance is improved.
(II)特に、始動直後の運転性、エミッション特性が
向上するため、発進時のパワステエンスト防止が図れる
他、定常リーン化によるエミッション低減、燃費改善が
図れる。(II) In particular, since the drivability and emission characteristics immediately after starting are improved, it is possible to prevent power steering stall at the time of starting, and also to reduce emissions and improve fuel efficiency due to constant lean.
(II[)ツユエル力ソトリカバ直後についても上記同
様の効果があり、ヘジテーション防止やNOx低減を図
ることができる。(II [) The same effect as described above can be obtained immediately after the twerking force is applied, and it is possible to prevent hesitation and reduce NOx.
(rV)過渡空燃比のフラット性がより一層向上する。(rV) The flatness of the transient air-fuel ratio is further improved.
(V)壁温センサ等の高価なものを用いておらず、コン
トロールユニット20内のソフトを改良したり、マツプ
データの改良で対処することができ、コストアンプを招
かない。(V) Expensive items such as wall temperature sensors are not used, and this can be solved by improving the software in the control unit 20 or improving the map data, and does not increase costs.
(効果)
本発明によれば、各種運転条件から付着部温度を予測し
ているので、過渡補正量を適切なものとしてコストアン
プを招くことなく、空燃比の変動を抑制することができ
、運転性能および排気浄化性能を大幅に向上させること
ができる。(Effects) According to the present invention, since the adhering part temperature is predicted from various operating conditions, it is possible to suppress fluctuations in the air-fuel ratio without increasing costs by setting an appropriate amount of transient correction. Performance and exhaust purification performance can be significantly improved.
第1図は本発明の基本概念図、第2〜10図は本発明に
係る内燃機関の燃料噴射制御装置の一実施例を示す図で
あり、第2図はその全体構成図、第3図はその付着温度
および遅れ時定数を算出するプログラムを示すフローチ
ャート、第4図はその付着温度予測値を算出するプログ
ラムを示すフローチャート、第5図はその過渡補正量を
算出するプログラムを示すフローチャート、第6図はそ
の燃料噴射量を演算するプログラムを示すフローチャー
ト、第7図はその付着部温度の特性を示す図、第8図は
その遅れ時定数の特性を示す図、第9図はその始動時の
作用を説明するタイミングチャート、第10図はその加
速時の空燃比の変動を示すタイミングチャート、第】1
.12図は従来の内燃機関の燃料噴射制御装置を示す図
であり、第11図はその噴射位置を示す模式図、第12
図はその加速時の空燃比の変動を示すタイミングチャー
トである。
■・・・・・・エンジン、
4・・・・・・インジェクタ(燃料噴射手段)、7・・
・・・・エアフローメータ、
9・・・・・・絞弁開度センサ、
IO・・・・・・クランク角センサ、
11・・・・・・水温センサ、
12・・・・・・酸素センサ、
14・・・・・・運転状態検出手段、
20・・・・・・コントロールユニット(平衡温度演算
手段、遅れ演算手段、予測手段、補正量演算手段、噴射
量演算手段)。FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 10 are diagrams showing an embodiment of a fuel injection control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. is a flowchart showing a program for calculating the adhesion temperature and delay time constant, FIG. 4 is a flowchart showing a program for calculating the predicted adhesion temperature value, FIG. Figure 6 is a flowchart showing the program that calculates the fuel injection amount, Figure 7 is a diagram showing the characteristics of the adhesion part temperature, Figure 8 is a diagram showing the characteristics of the delay time constant, and Figure 9 is at the time of starting. Fig. 10 is a timing chart showing the fluctuation of the air-fuel ratio during acceleration.
.. FIG. 12 is a diagram showing a conventional fuel injection control device for an internal combustion engine, FIG. 11 is a schematic diagram showing its injection position, and FIG.
The figure is a timing chart showing fluctuations in the air-fuel ratio during acceleration. ■...Engine, 4...Injector (fuel injection means), 7...
... Air flow meter, 9 ... Throttle valve opening sensor, IO ... Crank angle sensor, 11 ... Water temperature sensor, 12 ... Oxygen sensor , 14... Operating state detection means, 20... Control unit (equilibrium temperature calculation means, delay calculation means, prediction means, correction amount calculation means, injection amount calculation means).
Claims (1)
、 b)エンジンの運転状態に基づいて吸気管内の燃料付着
部の平衡状態温度を求める平衡温度演算手段と、 c)エンジンの運転状態に基づいて吸気管内の燃料付着
部の温度の遅れ時定数を求める遅れ演算手段と、 d)平衡温度演算手段および遅れ演算手段の出力に基づ
いて吸気管内の燃料付着部の温度を予測する予測手段と
、 e)エンジンが所定の温度状態にあるとき、少なくとも
予測手段の出力を用いて燃料の噴射量を補正する過渡補
正量を演算する補正量演算手段と、 f)エンジンの運転状態に基づいて燃料の噴射量を演算
し、過渡状態に移行すると前記過渡補正量に応じて燃料
の噴射量を補正する噴射量演算手段と、 g)噴射量演算手段の出力に基づいて燃料を噴射する燃
料噴射手段と、 を備えたことを特長とする内燃機関の燃料噴射制御装置
。[Scope of Claims] a) Operating state detection means for detecting the operating state of the engine; b) Equilibrium temperature calculation means for calculating the equilibrium state temperature of the fuel adhering portion in the intake pipe based on the operating state of the engine; c) d) delay calculation means for calculating a delay time constant of the temperature of the fuel adhesion part in the intake pipe based on the operating state of the engine; e) correction amount calculation means for calculating a transient correction amount for correcting the fuel injection amount using at least the output of the prediction means when the engine is in a predetermined temperature state; and f) operation of the engine. g) injection amount calculation means that calculates the fuel injection amount based on the state and corrects the fuel injection amount according to the transient correction amount when the transition to the transient state; g) fuel injection amount calculation means that calculates the fuel injection amount based on the output of the injection amount calculation means; A fuel injection control device for an internal combustion engine, comprising: a fuel injection means for injecting fuel;
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136699A JPH0726566B2 (en) | 1988-06-03 | 1988-06-03 | Fuel injection control device for internal combustion engine |
US07/360,813 US4922877A (en) | 1988-06-03 | 1989-06-02 | System and method for controlling fuel injection quantity for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136699A JPH0726566B2 (en) | 1988-06-03 | 1988-06-03 | Fuel injection control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01305142A true JPH01305142A (en) | 1989-12-08 |
JPH0726566B2 JPH0726566B2 (en) | 1995-03-29 |
Family
ID=15181409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63136699A Expired - Fee Related JPH0726566B2 (en) | 1988-06-03 | 1988-06-03 | Fuel injection control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726566B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5542393A (en) * | 1993-11-02 | 1996-08-06 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection amount control system for internal combustion engines |
US5586544A (en) * | 1993-11-30 | 1996-12-24 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection amount control system for internal combustion engines and intake passage wall temperature-estimating device used therein |
US5609023A (en) * | 1993-12-01 | 1997-03-11 | Honda Giken Kogyo Kabushiki Kaisha | Fuel supply control system for internal combustion engines |
US5647324A (en) * | 1995-05-18 | 1997-07-15 | Nissan Motor Co., Ltd. | Engine air-fuel ratio controller |
US5765533A (en) * | 1996-04-18 | 1998-06-16 | Nissan Motor Co., Ltd. | Engine air-fuel ratio controller |
-
1988
- 1988-06-03 JP JP63136699A patent/JPH0726566B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5542393A (en) * | 1993-11-02 | 1996-08-06 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection amount control system for internal combustion engines |
US5586544A (en) * | 1993-11-30 | 1996-12-24 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection amount control system for internal combustion engines and intake passage wall temperature-estimating device used therein |
US5609023A (en) * | 1993-12-01 | 1997-03-11 | Honda Giken Kogyo Kabushiki Kaisha | Fuel supply control system for internal combustion engines |
US5647324A (en) * | 1995-05-18 | 1997-07-15 | Nissan Motor Co., Ltd. | Engine air-fuel ratio controller |
US5765533A (en) * | 1996-04-18 | 1998-06-16 | Nissan Motor Co., Ltd. | Engine air-fuel ratio controller |
Also Published As
Publication number | Publication date |
---|---|
JPH0726566B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH109022A (en) | Air-fuel ratio control device of internal combustion engine | |
JPH01305142A (en) | Fuel injection controller of internal combustion engine | |
JP2927074B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3826997B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS63195349A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0747939B2 (en) | Air-fuel ratio compensator for engine | |
US4646699A (en) | Method for controlling air/fuel ratio of fuel supply for an internal combustion engine | |
JP3187534B2 (en) | Air-fuel ratio correction method for internal combustion engine | |
JP4258733B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4044978B2 (en) | Engine air-fuel ratio control device | |
JPH01305144A (en) | Fuel injection controller of internal combustion engine | |
JP2715208B2 (en) | Air-fuel ratio learning control device for internal combustion engine | |
JP3692629B2 (en) | Engine air-fuel ratio control device | |
JPH0656112B2 (en) | Fuel injection control device for internal combustion engine | |
JP2962981B2 (en) | Control method of air-fuel ratio correction injection time during transient | |
JP3564923B2 (en) | Engine air-fuel ratio control device | |
JP2966258B2 (en) | Air-fuel ratio correction control method | |
JP3593388B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2000097081A (en) | Air-fuel ratio control device of internal-combustion engine | |
JP2932941B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH01244139A (en) | Fuel feed control device for internal combustion engine | |
JPH08232706A (en) | Fuel injection quantity control device for combustion engine | |
JPS62162742A (en) | Air-fuel ratio control device | |
JPH02185641A (en) | Device for controlling air-fuel ratio of engine | |
JPH01273853A (en) | Fuel feed controller for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |