JPS62162742A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS62162742A
JPS62162742A JP319886A JP319886A JPS62162742A JP S62162742 A JPS62162742 A JP S62162742A JP 319886 A JP319886 A JP 319886A JP 319886 A JP319886 A JP 319886A JP S62162742 A JPS62162742 A JP S62162742A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
engine
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP319886A
Other languages
Japanese (ja)
Inventor
Hiroshi Miwakeichi
三分一 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP319886A priority Critical patent/JPS62162742A/en
Publication of JPS62162742A publication Critical patent/JPS62162742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure operability and simultaneously reduce the exhaust amount of NOx, by setting up a ternary air-fuel ratio temporarily when a lean- combustion operation is shifted to a transitional condition. CONSTITUTION:In a control unit 20, a target air-fuel ratio is set up corresponding to the load of an engine 1, the supply of fuel is controlled in such a manner that the target air-fuel ratio can be achieved being based on the output of an oxygen sensor 17, and the fuel is injected from an injector 4. Here, the target air-fuel ratio is set for a leaner side than a theory air-fuel ratio during at least a part of a steady driving, however, it is set for a ternary air-fuel ratio when the load of the engine is detected to be in a prescribed transitional condition by signals from a load detecting means 18 comprising an air flow meter 8 and a crank angle sensor 15. Thus, air-fuel mixture in a cylinder becoming exhaust gas is conducted to a catalytic converter 7 through an exhaust pipe 6, and is exhausted being purified of its harmful ingredients by catalytic converter rhodium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等エンジンの空燃比を制御する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for controlling the air-fuel ratio of an engine such as an automobile.

(従来の技術) 近時、自動車エンジンに対する要求が高度化しており、
排出ガス低減、高出力、低燃費等の互いに相反する課題
について何れも高レベルでその達成が求められる傾向に
ある。
(Prior art) In recent years, demands on automobile engines have become more sophisticated.
There is a tendency for mutually contradictory issues such as reduced exhaust gas, high output, and low fuel consumption to be achieved at a high level.

これらの課題に対応するため超希薄空燃比下における燃
焼制御が試みられており、例えばそのようなものとして
は「内燃機関、23巻12号J 1984年10月号 
33〜40頁 山海堂発行に記載の希薄燃焼装置がある
。この装置では、リッチからリーンまで空燃比を広範囲
に検出可能なリーンセンサの出力に基づいて超希薄空燃
比領域まで空燃比のフィードバック制御を行って上記要
求を達成しようとしている。
In order to address these issues, combustion control under ultra-lean air-fuel ratios has been attempted; for example, "Internal Combustion Engine, Vol. 23, No. 12 J, October 1984 issue.
There is a lean burn device described in pages 33-40 published by Sankaido. This device attempts to achieve the above requirements by performing feedback control of the air-fuel ratio up to the ultra-lean air-fuel ratio region based on the output of a lean sensor that can detect air-fuel ratios over a wide range from rich to lean.

この場合、定常走行においては理論空燃比一定の特性と
異なり、一部の加速領域においてもり−ンな空燃比を目
標値としている。例えば、通常の加速域では空燃比22
.5、定常走行域では空燃比21゜5、アイドリング時
は空燃比15.5としている。また、全負荷状態では出
力空燃比12〜13を用い車両動力性能を確保しようと
する。このようなリーン空燃比に移行するにつれてNO
xは極めて減少する傾向にあり、近時におけるNOxエ
ミツションの低減化に沿うものである。しかし、一方に
おいて、排出ガス規制を満足するためのNOxの排出レ
ベルと許容できるトルク変動レベルの両者を満足できる
空燃比適合可能領域は狭く、精密な空燃比制御が必要と
なっている。
In this case, unlike the characteristic where the stoichiometric air-fuel ratio is constant during steady driving, a moderate air-fuel ratio is set as the target value in a part of the acceleration region. For example, in the normal acceleration range, the air-fuel ratio is 22
.. 5. The air-fuel ratio is 21°5 in the steady running range, and 15.5 during idling. Further, in a full load state, an output air-fuel ratio of 12 to 13 is used to ensure vehicle power performance. As we move to such a lean air-fuel ratio, NO.
x tends to decrease significantly, which is in line with the recent reduction in NOx emissions. However, on the other hand, the adaptable air-fuel ratio range that satisfies both the NOx emission level to satisfy exhaust gas regulations and the allowable torque fluctuation level is narrow, and precise air-fuel ratio control is required.

(発明が解決しようとする問題点) ところで、過渡時において運転性を確保しつつNOX排
出量を規制値内にクリアするためには等空燃比上を変化
させなければならないが、現行技術(すなわち従来の装
置)では過渡時に等空燃比を維持する精密な制御は未だ
困難である。
(Problem to be solved by the invention) By the way, in order to clear NOx emissions within the regulation value while ensuring drivability during transient periods, it is necessary to change the constant air-fuel ratio, but current technology (i.e. With conventional devices, it is still difficult to perform precise control to maintain a constant air-fuel ratio during transient conditions.

そのため、現状では運転性に支障を与えないように過渡
時には空燃比をリッチ化させている。しかしながら、単
に運転性確保の点から中途半端にリッチ化させたのでは
、NOx排出量が増大し近時の要求に沿うことができな
い。
Therefore, at present, the air-fuel ratio is enriched during transient periods so as not to impede drivability. However, if the engine is enriched halfway just to ensure drivability, the amount of NOx emissions will increase and it will not be possible to meet recent demands.

(発明の目的) そこで本発明は、三元触媒本来の機能に着目し、多くの
トルクを必要とする加速の過渡状態に移行したときは目
標空燃比を三元空燃比(例えば、λ−1)に設定するこ
とにより、運転性を確保しつつNOx排出量を低減させ
て、近時の要求に沿う空燃比制御装置を提供することを
目的としている。
(Purpose of the Invention) Therefore, the present invention focuses on the original function of the three-way catalyst, and when transitioning to a transient state of acceleration that requires a large amount of torque, the target air-fuel ratio is changed to the three-way air-fuel ratio (for example, λ-1 ), the purpose is to provide an air-fuel ratio control device that meets recent demands by reducing NOx emissions while ensuring drivability.

(発明の構成) 本発明による空燃比制御装置はその基本概念図を第1図
に示すように、吸入混合気の空燃比を検出する空燃比検
出手段aと、エンジンの負荷を検出する負荷検出手段す
と、エンジンが所定の過渡状態にあることを検出する過
渡状態検出手段Cと、エンジン負荷に応じて目標空燃比
を設定し、少なくとも定常走行の一部において該目標空
燃比を理論空燃比よりリーン側に設定するとともに、エ
ンジンが所定の過渡状態に移行すると目標空燃比を三元
空燃比に設定する目標設定手段dと、空燃比検出手段a
の出力に基づいて目標空燃比となるように吸入空気ある
いは燃料の供給量を制御する制御手段eと、制御手段e
からの信号に基づいて吸入空気あるいは燃料の供給量を
操作する操作手段fと、を備えており、運転性を確保し
つつNOx排出量を低減するものである。
(Structure of the Invention) The air-fuel ratio control device according to the present invention, as its basic conceptual diagram is shown in FIG. The means includes a transient state detection means C that detects that the engine is in a predetermined transient state, and sets a target air-fuel ratio according to the engine load, and sets the target air-fuel ratio to the stoichiometric air-fuel ratio during at least a part of steady running. a target setting means d that sets the target air-fuel ratio to a three-way air-fuel ratio when the engine shifts to a predetermined transient state; and an air-fuel ratio detecting means a.
a control means e for controlling the supply amount of intake air or fuel to reach a target air-fuel ratio based on the output of the control means e;
and an operating means f for controlling the amount of intake air or fuel supplied based on a signal from the engine, thereby reducing NOx emissions while ensuring drivability.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明の一実施例を示す図である。2 to 7 are diagrams showing an embodiment of the present invention.

まず、構成を説明する。第2図において、1はエンジン
であり、吸入空気はエアクリーナ2より吸気管3を通し
て各気筒に供給され燃料は噴射信号Siに基づいてイン
ジェクタ(操作手段)4により噴射される。そして、気
筒内の混合気は点火プラグ5の放電作用によって着火、
爆発し、排気となって排気管6を通して触媒コンバータ
7に導入され、触媒コンバータ7内で排気中の有害成分
(Co、HC,N0x)を三元触媒により清浄化して排
出される。
First, the configuration will be explained. In FIG. 2, reference numeral 1 denotes an engine, in which intake air is supplied from an air cleaner 2 to each cylinder through an intake pipe 3, and fuel is injected by an injector (operating means) 4 based on an injection signal Si. Then, the air-fuel mixture in the cylinder is ignited by the discharge action of the spark plug 5.
It explodes, becomes exhaust gas, and is introduced into the catalytic converter 7 through the exhaust pipe 6. In the catalytic converter 7, harmful components (Co, HC, NOx) in the exhaust gas are purified by a three-way catalyst and then discharged.

吸入空気の流量Qaはフラップ型のエアフローメータ8
により検出され、吸気管3内の絞弁9によって制御され
る。絞弁9の開度TVOは絞弁開度センサ10により検
出され、吸気管3内における吸入空気の圧力PBは圧力
センサ11により検出される。また、吸気ポート近傍の
吸気管3内にはスワール弁12が設けられており、スワ
ール弁12は駆動弁13にかかる負圧を制御しているソ
レノイド弁14に入力される制御信号Svに基づき開閉
して吸気ボートから気筒内にかけていわゆるスワールを
発生させて燃焼改善を行う。
The intake air flow rate Qa is measured using a flap type air flow meter 8.
and is controlled by a throttle valve 9 in the intake pipe 3. The opening TVO of the throttle valve 9 is detected by a throttle valve opening sensor 10, and the pressure PB of intake air in the intake pipe 3 is detected by a pressure sensor 11. Further, a swirl valve 12 is provided in the intake pipe 3 near the intake port, and the swirl valve 12 opens and closes based on a control signal Sv input to a solenoid valve 14 that controls the negative pressure applied to the drive valve 13. This creates a so-called swirl from the intake boat into the cylinder to improve combustion.

エンジン1の回転数Nはクランク角センサ15により検
出され、ウォータジャケットを流れる冷却水の温度Tw
は水温センサ16により検出される。
The rotation speed N of the engine 1 is detected by the crank angle sensor 15, and the temperature Tw of the cooling water flowing through the water jacket is detected by the crank angle sensor 15.
is detected by the water temperature sensor 16.

さらに、排気中の酸素濃度は酸素センサ(空燃比検出手
段)17により検出され、酸素センサ17はその出力V
iがリッチからリーン領域まで広範囲な空燃比に対して
一義的に変化するタイプのもの等が用いられる。
Furthermore, the oxygen concentration in the exhaust gas is detected by an oxygen sensor (air-fuel ratio detection means) 17, which outputs V
A type in which i changes uniquely over a wide range of air-fuel ratios from rich to lean regions is used.

上記エアフローメータ8およびクランク角センサ15は
負荷検出手段18を構成しており、負荷検出手段18お
よび各センサ10.11.16.17からの信号をコン
トロールユニット20に入力される。コントロールユニ
ット20はこれらのセンサ情報に基づいて空燃比制御、
点火時期制御およびスワール制御を行う。
The air flow meter 8 and the crank angle sensor 15 constitute a load detection means 18, and signals from the load detection means 18 and each sensor 10, 11, 16, and 17 are input to the control unit 20. The control unit 20 controls the air-fuel ratio based on these sensor information.
Performs ignition timing control and swirl control.

すなわち、コントロールユニット20は過渡状態検出手
段、目標設定手段および制御手段としての機能を有し、
CPU21、ROM22、RAM23およびI10ポー
ト24により構成される。CPU21はROM22に書
き込まれているプログラムにしたがってI10ボート2
4より必要とする外部データを取り込んだり、またRA
M23との間でデータの授受を行ったりしながら必要な
処理値等を演算処理し、必要に応じて処理したデータを
I10ポート24へ出力する。I10ボート24にはセ
ンサ群10.11.15.16.17.18からの信号
が入力されるとともに、I10ボート24からは噴射信
号Siおよび制御信号SV(その他点火時期制御の信号
もあるがここでは省略する)が出力される。ROM22
はCP U21における演算プログラムを格納しており
、RAM23は演算に使用するデータをマツプ等の形で
記憶している。
That is, the control unit 20 has functions as a transient state detection means, a target setting means, and a control means,
It is composed of a CPU 21, a ROM 22, a RAM 23, and an I10 port 24. The CPU 21 executes the I10 boat 2 according to the program written in the ROM 22.
You can import the external data you need from 4, and also use RA.
It performs arithmetic processing on necessary processing values while exchanging data with the M23, and outputs the processed data to the I10 port 24 as necessary. Signals from the sensor group 10.11.15.16.17.18 are input to the I10 boat 24, and the injection signal Si and control signal SV (there are also other signals for ignition timing control, ) is output. ROM22
stores an arithmetic program for the CPU 21, and the RAM 23 stores data used in the arithmetic operations in the form of a map or the like.

次に作用を説明する。Next, the action will be explained.

第3.4図はROM22に書き込まれている空燃比側i
lBのプログラムを示すフローチャートである。
Figure 3.4 shows the air-fuel ratio side i written in the ROM22.
It is a flowchart which shows the program of IB.

第3図は過渡状態判別のプログラムを示し、本プログラ
ムは所定時間(5m5ec毎)毎に一度実行される。
FIG. 3 shows a program for determining a transient state, and this program is executed once every predetermined time (every 5 m5 ec).

まず、P、で絞弁開度センサlOからの信号TVOを読
み込み、これをA/D変換する。次いで、P、で所定の
単位時間内における絞弁開度TVOの差分値ΔTVOを
演算し、P3でこれを所定の加速判別値A (Ago)
と比較する。なお、ΔT■0の算出は例えば本プログラ
ムの実行毎における差分(前回と今回の値の差)を求め
るようにしてもよい。
First, the signal TVO from the throttle valve opening sensor lO is read at P and is A/D converted. Next, the difference value ΔTVO of the throttle valve opening degree TVO within a predetermined unit time is calculated at P, and this is set as a predetermined acceleration discrimination value A (Ago) at P3.
Compare with. Note that ΔT■0 may be calculated, for example, by calculating the difference (difference between the previous value and the current value) each time this program is executed.

ΔTVO>Aのときは加速であると判断しP。When ΔTVO>A, it is judged as acceleration, and P is selected.

で加速フラグKFを立てて今回のルーチンを終了し Δ
TVO<Aのときは、加速でないと判断しP、で加速フ
ラグKFを降ろしてルーチンを終了する。これにより、
加速が精度よく確実に判別される。なお、加速の判別は
上記例に限らず、例えば絞弁開度TVOの微分値dTV
o/d tを求め、これを所定値と比較して加速を判別
してもよい。
Set the acceleration flag KF and end this routine with Δ
When TVO<A, it is determined that there is no acceleration, the acceleration flag KF is lowered at P, and the routine is ended. This results in
Acceleration can be determined accurately and reliably. Note that the determination of acceleration is not limited to the above example; for example, the differential value dTV of the throttle valve opening TVO
Acceleration may be determined by determining o/dt and comparing it with a predetermined value.

第4図は噴射量制御のプログラムを示し、本プログラム
はエンジン回転に同期して実行される。
FIG. 4 shows a program for controlling the injection amount, and this program is executed in synchronization with engine rotation.

まず、Pl+で1気筒当りに実際に気筒内に吸入される
空気流量(以下、気筒流人空気量という)QACYLを
演算する。このような演算を行うのは過渡時においても
正確な空気2it量情報を得るためで、この情報精度が
悪いと空燃比制御において噴射量操作の実効が図れない
からであり近時の精密な空燃比制御に対応するためであ
る。
First, the air flow rate (hereinafter referred to as cylinder flow rate) QACYL that is actually taken into each cylinder per cylinder is calculated using Pl+. The reason for performing such calculations is to obtain accurate air 2it amount information even during transient times.If the accuracy of this information is poor, the injection amount cannot be effectively manipulated in air-fuel ratio control. This is to support fuel ratio control.

そこで、気筒流人空気量QACYLの算出について説明
する。
Therefore, calculation of the cylinder airflow amount QACYL will be explained.

QACYLの演算を加速の場合を一例として図示すると
第5図のように示される。
The calculation of QACYL is illustrated in the case of acceleration as shown in FIG. 5 as an example.

第5図において、t=Qなるタイミングでアクセルの踏
込が開始されて絞弁開度TVOが変化し始めると、圧力
センサ11の主波形PBを信号処理した波形PBXは脈
動抑制効果のため期間t2だけ遅れて変化し始める。ま
た、PBXを基に予測処理した圧力補正流量値QACY
L’もかなり補正されてはいるものの、やはり期間1.
(1,<tz)の遅れをもって変化し始めており、気筒
に吸入されたと予想される真の空気流量QACYLとは
図中のハンチング部分(ΔQACYL)のズレがある。
In FIG. 5, when the accelerator is started to be depressed at the timing t=Q and the throttle valve opening TVO starts to change, the waveform PBX obtained by signal processing the main waveform PB of the pressure sensor 11 has a period t2 due to the pulsation suppressing effect. It starts to change with a delay. In addition, the pressure correction flow rate value QACY predicted based on the PBX
Although L' has also been corrected considerably, it is still the same as period 1.
It starts to change with a delay of (1, < tz), and there is a difference between the hunting part (ΔQACYL) in the figure and the true air flow rate QACYL that is expected to be taken into the cylinder.

したがって、このような過渡時に空気流量の検出精度が
低下する。本実施例ではこれを是正している。
Therefore, the detection accuracy of the air flow rate decreases during such a transient period. This example corrects this problem.

まず、QACYL’は次式■に従って演算される。First, QACYL' is calculated according to the following equation (2).

QACYL’−PBX+αΔPB  ・・・・・・■■
弐において、PBXは圧力センサ11の出力を脈動抑制
のために信号処理した波形であり、ΔPBは吸気圧力P
Bの所定の単位時間内における差分値である。また、α
は回転数Nの関数である。
QACYL'-PBX+αΔPB ・・・・・・■■
2, PBX is a waveform obtained by signal processing the output of the pressure sensor 11 to suppress pulsation, and ΔPB is the intake pressure P
This is the difference value of B within a predetermined unit time. Also, α
is a function of the rotation speed N.

このような演算を行うのは、空気の方が燃料よりも遅く
まで気筒に吸入されるため噴射量を決定する際に気筒に
入る空気量を予測するためであり、圧力センサ11の出
力を脈動処理したものにΔPBをα倍したものをつけ加
えて予測している。
The reason for performing such a calculation is to predict the amount of air entering the cylinder when determining the injection amount, since air is drawn into the cylinder later than fuel. The prediction is made by adding ΔPB multiplied by α to the processed result.

一方、上述のハンチング部分のズレを補正するために、
最も早く動き出す絞弁開度TVOに着目し、次式■に従
ってズレの補正分である流量補正値ΔQACYLを演算
する。
On the other hand, in order to correct the deviation of the hunting part mentioned above,
Focusing on the throttle valve opening TVO that starts to move the earliest, a flow rate correction value ΔQACYL, which is a correction for the deviation, is calculated according to the following equation (2).

ΔQACYL= (ΔTVO/N)xlNTQA・・・
・・・■ 0式において、I NTQAは過渡初期の空気流11Q
A CY Lであり、例えば絞弁開度TVOの変化を用
いる。この0式は、ΔTVO/Nすなわち1回転当たり
の差分値ΔTVO(絞弁開度TVOの所定単位時間当た
りの差)がある運転条件では空気流量を代表しており、
これにI NTQAを乗じてやれば実際の空気流量とセ
ンサ情報に基づく流量算出量との相関のズレを十分に補
正できることを意味している。このΔQACYLをQA
CYL′に加えたもの(QACYL=ΔQ A C’I
’ L +QACYL’)は図に示すように絞弁開度T
VOの変化に相関しており、気筒に吸入されたと予想さ
れる真の空気流量に正確に対応したものとなる。
ΔQACYL= (ΔTVO/N)xlNTQA...
...■ In Equation 0, INTQA is the air flow 11Q at the initial stage of the transition.
A CY L, and uses, for example, a change in the throttle valve opening TVO. This equation 0 represents the air flow rate under operating conditions with ΔTVO/N, that is, the difference value ΔTVO per revolution (difference in throttle valve opening TVO per predetermined unit time).
This means that by multiplying this by INTQA, it is possible to sufficiently correct the deviation in the correlation between the actual air flow rate and the calculated flow rate amount based on sensor information. QA this ΔQACYL
Added to CYL' (QACYL=ΔQ A C'I
'L + QACYL') is the throttle valve opening T as shown in the figure.
It is correlated with the change in VO and corresponds accurately to the true flow rate of air expected to be drawn into the cylinder.

すなわち、加速時における吸入空気の算出を正確なもの
として気筒内に吸入される空気流量の検出精度を飛躍的
に高めることができる。なお、検出精度の向上は上述し
た加速の例に限らず、減速の場合にも発揮されることは
勿論である。
That is, by accurately calculating the amount of intake air during acceleration, the accuracy of detecting the flow rate of air taken into the cylinder can be dramatically improved. Note that, of course, the improvement in detection accuracy is achieved not only in the above-mentioned example of acceleration but also in the case of deceleration.

そして、ΔQACYLによる補正が終了するとQACY
L ’によって空気流量が算出され、さらにQACYL
 ’がF’BXに等しくなると以後はフラップ型エアフ
ローメータ8の出力に基づいて空気流量が算出される。
Then, when the correction by ΔQACYL is completed, QACY
The air flow rate is calculated by L', and QACYL
When ' becomes equal to F'BX, the air flow rate is thereafter calculated based on the output of the flap type air flow meter 8.

但し、QACYL ′−PBXとなった以降は圧力セン
サ11の出力から直接に空気流量を算出してもよい。
However, after reaching QACYL'-PBX, the air flow rate may be calculated directly from the output of the pressure sensor 11.

このように、正確な空気流量情報に基づいているから、
後述の噴射量制御も精密なものとなる。
In this way, because it is based on accurate air flow information,
Injection amount control, which will be described later, will also be more precise.

さて、以上を踏まえて再びプログラムに戻る。Now, with the above in mind, let's return to the program again.

pHを経ると、pHzで絞弁9が全閉位置から離れた後
の経過時間Tcを所定値t0と比較する。
When pH is reached, the elapsed time Tc after the throttle valve 9 leaves the fully closed position at pHz is compared with a predetermined value t0.

これは、絞弁9が全閉から開いた直後はエンジン1の定
常走行からの加速に比して加速要求程度が大きいからで
あり、これに答えて空燃比のリッチ化(λ−1)を図る
ためである。Tc< t、のときはPl3で加速フラグ
KFを判別し、Tc≧1゜のときはPl4に進む。PI
3でKF= 1のときは加速要求に伴うリッチ化条件下
にあると判断してPl、で目標空燃比KMR(設定空燃
比)を三元空燃比(以下、三元KMRと表す)に設定し
てPl6に進む。三元空燃比とは三元触媒本来の機能が
有効に発揮される空燃比であればよく、本実施例ではこ
れをλ=1の理論空燃比としている。一方、KF−0の
ときはP1□でNo命令に従うときと同様にPl4に進
む。Pl4では目標空燃比KMRをそのときのエンジン
負荷に応じて設定する。例えば、NとQaによって決定
される基本噴射量Tp(Tp−K・Qa/N)および回
転数Nをパラメータとするテーブルマツプから最適値を
ルックアップする。
This is because immediately after the throttle valve 9 opens from fully closed, the degree of acceleration required is greater than when the engine 1 accelerates from steady running.In response, the air-fuel ratio is enriched (λ-1). This is for the purpose of achieving this. When Tc<t, the acceleration flag KF is determined in Pl3, and when Tc≧1°, the process proceeds to Pl4. P.I.
When KF = 1 in 3, it is determined that the enrichment condition is present due to an acceleration request, and Pl sets the target air-fuel ratio KMR (set air-fuel ratio) to the three-way air-fuel ratio (hereinafter referred to as three-way KMR). Then proceed to Pl6. The three-way air-fuel ratio may be any air-fuel ratio at which the original function of the three-way catalyst is effectively exhibited, and in this embodiment, this is set as the stoichiometric air-fuel ratio of λ=1. On the other hand, when it is KF-0, the process proceeds to P14 in the same way as when following the No command at P1□. At Pl4, the target air-fuel ratio KMR is set according to the engine load at that time. For example, the optimum value is looked up from a table map using the basic injection amount Tp (Tp-K·Qa/N) determined by N and Qa and the rotation speed N as parameters.

次いで、Pl6で次式〇に従って燃料噴射量Tiを演算
し、PI?でこれをI10ボート24にセットしてルー
チンを終了する。
Next, in Pl6, the fuel injection amount Ti is calculated according to the following formula 〇, and PI? Then set this in the I10 boat 24 and complete the routine.

Ti =QACYLXKMRXCOEFXALPHA+
Ts・・・・・・■ 但し、Ti:インジェクタのパルス幅で表される ALPHA:空燃比のフィードバック補正係数 TS:無効パルス幅(電圧補正分) 0式において、QACYLは1気筒当たりの空気流量に
相当しており、吸気温度による補正等も加味されている
。この場合、本実施例ではQACYLは定常状態ではエ
アフローメータ8の出力に基づいて算出され、過渡状態
に移行すると前述のように絞弁開度TVOおよび圧力セ
ンサー1の信号PBに基づく補正が加えられて算出され
る。
Ti=QACYLXKMRXCOEFXALPHA+
Ts・・・・・・■ However, Ti: Represented by the pulse width of the injector ALPHA: Air-fuel ratio feedback correction coefficient TS: Invalid pulse width (voltage correction portion) In equation 0, QACYL is the air flow rate per cylinder This corresponds to , and also includes corrections based on intake air temperature. In this case, in this embodiment, QACYL is calculated based on the output of the air flow meter 8 in the steady state, and when the transition to the transient state occurs, correction is added based on the throttle valve opening TVO and the signal PB of the pressure sensor 1 as described above. Calculated by

C0EFは燃料の遅れ補正係数であり、過渡時に燃料量
を補正するものである。その値は燃料の気化や壁流割合
によって定められるものであるが、具体的には加減速の
大小や機関暖機状態および運転状態、始動後か否か等に
よって算出される。ALPHAは酸素センサ17によっ
て検出された空燃比に基づいて目標空燃比となるように
噴射量をフィードバック制御するときの補正係数である
C0EF is a fuel delay correction coefficient, and is used to correct the fuel amount during a transient period. The value is determined by the vaporization of the fuel and the wall flow rate, but specifically, it is calculated based on the magnitude of acceleration/deceleration, engine warm-up and operating conditions, and whether or not the engine has been started. ALPHA is a correction coefficient when the injection amount is feedback-controlled based on the air-fuel ratio detected by the oxygen sensor 17 so as to reach the target air-fuel ratio.

このように、エンジン1が所定の加速状態に移行すると
加速要求に伴うリッチ化条件下にあるとき空燃比がλ−
1に制御される。したがって、従来のように中途半端な
リッチ化でNOx低減が十分でないという不具合が解消
され、λ=1とすることで三元触媒の効果を十分に発揮
してNOxを大幅に低減させつつ、かつ運転性も確保す
ることができる。
In this way, when the engine 1 shifts to a predetermined acceleration state, the air-fuel ratio changes to λ-
1. Therefore, the conventional problem of not achieving sufficient NOx reduction due to half-way enrichment is resolved, and by setting λ = 1, the effect of the three-way catalyst is fully demonstrated and NOx is significantly reduced. Drivability can also be ensured.

第6図は上述のリッチ化条件をタイムチャートで示して
いる。
FIG. 6 shows the above-mentioned enrichment conditions in a time chart.

第6図において、絞弁9が全開位置から開くと、その後
の経過時間Tcが所定値t0の範囲内にあるとき同図f
e)に示すように加速フラグKFがKF=1になると目
標空燃比KMRが三元KMHに設定される。そして、T
c=t0のタイミングでKF=0となり目標空燃比が三
元KMRから再びエンジン負荷によって与えられること
となり、通常の希薄燃焼領域に戻る。
In FIG. 6, when the throttle valve 9 opens from the fully open position, when the elapsed time Tc is within the range of the predetermined value t0,
As shown in e), when the acceleration flag KF becomes KF=1, the target air-fuel ratio KMR is set to the three-way KMH. And T
At timing c=t0, KF=0 and the target air-fuel ratio is again given by the engine load from the ternary KMR, returning to the normal lean burn region.

なお、三元判断を行う上記り、チ化条件は本実施例のよ
うな例には限られない。加速要求を達成しつつNOx低
減を図る必要のある場合としては、次のような態様があ
る。
Note that, as described above in which three-dimensional judgment is performed, the conversion conditions are not limited to those in this embodiment. There are the following cases where it is necessary to reduce NOx while achieving the acceleration request.

例えば、ギアチェンジを判断し、ギアチェンジ後所定時
間内に三元判断を行うようにしてもよい。
For example, a gear change may be determined and a three-way determination may be made within a predetermined time after the gear change.

ギアチェンジ後は加速要求があるからである。この判断
は第4図に示すプログラムのステップp+zで同時に処
理すると好都合である。
This is because there is a request for acceleration after a gear change. It is convenient to process this determination simultaneously in step p+z of the program shown in FIG.

また、上記実施例では過渡状態の検出に絞弁開度TVO
をパラメータとしているが、これに限るものではない。
In addition, in the above embodiment, the throttle valve opening TVO is used to detect the transient state.
is used as a parameter, but it is not limited to this.

要は運転者の意思をいち早く検知できればよいので、例
えばアクセルセンサによりアクセルの動きを検知するよ
うにしてもよい。そうすれば、絞弁開度TVO以上に本
発明の効果が発揮されよう。
The point is that the intention of the driver can be detected as quickly as possible, so for example, an accelerator sensor may be used to detect the movement of the accelerator. If this is done, the effects of the present invention will be more effective than the throttle valve opening TVO.

さらに、過渡状態の検出は絞弁やアクセルの動きに限ら
れない。例えば、上記実施例で開示した気筒流人空気量
QACYLをパラメータとしてもよい。
Furthermore, detection of transient conditions is not limited to throttle or accelerator movements. For example, the cylinder airflow amount QACYL disclosed in the above embodiment may be used as a parameter.

(効 果) 本発明によれば、希薄燃焼運転を行っているとき過渡状
態に移行すると空燃比を一時的に三元空燃比に設定して
いるで、運転性を確保しつつN。
(Effects) According to the present invention, when a transient state occurs during lean-burn operation, the air-fuel ratio is temporarily set to a ternary air-fuel ratio, thereby ensuring drivability while reducing N.

X排出量を低減させることができ、近時の要求に沿う希
薄燃焼システムを提供することができる。
It is possible to reduce X emissions and provide a lean burn system that meets recent requirements.

【図面の簡単な説明】 第1図は本発明の基本概念図、第2〜6図は本発明の一
実施例を示す図であり、第2図はその全体構成図、第3
図はその過渡状態判別のプログラムを示すフローチャー
ト、第4図はその噴射量制御のプログラムを示すフロー
チャート、第5図はその空気流量算出の作用を説明する
ための波形図、第6図はそのリッチ化条件の作用を説明
するためのタイムチャートである。 1・・・・・・エンジン、 4・・・・・・インジェクタ(操作手段)、18・・・
・・・負荷検出手段、 20・・・・・・コントロールユニット(過渡状態検出
手段、目標設定手段、制御手段)。
[Brief Description of the Drawings] Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 6 are diagrams showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram thereof, and Fig. 3 is a diagram showing an embodiment of the present invention.
Figure 4 is a flowchart showing the program for determining the transient state, Figure 4 is the flowchart showing the program for controlling the injection amount, Figure 5 is a waveform diagram to explain the effect of calculating the air flow rate, and Figure 6 is the rich flowchart. FIG. 1...Engine, 4...Injector (operating means), 18...
...Load detection means, 20...Control unit (transient state detection means, target setting means, control means).

Claims (1)

【特許請求の範囲】 a)吸入混合気の空燃比を検出する空燃比検出手段と、 b)エンジンの負荷を検出する負荷検出手段と、c)エ
ンジンが所定の過渡状態にあることを検出する過渡状態
検出手段と、 d)エンジン負荷に応じて目標空燃比を設定し、少なく
とも定常走行の一部において該目標空燃比を理論空燃比
よりリーン側に設定するとともに、エンジンが所定の過
渡状態に移行すると目標空燃比を三元空燃比に設定する
目標設定手段と、 e)空燃比検出手段の出力に基づいて目標空燃比となる
ように吸入空気あるいは燃料の供給量を制御する制御手
段と、 f)制御手段からの信号に基づいて吸入空気あるいは燃
料の供給量を操作する操作手段と、 を備えたことを特徴とする空燃比制御装置。
[Scope of Claims] a) air-fuel ratio detection means for detecting the air-fuel ratio of the intake air-fuel mixture; b) load detection means for detecting the load on the engine; and c) detecting that the engine is in a predetermined transient state. a transient state detection means; d) setting a target air-fuel ratio according to the engine load, setting the target air-fuel ratio leaner than the stoichiometric air-fuel ratio during at least a part of steady running, and causing the engine to enter a predetermined transient state; e) a control means for controlling the amount of intake air or fuel supplied so as to reach the target air-fuel ratio based on the output of the air-fuel ratio detection means; f) An air-fuel ratio control device comprising: an operating means for controlling the amount of intake air or fuel supplied based on a signal from the control means.
JP319886A 1986-01-10 1986-01-10 Air-fuel ratio control device Pending JPS62162742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP319886A JPS62162742A (en) 1986-01-10 1986-01-10 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP319886A JPS62162742A (en) 1986-01-10 1986-01-10 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS62162742A true JPS62162742A (en) 1987-07-18

Family

ID=11550723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP319886A Pending JPS62162742A (en) 1986-01-10 1986-01-10 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS62162742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324312A1 (en) * 1992-07-21 1994-02-24 Daihatsu Motor Co Ltd Determn of lean fuel-air mixture limit for IC engine - measuring stream of ions and characteristic value of flowing ion stream in one cylinder of engine immediately after ignition to give lean mixture limiting value.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324312A1 (en) * 1992-07-21 1994-02-24 Daihatsu Motor Co Ltd Determn of lean fuel-air mixture limit for IC engine - measuring stream of ions and characteristic value of flowing ion stream in one cylinder of engine immediately after ignition to give lean mixture limiting value.
US5452603A (en) * 1992-07-21 1995-09-26 Daihatsu Motor Co., Ltd. Method for detecting lean limit by means of ionic current in an internal combustion engine

Similar Documents

Publication Publication Date Title
JPS62162746A (en) Air-fuel ratio control device
US6708668B2 (en) Control system and method for direct-injection spark-ignition engine
US5784880A (en) Engine fuel supply control device
JPS62223427A (en) Air-fuel ratio controller
US5771688A (en) Air-fuel ratio control apparatus for internal combustion engines
JPH03271544A (en) Control device of internal combustion engine
US6550449B2 (en) Control system for internal combustion engine
US4644921A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JPS62162919A (en) Detector for suction air quantity of engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62162742A (en) Air-fuel ratio control device
JPH01305142A (en) Fuel injection controller of internal combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPH07119520A (en) Air-fuel ratio controller of engine
JPS62186039A (en) Engine combustion control device
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62203948A (en) Air-fuel ratio control device
JPS62203947A (en) Air-fuel ratio control device
JP2712255B2 (en) Fuel supply control device for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS62223426A (en) Air-fuel ratio controller
JPS62223425A (en) Air-fuel ratio controller
JP2689779B2 (en) Fuel injection amount control device for internal combustion engine
JPS61232347A (en) Air-fuel radio controller for internal-combustion engine
JPH0610735A (en) Air-fuel ratio correcting method for internal combustion engine