JPH01244139A - Fuel feed control device for internal combustion engine - Google Patents

Fuel feed control device for internal combustion engine

Info

Publication number
JPH01244139A
JPH01244139A JP7297088A JP7297088A JPH01244139A JP H01244139 A JPH01244139 A JP H01244139A JP 7297088 A JP7297088 A JP 7297088A JP 7297088 A JP7297088 A JP 7297088A JP H01244139 A JPH01244139 A JP H01244139A
Authority
JP
Japan
Prior art keywords
amount
intake air
air amount
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7297088A
Other languages
Japanese (ja)
Inventor
Toyoaki Nakagawa
豊昭 中川
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7297088A priority Critical patent/JPH01244139A/en
Publication of JPH01244139A publication Critical patent/JPH01244139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve idle stability, by a method wherein an output from an intake air amount detecting means is smoothed to compute a fundamental fuel feed amount, and during idle running or during the starting, by means of a difference between an output from the intake air amount detecting means and a smooth air amount, a target correction factor is decided. CONSTITUTION:An output from an intake air amount detecting means (a), e.g. a heat ray type airflow meter, is smoothed in a primary delay by a smooth value computing means (c) ad a smooth air amount is calculated, and based thereon, a fundamental feed amount of fuel is computed by a feed amount computing means (e). In which case, when the idle time or the starting time of an engine is decided by a running state detecting means (b), a correction factor computing means (d) decides a target correction factor by means of a difference between an output from the intake air amount detecting means and a smooth intake air amount, and according to the target correction factor, a fundamental feed amount is corrected by the computing means (e) to drive a fuel feed means (f). In order to take a countermeasure to cope with a decrease and an increase in rotation during idle running and starting, an injection amount is properly corrected, and idle stability can be improved and starting engine stall can be prevented from occurring.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の燃料供給制御装置に係り
、詳しくは吸入空気量の平滑値に基づいて燃料供給量を
演算する燃料供給制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel supply control device for an internal combustion engine such as an automobile, and more specifically to a fuel supply control device that calculates a fuel supply amount based on a smoothed value of an intake air amount. Regarding equipment.

(従来の技術) 近時、自動車等内燃機関に対する要求が高度化しており
、有害な排出ガスの低減、高出力、低燃費等の互いに相
反する課題について何れも高レベルでその達成が求めら
れる傾向にある。また、このような要求はアイドル時に
ついても同様であり、アイドル安定度の向上が望まれる
(Prior art) In recent years, demands on internal combustion engines such as automobiles have become more sophisticated, and there is a tendency for mutually contradictory issues such as reduction of harmful exhaust gas, high output, and low fuel consumption to be achieved at a high level. It is in. Further, such a requirement is the same when the vehicle is idling, and it is desired to improve the idling stability.

従来のこの種の燃料供給制御装置では、絞弁上流側に設
けたエアフローメータの出力からエンジンの単位回転当
たりの要求負荷を求め、これから燃料噴射量を演算して
いる。また、過渡時には燃料噴射量を補正することで、
対処している(例えば、特公昭47−41288号公報
参照)。
In this type of conventional fuel supply control device, the required load per unit revolution of the engine is determined from the output of an air flow meter provided upstream of the throttle valve, and the fuel injection amount is calculated from this. In addition, by correcting the fuel injection amount during transient periods,
(For example, see Japanese Patent Publication No. 47-41288).

しかしながら、従来の装置では、エアフローメータの取
付位置と噴射弁(インジェクタ)の取付位置との間にお
ける吸気管の容量、すなわち吸気。
However, in the conventional device, the capacity of the intake pipe between the installation position of the air flow meter and the installation position of the injection valve (injector), that is, the intake air.

ボリウムを考慮した適切な噴射量演算が行われておらず
、過渡時の噴射特性がエンジンの要求特性から遅れて運
転性能が悪いという問題点があった。
There was a problem in that the injection amount was not calculated appropriately considering the volume, and the injection characteristics during transient times were delayed from the required characteristics of the engine, resulting in poor driving performance.

そこで本出願人は、かかる不具合を解決するために先に
燃料供給制御装置(特開昭60−162066号公報参
照)を提案している。この先願に係る装置では、噴射弁
部を流れる空気量を精度良く求めるためにエアフローメ
ータの出力を一次遅れで平滑化し、その平滑化した空気
量を基に燃料噴射量(以下、単に平滑噴射量;AvTp
という)を算出している。なお、AvTpはシリンダ空
気量相当パルス幅として演算されるが、その演算方法は
後述の実施例と同様であり、後に詳述する。
In order to solve this problem, the present applicant has previously proposed a fuel supply control device (see Japanese Patent Laid-Open No. 162066/1983). In the device related to this prior application, in order to accurately determine the amount of air flowing through the injection valve, the output of the air flow meter is smoothed by a first-order lag, and based on the smoothed air amount, the amount of fuel injection (hereinafter simply referred to as smoothed injection amount) is calculated. ;AvTp
) is calculated. Note that AvTp is calculated as a pulse width equivalent to the cylinder air amount, and the calculation method is the same as in the embodiment described later, and will be described in detail later.

(発明が解決しようとす゛る課題) ところで、このような先願に係る装置にあっては、平滑
噴射量AvTpを用いて燃料噴射を行う構成となってい
るため、AvTpは空燃比の安定化には寄与するものの
、アイドリング時のように急な回転落ち等が生じやすい
条件下では、空燃比が安定すぎて回転を早期に回復させ
ることができず、アイドル安定度という面で改善の余地
がある。
(Problem to be Solved by the Invention) By the way, since the device according to the prior application is configured to perform fuel injection using the smooth injection amount AvTp, AvTp is used to stabilize the air-fuel ratio. However, under conditions where sudden drops in rotation occur, such as when idling, the air-fuel ratio is too stable and the rotation cannot be recovered quickly, so there is room for improvement in terms of idle stability. .

すなわち、AvTpを用いた場合、従来の装置(いわゆ
るL−Jetroタイプ)のように回転落ちに対して直
ちに空燃比をリッチ化して回転を上げるということが困
難であり、アイドル安定度の悪化や発進エンストを起こ
しやすくなる。
In other words, when AvTp is used, it is difficult to immediately richen the air-fuel ratio and increase the rotation speed when the engine speed drops, as is the case with conventional devices (so-called L-Jetro type). Engine stall is more likely to occur.

(発明の目的)− そこで本発明は、エアフローメータの出力と平滑空気量
との差に応じて噴射量を補正することにより、アイドル
安定度の向上および発進エンストの防止を図ることを目
的としている。
(Objective of the Invention) Therefore, the present invention aims to improve idling stability and prevent engine stall when starting by correcting the injection amount according to the difference between the output of the air flow meter and the smoothed air amount. .

(課題を解決するための手段) 本発明による内燃機関の燃料供給制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの吸入空気量を検出する吸気量検出手段aと、エン
ジンの運転状態を検出する運転状態検出手段すと、吸気
量検出手段aの出力を平滑化して平滑吸気量を演算する
平滑値演算手段Cと、エンジンが通常運転状態にあると
き、そのときの運転状態に基づいて目標空燃比となるよ
うに燃料供給量を補正する目標補正係数を演算し、エン
ジンがアイドル時又は発進時にあるとき吸気量検出手段
aの出力と平滑値演算手段Cの出力の差に基づいて該目
標補正係数を演算する補正係数演算手段dと、平滑値演
算手段Cにより演算された平滑吸気量に基づいて燃料の
基本供給量を演算するとともに、該基本供給量を前記目
標補正係数に応じて補正し、最終供給量を決定する供給
量演算手段eと、供給量演算手段eの出力に基づいてエ
ンジンに燃料を供給する燃料供給手段fと、を備えてい
る。
(Means for Solving the Problems) In order to achieve the above object, the fuel supply control device for an internal combustion engine according to the present invention has an intake air amount detection system that detects the intake air amount of the engine, as shown in FIG. Means a, operating state detecting means for detecting the operating state of the engine, smoothing value calculating means C for calculating a smoothed intake air amount by smoothing the output of the intake air amount detecting means a, and when the engine is in a normal operating state. , calculates a target correction coefficient for correcting the fuel supply amount to reach the target air-fuel ratio based on the operating state at that time, and calculates the output of the intake air amount detection means a and the smoothing value calculation means when the engine is idling or starting. A correction coefficient calculation means d calculates the target correction coefficient based on the difference in the output of C, and a basic supply amount of fuel is calculated based on the smoothed intake air amount calculated by the smoothed value calculation means C. A supply amount calculation means e that corrects the amount according to the target correction coefficient and determines the final supply amount, and a fuel supply means f that supplies fuel to the engine based on the output of the supply amount calculation means e. There is.

(作用) 本発明では、吸気量検出手段(エアフローメータ)の出
力が平滑化されて平滑空気量が演算されるとともに、吸
気量に基づいて燃料の基本供給量が演算され、該基本供
給量は目標補正係数に応じて補正される。
(Function) In the present invention, the output of the intake air amount detection means (air flow meter) is smoothed to calculate the smoothed air amount, and the basic supply amount of fuel is calculated based on the intake air amount. Corrected according to the target correction coefficient.

一方、エンジンがアイドル時又は発進時にあるときは吸
気量検出手段の出力と平滑吸気量との差に基づいて目標
補正係数が決定される。
On the other hand, when the engine is idling or starting, the target correction coefficient is determined based on the difference between the output of the intake air amount detection means and the smooth intake air amount.

したがって、アイドル時の回転落ちに対しては直ちに空
燃比がリッチ化して回転が回復し、回転上昇に対しては
空燃比がリーン化する。その結果、アイドル安定度が向
上し、発進エンストが防止される。
Therefore, when the engine speed drops during idling, the air-fuel ratio immediately becomes rich and the engine speed recovers, and when the engine speed increases, the air-fuel ratio becomes lean. As a result, idling stability is improved and engine stalling is prevented.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜6図は本発明に係る内燃機関の燃料供給制御装置
の一実施例を示す図である。まず、構成を説明する。第
2図は本装置の全体的構成を示す図である。第2図にお
いて、1はエンジンであり、吸入空気はエアクリーナ2
から吸気管3を通り、燃料は噴射信号Siに基づきイン
ジェクタ(燃料供給手段)4から噴射される。そして、
気筒内で燃焼した排気は排気管5を通して触媒コンバー
タ6に導入され、触媒コンバータ6内で排気中の有害成
分(Co、HC,N0x)を三元触媒により清浄化して
排出される。
2 to 6 are diagrams showing an embodiment of a fuel supply control device for an internal combustion engine according to the present invention. First, the configuration will be explained. FIG. 2 is a diagram showing the overall configuration of this device. In Fig. 2, 1 is an engine, and intake air is supplied to an air cleaner 2.
The fuel passes through the intake pipe 3 and is injected from the injector (fuel supply means) 4 based on the injection signal Si. and,
Exhaust gas combusted in the cylinders is introduced into a catalytic converter 6 through an exhaust pipe 5, where harmful components (Co, HC, NOx) in the exhaust gas are purified by a three-way catalyst and discharged.

吸入空気の流1tQaはホットワイヤ式のエアフローメ
ータ(吸気量検出手段)7により検出され、吸気管3内
の絞弁8によって制御される。なお、エアフローメータ
7のタイプとしては、ホットフィルム式でもよく、要は
吸入空気の流量を測定するものであればよい。したがっ
て、フラップ式のものでもよいが、負圧センサは除かれ
る。
The intake air flow 1tQa is detected by a hot wire type air flow meter (intake air amount detection means) 7, and is controlled by a throttle valve 8 in the intake pipe 3. The type of air flow meter 7 may be a hot film type, as long as it measures the flow rate of intake air. Therefore, a flap type may be used, but the negative pressure sensor is excluded.

絞弁8の開度TVOは絞弁開度センサ9により検出され
、エンジン1の回転数Nはクランク角センサ10により
検出される。また、ウォータジャケットを流れる冷却水
の温度Twは水温センサ11により検出され、排気中の
酸素濃度は酸素センサ12により検出される。酸素セン
サ12は理論空燃比でその出力Vsが急変する特性をも
つもの等が用いられる。さらに、エンジン1のアイドル
状態はアイドルスイッチ13により検出される。
The opening TVO of the throttle valve 8 is detected by a throttle valve opening sensor 9, and the rotation speed N of the engine 1 is detected by a crank angle sensor 10. Further, the temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 12. The oxygen sensor 12 used has a characteristic that its output Vs changes suddenly at the stoichiometric air-fuel ratio. Further, the idle state of the engine 1 is detected by an idle switch 13.

上記絞弁開度センサ9、クランク角センサ101水温セ
ンサ11、酸素センサ12およびアイドルスイッチ13
は運転状態検出手段14を構成しており、運転状態検出
手段14およびエアフローメータ7からの出力はコント
ロールユニット20に入力される。
The throttle valve opening sensor 9, crank angle sensor 101, water temperature sensor 11, oxygen sensor 12 and idle switch 13
constitutes an operating state detecting means 14, and outputs from the operating state detecting means 14 and the air flow meter 7 are input to a control unit 20.

コントロールユニッ)20は平滑値演算手段、補正係数
演算手段および供給量演算手段としての機能を有し、C
PU21、ROM22、RAM23およびI10ポート
24により構成される。CP U21はROM22に書
き込まれているプログラムにしたがってI10ポート2
4より必要とする外部データを取り込んだり、またRA
M23との間でデータの授受を行ったりしながら平滑吸
気量や噴射制御に必要な処理値を演算処理し、必要に応
じて処理したデータをI10ポート24へ出力する。I
10ポート24にはセンサ群7.14からの信号が入力
されるとともに、I10ポート24からは噴射信号St
が出力される。ROM22はCPU21における演算プ
ログラムを格納しており、RAM23は演算に使用する
データをマツプ等の形で記憶している。
The control unit) 20 has functions as a smoothing value calculation means, a correction coefficient calculation means, and a supply amount calculation means.
It is composed of a PU 21, a ROM 22, a RAM 23, and an I10 port 24. CPU U21 reads I10 port 2 according to the program written in ROM22.
You can import the external data you need from 4, and also use RA.
While exchanging data with M23, it calculates the smooth intake air amount and processing values necessary for injection control, and outputs the processed data to I10 port 24 as necessary. I
A signal from the sensor group 7.14 is input to the I10 port 24, and an injection signal St is input from the I10 port 24.
is output. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.

次に、作用を説明する。Next, the effect will be explained.

本実施例のメインプログラムは第5図のように示される
が、このメインプログラムにおいて演算されるAvTp
はサブルーチンで演算される。説明の都合上、最初にA
vTpを求めるサブルーチンから述べる。
The main program of this embodiment is shown in FIG. 5, and the AvTp calculated in this main program is
is calculated in a subroutine. For convenience of explanation, first
The subroutine for calculating vTp will be explained first.

第3図は平滑噴射量AvTpを求めるサブルーチンであ
る。
FIG. 3 shows a subroutine for calculating the smooth injection amount AvTp.

まず、P、でエアフローメータ7の出力を読み込んで吸
入空気IQaを求める。これは、例えばテーブルルック
アップによる。次いで、P8で次式■に従って平滑部基
本パルス幅T P oを演算する。
First, the output of the air flow meter 7 is read at P to obtain the intake air IQa. This is for example by table lookup. Next, in P8, the smoothing part basic pulse width T P o is calculated according to the following equation (2).

、N 次いで、P、でT P oを加重平均して基本パルス幅
Tpを演算する。これにより、エアフローメータ7の出
力に基づく脈動が平滑化される。P4では次式■に従っ
てフラット修正基本パルス幅TrTpを求める。
, N Next, the basic pulse width Tp is calculated by weighted averaging T P o with P. As a result, pulsations based on the output of the air flow meter 7 are smoothed out. In P4, the flat correction basic pulse width TrTp is determined according to the following equation (2).

T r T p =T p X Kflat  =■■
式において、KflatはフラットA/F補正係数であ
り、回転数Nとα−N流11Qhoとにより割り付けら
れたマツプから補間計算付きで求める。
T r T p = T p X Kflat = ■■
In the equation, Kflat is a flat A/F correction coefficient, which is obtained with interpolation from a map allocated by the rotational speed N and the α-N flow 11Qho.

なお、α−N流量とは絞弁開度TVOと回転数Nから空
気流量を求めるものであり、既に公知のものである。
Note that the α-N flow rate is the air flow rate determined from the throttle valve opening TVO and the rotational speed N, and is already known.

次いで、P、でTrTpを所定の最大リミット値T p
 waxと比較し、TrTp>TpmaxのときはPh
でTrTpをT p waxに制限してP、に進み、T
rTp≦T p waxのときはP、をジャンプしてP
フに進む、P7ではα−N先取り補正パルス幅としての
遅れ修正パルス幅TH3TPを求める。これは、α−N
流量Qhoに基づき補間計算付きテーブルからルックア
ップした値TTH3TPのtons毎の変化量として求
める。但し、該変化量が補正判定レベル以下であれば、
TH3TP=0とし変化量が負(−$i速)の場合は変
化量に所定の減速修正率を乗じて求める。TH3TPは
絞弁8の変化を先取りして噴射量を応答性良く補正する
項である0次いで、P、で次式〇に従って平滑噴射量A
vTp (平滑吸気量に対応)を求める。
Then, P, sets TrTp to a predetermined maximum limit value T p
Compared to wax, when TrTp>Tpmax, Ph
limit TrTp to T p wax and proceed to P, then T
When rTp≦T p wax, jump P and P
Proceeding to P7, the delay correction pulse width TH3TP as the α-N prefetch correction pulse width is determined. This is α−N
It is determined as the amount of change for each ton of the value TTH3TP, which is looked up from a table with interpolation calculation based on the flow rate Qho. However, if the amount of change is below the correction judgment level,
When TH3TP=0 and the amount of change is negative (-$i speed), the amount of change is multiplied by a predetermined deceleration correction rate. TH3TP is a term that corrects the injection amount with good responsiveness by anticipating changes in the throttle valve 8. Then, P, smooths the injection amount A according to the following formula 〇.
Find vTp (corresponding to smooth intake air volume).

AvTp=TrTpxFLOAD+AvTp−tx (
1−FLOAD)+TH3TP ・・・・・・■ 0式において、FLOADは加重平均係数であり、FL
OAD=TFLOAD+に2D (減速のみ)によって
与えられる。TFLOADは吸気ボリウムのみの関数と
するため、絞弁8によって決まる流路面積AAと(排気
量×回転数)NVMとからマツプにより求める。したが
って、0式の第1項および2項はエアフローメータ7の
出力を脈動修正した値に基づいて演算されたフラット修
正基本パルス幅TrTpについて、FLOADを用いて
加重平均した値、言い換えればTrTpの一次遅れを計
算により(ソフトにより)算出する部分に相当する。ま
た、0式の第3項は絞弁開度TvOによる先取り補正の
部分であり、この部分は先願には無く、本実施例で初め
て開示するものである。
AvTp=TrTpxFLOAD+AvTp−tx (
1-FLOAD)+TH3TP ・・・・・・■ In formula 0, FLOAD is a weighted average coefficient, and FL
OAD=TFLOAD+ given by 2D (deceleration only). Since TFLOAD is a function only of the intake volume, it is determined by a map from the flow path area AA determined by the throttle valve 8 and (displacement amount x rotational speed) NVM. Therefore, the first and second terms of Equation 0 are the weighted average values using FLOAD of the flat corrected basic pulse width TrTp calculated based on the pulsation corrected value of the output of the air flow meter 7, in other words, the first order of TrTp. This corresponds to the part where the delay is calculated (by software). Furthermore, the third term in Equation 0 is a preemptive correction based on the throttle valve opening TvO, and this part is not present in the prior application and is disclosed for the first time in this embodiment.

このような第3項のTH3TPを加えた効果は第4図の
ように示される。第4図において、あるタイミングで加
速した場合、絞弁開度の変化にやや遅れて基本パルス幅
’rp、 、Tpが変化し、Tpo、Tpを修正した波
形はフラット修正基本パルス幅TrTpとして第4図の
ように変化する。
The effect of adding the third term TH3TP is shown in FIG. In Fig. 4, when acceleration occurs at a certain timing, the basic pulse width 'rp, , Tp changes slightly after the change in the throttle valve opening, and the waveform obtained by correcting Tpo and Tp is expressed as a flat corrected basic pulse width TrTp. Changes as shown in Figure 4.

一方、α−N流量は絞弁8の開き具合に応じてステップ
的に変化しており、この開度変化量により遅れ修正パル
ス幅TH3TPが演算される。また、平滑噴射量AvT
pはTrTpの一次遅れで与えられ、TH3TPなしの
従来の位相制御の場合は図中の一点鎖線で示す変化とな
り、応答性に欠ける。このとき、吸入負圧は破線で示さ
れ、噴射弁部(インジェクタ4部)の空気流量に略等し
いが、これとて絞弁8の開度変化に遅れな(追随できる
ものではない。また、吸気ボリウムにより吸気管3の壁
面への燃料付着量にも影響を与える。
On the other hand, the α-N flow rate changes stepwise according to the degree of opening of the throttle valve 8, and the delay correction pulse width TH3TP is calculated based on the amount of change in the degree of opening. In addition, smooth injection amount AvT
p is given by the first-order delay of TrTp, and in the case of conventional phase control without TH3TP, the change is shown by the dashed line in the figure, resulting in lack of responsiveness. At this time, the suction negative pressure is shown by a broken line, and is approximately equal to the air flow rate of the injection valve section (injector 4 section), but it does not lag behind (cannot follow) the change in the opening degree of the throttle valve 8. The amount of fuel deposited on the wall of the intake pipe 3 is also affected by the intake volume.

これに対して、本実施例のAvTpは図中実線で示すよ
うに、TH3TPなる補正項がα−Nの先取り補正(1
0m sの先取り補正)として加えられているから、極
めて応答性が良く、実際の空気流量変化にマツチしたも
のとなる。なお、高地の例も図示している。
On the other hand, in AvTp of this embodiment, as shown by the solid line in the figure, the correction term TH3TP is α-N prefetch correction (1
Since it is added as a 0ms advance correction), the response is extremely good and matches the actual air flow rate change. An example of a highland area is also shown.

第5図は噴射量演算のメインプログラムを示すフローチ
ャートであり、本プログラムは、例えばIom s毎に
一度実行される。
FIG. 5 is a flowchart showing the main program for calculating the injection amount, and this program is executed once every Ioms, for example.

まず、pHでアイドルスイッチ13がオンであるか否か
、すなわち絞弁8が全閉であるか否かを判別する。アイ
ドルスイッチ13がオンのときはアイドル状態と判断し
、pusで次式〇に従って差値Aを演算する。
First, it is determined based on the pH whether the idle switch 13 is on, that is, whether the throttle valve 8 is fully closed. When the idle switch 13 is on, it is determined to be in an idle state, and the difference value A is calculated using the PUSH according to the following equation.

A−TrTp−AvTp ””■ 差値Aは空気流量の急激な変化を判断するためのパラメ
ータとなる0次いで、Pl、で差値Aが正(0を含む)
であるか否かを判別し、A≧O(正)のときはPl4で
第1のテーブルマツプからそのときの差値Aの大きさに
基づいて目標燃空比Mfbyaをルックアップする。ま
た、A<0のときはpusでAの絶対値IAIを求め、
Poでこの絶対値IA1の大きさに基づき第2のテーブ
ルマツプから目標燃空比Mfbyaをルックアップする
。第1、第2のテーブルマツプに分けているのは回転数
Nの上昇と、下降に対応させるためであり、各マツプ値
は第6図のような傾向をもって設定される。
A-TrTp-AvTp ””■ Difference value A is a parameter for determining sudden changes in air flow rate 0 Then, Pl, difference value A is positive (including 0)
If A≧O (positive), the target fuel-air ratio Mfbya is looked up from the first table map at Pl4 based on the magnitude of the difference value A at that time. Also, when A<0, find the absolute value IAI of A with pus,
At Po, the target fuel-air ratio Mfbya is looked up from the second table map based on the magnitude of this absolute value IA1. The reason why the table map is divided into first and second table maps is to correspond to the rise and fall of the rotational speed N, and each map value is set with a tendency as shown in FIG.

一方、上記ステップpttでアイドルスイッチ13がオ
フのときは、Pl、でアイドルスイッチ13がオフにな
った後の経過時間が所定時間内であるか否かを判別する
。所定時間内のときは、いわゆるアイドルからの発進時
であると判断してPI!にジャンプする。したがって、
アイドル時又は発進時にあるときはptz以降のステッ
プが実行される。
On the other hand, when the idle switch 13 is off in step ptt, it is determined at Pl whether or not the elapsed time after the idle switch 13 was turned off is within a predetermined time. If it is within the predetermined time, it is determined that it is time to start from idle, and the PI! Jump to. therefore,
When the vehicle is idling or starting, the steps after ptz are executed.

上記所定時間内にないときは発進時やアイドル時でない
と判断(通常走行運転時と判断)し、pusで回転数N
とα−N流量Qhoとをパラメータとして割り付けられ
た第3のテーブルマツプから目標燃空比Mfbyaをル
ックアップする。
If it is not within the above predetermined time, it is determined that it is not starting or idling (determined to be normal driving), and the number of revolutions N is determined by PUS.
The target fuel-air ratio Mfbya is looked up from the third table map assigned with and α-N flow rate Qho as parameters.

以上により第1〜第3のテーブルマツプの何れかにより
Mfbyaがルックアップされることになる。
As described above, Mfbya is looked up using any of the first to third table maps.

次いで、PI9で次式〇に従って目標空燃比Tfbya
(目標補正係数に相当)を演算する。
Next, in PI9, the target air-fuel ratio Tfbya is determined according to the following formula
(corresponding to the target correction coefficient).

Tfbya=Mfbya+Ktw+Kas+Kh  +
+++■但し、KtwH暖機増量 Kas;始動後増量 Kh;高水温増量 0式中、Ktw、Kas、Khは従来と同様の補正係数
である。
Tfbya=Mfbya+Ktw+Kas+Kh+
+++■ However, KtwH warm-up increase Kas; increase after startup Kh; high water temperature increase 0 In the formula, Ktw, Kas, and Kh are the same correction coefficients as before.

次いで、Pzゆで次式■に従って最終噴射量(出力パル
ス幅)Tiを演算し、所定の噴射タイミングでTiなる
量の燃料を噴射する。
Next, the final injection amount (output pulse width) Ti is calculated according to the following equation (2) by Pz boiling, and the amount of fuel Ti is injected at a predetermined injection timing.

T i= (AvTp+Kathos ) XTfby
a×(α+αm)+Ts  ・・・・・・00式中、K
athosは壁流補正パルス幅で正負の値を有し、燃料
の付着速度Vmf(ms)と補正率Ghf (%)の関
数で与えられる。αは酸素センサ12の出力に基づく空
燃比のλ制御補正係数であり、αmは混合比学習制御補
正係数である。Tsは無効パルス幅である。
T i= (AvTp+Kathos) XTfby
a×(α+αm)+Ts ・・・・・・In formula 00, K
athos is the wall flow correction pulse width, which has positive and negative values, and is given as a function of the fuel deposition speed Vmf (ms) and the correction factor Ghf (%). α is an air-fuel ratio lambda control correction coefficient based on the output of the oxygen sensor 12, and αm is a mixture ratio learning control correction coefficient. Ts is the invalid pulse width.

このように本実施例では、アイドル時若しくは発進時に
あるときは前記差値Aに応じて第1、第2のテーブルか
ら目標燃空比Mfbyaをルックし、MfbyaO値に
よって最終噴射量Tiを適切に補正している。このため
、例えばアイドル時に回転数Nが急、に低下した場合で
あっても、直ちに目標燃空比Mfbyaが大となって空
燃比がリッチ化され、トルクが増大して回転数Nが速や
かに回復する。
In this way, in this embodiment, when idling or starting, the target fuel-air ratio Mfbya is looked up from the first and second tables according to the difference value A, and the final injection amount Ti is appropriately determined based on the MfbyaO value. It is being corrected. Therefore, even if, for example, the rotational speed N suddenly drops during idling, the target fuel-air ratio Mfbya immediately increases, the air-fuel ratio becomes richer, the torque increases, and the rotational speed N quickly decreases. Recover.

逆に、回転数Nが急に上昇した場合は目標燃空比Mfb
yaが小となって空燃比がリーン化し、トルクが減少し
て回転数Nが安定する。一方、発進時には加速初期のク
ラッチミート時に回転数が低下した場合に空燃比がリッ
チとなって発進エンストが有効に防止される。
Conversely, if the rotational speed N suddenly increases, the target fuel-air ratio Mfb
ya becomes small, the air-fuel ratio becomes lean, the torque decreases, and the rotational speed N becomes stable. On the other hand, at the time of starting, if the rotational speed decreases during clutch engagement at the initial stage of acceleration, the air-fuel ratio becomes rich, effectively preventing the starting engine from stalling.

なお、目標補正係数は本実施例のようなTfbyaに限
らず、他の演算形式を採るものであってもよい。
Note that the target correction coefficient is not limited to Tfbya as in this embodiment, but may take other calculation formats.

(効果) 本発明によれば、アイドル時又は発進時の回転落ちや上
昇に対して適切に噴射量を補正しているので、アイドル
安定度の向上および発進エンストを防止することができ
る。
(Effects) According to the present invention, since the injection amount is appropriately corrected for rotation drop or increase during idling or starting, it is possible to improve idling stability and prevent engine stalling during starting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜6図は本発明に係
る内燃機関の燃料供給制御装置の一実施例を示す図であ
り、第2図はその全体構成図、第3図はその平滑噴射量
を演算するサブルーチンを示すフローチャート、第4図
はその作用を説明するタイミングチャート、第5図はそ
の噴射量演算のメインプログラムを示すフローチャート
、第6図はその目標燃空比の傾向を示す図である。 1・・・・・・エンジン、 4・・・・・・インジェクタ(燃料供給手段)、−7・
・・・・・エアフローメータ(吸気量検出手段)、14
・・・・・・運転状態検出手段、 20・・・・・・コントロールユニット(平滑値演算手
段、補正係数演算手段、供給量演算手 段)。 第3図 第4図 第6図 真 O正
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 6 are diagrams showing an embodiment of a fuel supply control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. is a flowchart showing the subroutine for calculating the smooth injection amount, FIG. 4 is a timing chart explaining its operation, FIG. 5 is a flowchart showing the main program for calculating the injection amount, and FIG. 6 is a subroutine for calculating the target fuel-air ratio. It is a figure showing a tendency. 1...Engine, 4...Injector (fuel supply means), -7.
...Air flow meter (intake amount detection means), 14
... Operating state detection means, 20 ... Control unit (smoothing value calculation means, correction coefficient calculation means, supply amount calculation means). Figure 3 Figure 4 Figure 6 True O Correct

Claims (1)

【特許請求の範囲】 a)エンジンの吸入空気量を検出する吸気量検出手段と
、 b)エンジンの運転状態を検出する運転状態検出手段と
、 c)吸気量検出手段の出力を平滑化して平滑吸気量を演
算する平滑値演算手段と、 d)エンジンが通常運転状態にあるとき、そのときの運
転状態に基づいて目標空燃比となるように燃料供給量を
補正する目標補正係数を演算し、エンジンがアイドル時
又は発進時にあるとき吸気量検出手段の出力と平滑値演
算手段の出力の差に基づいて該目標補正係数を演算する
補正係数演算手段と、 e)平滑値演算手段により演算された平滑吸気量に基づ
いて燃料の基本供給量を演算するとともに、該基本供給
量を前記目標補正係数に応じて補正し、最終供給量を決
定する供給量演算手段と、 f)供給量演算手段の出力に基づいてエンジンに燃料を
供給する燃料供給手段と、 を備えたことを特徴とする内燃機関の燃料供給制御装置
[Scope of Claims] a) intake air amount detection means for detecting the intake air amount of the engine; b) operating state detection means for detecting the operating state of the engine; and c) smoothing by smoothing the output of the intake air amount detection means. a smoothing value calculation means for calculating an intake air amount; d) when the engine is in a normal operating state, calculating a target correction coefficient for correcting the fuel supply amount so as to reach a target air-fuel ratio based on the operating state at that time; correction coefficient calculation means that calculates the target correction coefficient based on the difference between the output of the intake air amount detection means and the output of the smoothed value calculation means when the engine is at idle or when the engine is started; e) correction coefficient calculation means calculated by the smoothed value calculation means; supply amount calculation means for calculating a basic supply amount of fuel based on the smooth intake amount, correcting the basic supply amount according to the target correction coefficient, and determining a final supply amount; f) supply amount calculation means; A fuel supply control device for an internal combustion engine, comprising: a fuel supply means for supplying fuel to the engine based on output; and a fuel supply control device for an internal combustion engine.
JP7297088A 1988-03-25 1988-03-25 Fuel feed control device for internal combustion engine Pending JPH01244139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7297088A JPH01244139A (en) 1988-03-25 1988-03-25 Fuel feed control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7297088A JPH01244139A (en) 1988-03-25 1988-03-25 Fuel feed control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01244139A true JPH01244139A (en) 1989-09-28

Family

ID=13504751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7297088A Pending JPH01244139A (en) 1988-03-25 1988-03-25 Fuel feed control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01244139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016409A1 (en) * 2014-04-11 2017-01-19 Nissan Motor Co., Ltd. Apparatus and method for controlling internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016409A1 (en) * 2014-04-11 2017-01-19 Nissan Motor Co., Ltd. Apparatus and method for controlling internal combustion engine
US10006395B2 (en) * 2014-04-11 2018-06-26 Nissan Motor Co., Ltd. Apparatus and method for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
JPS62223427A (en) Air-fuel ratio controller
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JP2005120886A (en) Control device for internal combustion engine
KR0142895B1 (en) Fuel injection control system for internal combustion engine
JP3622273B2 (en) Control device for internal combustion engine
JPH01244139A (en) Fuel feed control device for internal combustion engine
JPH01305142A (en) Fuel injection controller of internal combustion engine
JP3687128B2 (en) Engine air-fuel ratio control device
JPH01305144A (en) Fuel injection controller of internal combustion engine
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JP2668940B2 (en) Fuel supply control device for internal combustion engine
JPH01273856A (en) Air quantity detecting device for internal combustion engine
JPH0830441B2 (en) Fuel supply control device for internal combustion engine
JP2003113728A (en) Control system for internal combustion engine
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JP2006083795A (en) Air fuel ratio controller for internal combustion engine
JPH01294943A (en) Air amount detecting device for internal combustion engine
JPH10169536A (en) Ignition timing controller for engine
JPH01273853A (en) Fuel feed controller for internal combustion engine
JPH08312422A (en) Air-fuel ratio control device of engine
JPS6153432A (en) Method of controlling air-fuel ratio of electronic fuel injection engine for automatic speed change vehicle
JPH05106485A (en) Fuel oil consumption control device for internal combustion engine
JPS62162742A (en) Air-fuel ratio control device
JPS62203948A (en) Air-fuel ratio control device