JP2006083795A - Air fuel ratio controller for internal combustion engine - Google Patents
Air fuel ratio controller for internal combustion engine Download PDFInfo
- Publication number
- JP2006083795A JP2006083795A JP2004270866A JP2004270866A JP2006083795A JP 2006083795 A JP2006083795 A JP 2006083795A JP 2004270866 A JP2004270866 A JP 2004270866A JP 2004270866 A JP2004270866 A JP 2004270866A JP 2006083795 A JP2006083795 A JP 2006083795A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- amount
- transient
- air fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、内燃機関の排気通路に配置された排出ガスセンサの出力に基づいて空燃比制御を行う内燃機関の空燃比制御装置に関するものである。 The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that performs air-fuel ratio control based on an output of an exhaust gas sensor disposed in an exhaust passage of the internal combustion engine.
近年、内燃機関を搭載した車両では、排出ガス浄化用の触媒の上流側に排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ(空燃比センサ、酸素センサ等)を設置し、この排出ガスセンサの出力に基づいて空燃比をF/B(フィードバック)制御して触媒の排出ガス浄化効率を高めるようにしたものがある。 In recent years, vehicles equipped with an internal combustion engine have exhaust gas sensors (air-fuel ratio sensors, oxygen sensors, etc.) that detect the air-fuel ratio or rich / lean of exhaust gas upstream of the exhaust gas purification catalyst. There are some which improve the exhaust gas purification efficiency of the catalyst by F / B (feedback) control of the air-fuel ratio based on the output of the gas sensor.
一般的な空燃比F/B制御は、例えば、酸素センサの出力を判定値と比較して排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチかリーンかを判定し、排出ガスの空燃比がリッチのときには空燃比F/B補正量を所定積分量ずつリーン方向に補正して空燃比がリッチからリーンに反転した時点で空燃比F/B補正量を所定スキップ量だけリッチ方向に補正し、その後、排出ガスの空燃比がリーンのときには空燃比F/B補正量を所定積分量ずつリッチ方向に補正して空燃比がリーンからリッチに反転した時点で空燃比F/B補正量を所定スキップ量だけリーン方向に補正する処理を繰り返すPI制御を行うことで、排出ガスの空燃比を目標空燃比(例えば理論空燃比)付近に制御するようにしている。 In general air-fuel ratio F / B control, for example, the output of the oxygen sensor is compared with a determination value to determine whether the air-fuel ratio of the exhaust gas is richer or leaner than the target air-fuel ratio (for example, the theoretical air-fuel ratio). When the gas air-fuel ratio is rich, the air-fuel ratio F / B correction amount is corrected in a lean direction by a predetermined integral amount, and when the air-fuel ratio is reversed from rich to lean, the air-fuel ratio F / B correction amount is rich by a predetermined skip amount. Then, when the air-fuel ratio of the exhaust gas is lean, the air-fuel ratio F / B correction amount is corrected in the rich direction by a predetermined integral amount, and the air-fuel ratio F / B is reversed when the air-fuel ratio is reversed from lean to rich. By performing PI control that repeats the process of correcting the correction amount in the lean direction by a predetermined skip amount, the air-fuel ratio of the exhaust gas is controlled in the vicinity of the target air-fuel ratio (for example, the theoretical air-fuel ratio).
このようなPI制御を用いた空燃比F/B制御においては、特許文献1(特開平2−95744号公報)に記載されているように、内燃機関の運転状態の変化に伴って実空燃比が変化する過渡時に、積分量を大きくして空燃比F/B補正量の変化量を大きくすることで、過渡時の空燃比制御の応答性を高めるようにしたものがある。
ところで、上述したPI制御を用いた空燃比F/B制御では、定常時と過渡時とで積分量を同じ値に設定した場合、例えば、図8に示すように、暖機運転中の減速時に吸入空気量PMの減少に伴って実空燃比A/Fがリッチ方向に大きく変動すると、それに追従して空燃比F/B補正量FAFが積分量ずつリーン方向に変化して、実空燃比A/Fがリーン方向に戻されるが、実空燃比A/Fが目標空燃比(例えば理論空燃比)を越えるまで、空燃比F/B補正量FAFが積分量ずつリーン方向に補正され続けるため、空燃比F/B補正量FAFがリーン方向に過補正されてしまうことがある(図8では空燃比F/B補正量FAFがリーン方向に過補正されてリーン側ガード値でガード処理された状態を示している)。この空燃比F/B補正量FAFのリーン方向への過補正によって実空燃比A/Fが目標空燃比よりもリーン側へ大きくオーバーシュートしてしまうことがある。 By the way, in the air-fuel ratio F / B control using the PI control described above, when the integral amount is set to the same value in the steady state and in the transient state, for example, as shown in FIG. When the actual air-fuel ratio A / F greatly fluctuates in the rich direction as the intake air amount PM decreases, the air-fuel ratio F / B correction amount FAF changes accordingly in the lean direction, and the actual air-fuel ratio A / F is returned to the lean direction, but until the actual air-fuel ratio A / F exceeds the target air-fuel ratio (for example, the theoretical air-fuel ratio), the air-fuel ratio F / B correction amount FAF is continuously corrected in the lean direction by the integral amount. The air-fuel ratio F / B correction amount FAF may be overcorrected in the lean direction (in FIG. 8, the air-fuel ratio F / B correction amount FAF is overcorrected in the lean direction and guard processing is performed with the lean side guard value) Is shown). Due to overcorrection of the air-fuel ratio F / B correction amount FAF in the lean direction, the actual air-fuel ratio A / F sometimes overshoots more lean than the target air-fuel ratio.
このように、定常時と過渡時とで積分量を同じ値に設定した場合でも、過渡時に空燃比F/B補正量が過補正されて空燃比制御性が悪化してしまうことがあるため、上記特許文献1の技術をそのまま利用して、過渡時に定常時よりも積分量を大きくしたのでは、過渡時の空燃比F/B補正量の過補正が助長されて、空燃比制御性が益々悪化するという悪循環に陥ってしまう可能性がある。また、過渡時の空燃比F/B補正量の過補正を抑えるために、単に過渡時に積分量を小さくするだけでは、過渡時の空燃比制御の応答性が低下してしまうという不具合が発生する。
As described above, even when the integral amount is set to the same value during the steady state and during the transition, the air-fuel ratio F / B correction amount may be overcorrected during the transition and the air-fuel ratio controllability may deteriorate. If the technique of the above-mentioned
本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、過渡時に空燃比制御の応答性を確保しながら空燃比補正量の過補正を防止することができて、過渡時の空燃比制御性を向上させることができる内燃機関の空燃比制御装置を提供することにある。 The present invention has been made in view of these circumstances. Therefore, the object of the present invention is to prevent overcorrection of the air-fuel ratio correction amount while ensuring the responsiveness of the air-fuel ratio control at the time of transition. Another object of the present invention is to provide an air-fuel ratio control apparatus for an internal combustion engine that can improve the air-fuel ratio controllability at the time of transition.
上記目的を達成するために、本発明の請求項1に記載の内燃機関の空燃比制御装置は、内燃機関の排気通路に配置された排出ガスセンサの出力が目標値に向かう方向に空燃比補正量を所定の積分量ずつ補正して排出ガスセンサの出力が目標値を越えたときに空燃比補正量をそれまでとは反対方向に所定のスキップ量だけ補正する処理を繰り返すシステムにおいて、所定の過渡状態であるか否かを過渡状態判定手段により判定し、過渡状態であると判定されたときに、過渡補正手段により過渡状態以外のときよりも積分量を小さくしてスキップ量を大きくするようにしたものである。
In order to achieve the above object, an air-fuel ratio control apparatus for an internal combustion engine according to
この構成では、過渡状態であると判定されたときに、積分量を小さくするため、過渡時に空燃比補正量が過補正されてしまうことを防止することができる。しかも、スキップ量を大きくするため、積分量を小さくしても、空燃比制御の応答性を確保することができる。これにより、過渡時に空燃比制御の応答性を確保しながら、空燃比補正量の過補正を防止して空燃比の収束性を高めることができ、過渡時の空燃比制御性を向上させることができる。 In this configuration, when it is determined that the state is in the transient state, the integration amount is reduced, so that it is possible to prevent the air-fuel ratio correction amount from being overcorrected during the transition. In addition, since the skip amount is increased, the responsiveness of the air-fuel ratio control can be ensured even if the integral amount is decreased. As a result, over-correction of the air-fuel ratio correction amount can be prevented while ensuring the responsiveness of the air-fuel ratio control at the time of transition, thereby improving the air-fuel ratio convergence and improving the air-fuel ratio controllability at the time of transition. it can.
一般に、吸気ポート噴射式の内燃機関では、燃料噴射弁から噴射した燃料は、その一部が、直接、気筒内に吸入されるが、残りは、吸気ポートの内壁面や吸気バルブの表面に付着した後、徐々に蒸発して気筒内に吸入される。加速時や減速時等の過渡時には、目標空燃比を維持するように吸気管圧力や吸入空気量の変化に応じて燃料噴射量を変化させても、この燃料噴射量の変化に対して、吸気ポートの内壁面等に付着した燃料(いわゆるウエット)の蒸発量が遅れて変化するため、過渡時には、吸気管圧力や吸入空気量の変化(燃料噴射量の変化)に対して、筒内に吸入される燃料量がウエット蒸発量の遅れ分だけ遅れて変化することになる。その結果、過渡時には、筒内に吸入される混合気の空燃比が目標空燃比付近に維持されずに変動してしまう。 Generally, in an intake port injection type internal combustion engine, a part of the fuel injected from the fuel injection valve is directly sucked into the cylinder, but the rest adheres to the inner wall surface of the intake port or the surface of the intake valve. After that, it gradually evaporates and is sucked into the cylinder. Even if the fuel injection amount is changed according to changes in the intake pipe pressure or the intake air amount so as to maintain the target air-fuel ratio during a transition such as acceleration or deceleration, the intake air Since the evaporation amount of fuel (so-called wet) adhering to the inner wall surface of the port changes with a delay, it is sucked into the cylinder in response to changes in intake pipe pressure and intake air amount (changes in fuel injection amount) during transition The amount of fuel to be changed changes with a delay of the amount of wet evaporation. As a result, at the time of transition, the air-fuel ratio of the air-fuel mixture sucked into the cylinder fluctuates without being maintained near the target air-fuel ratio.
このような事情を考慮して、請求項2のように、吸気管圧力又は吸入空気量とそのなまし値との偏差を所定の過渡判定値と比較して過渡状態であるか否かを判定するようにしても良い。吸気管圧力や吸入空気量のなまし値は、吸気管圧力や吸入空気量の変化に対して遅れて変化するウエット蒸発量を反映した情報となるため、吸気管圧力又は吸入空気量とそのなまし値との偏差は、ウエット蒸発量の遅れの情報となる。上述したように、加速時や減速時等の過渡時には、ウエット蒸発量の遅れによって筒内に吸入される混合気の空燃比が目標空燃比付近に維持されずに変動するため、吸気管圧力又は吸入空気量とそのなまし値との偏差(ウエット蒸発量の遅れの情報)を過渡判定値と比較することで、筒内に吸入される混合気の空燃比が目標空燃比付近からずれて変動する過渡状態であるか否かを精度良く判定することができる。
In consideration of such circumstances, as in
また、加速時や減速時等の過渡時にウエット蒸発量の遅れを考慮して燃料噴射量を補正するシステムでは、燃料噴射量の過渡補正量がウエット蒸発量の遅れの情報となるため、請求項3のように、燃料噴射量の過渡補正量を所定の過渡判定値と比較して過渡状態であるか否かを判定するようにしても良い。このようにしても、筒内に吸入される混合気の空燃比が変動する過渡状態であるか否かを精度良く判定することができる。 Further, in a system that corrects the fuel injection amount in consideration of a delay in the amount of wet evaporation at the time of transition such as acceleration or deceleration, the transient correction amount of the fuel injection amount becomes information on the delay in the amount of wet evaporation. As shown in FIG. 3, the transient correction amount of the fuel injection amount may be compared with a predetermined transient determination value to determine whether or not it is in a transient state. Even in this way, it is possible to accurately determine whether or not it is a transient state in which the air-fuel ratio of the air-fuel mixture sucked into the cylinder fluctuates.
この場合、機関温度に応じて吸気ポート内や噴射燃料の温度が変化してウエット蒸発量が変化するため、請求項4のように、過渡判定値を機関温度の情報に応じて設定するようにしても良い。このようにすれば、機関温度に応じてウエット蒸発量が変化するのに対応して過渡判定値を適正な値に設定することができる。 In this case, since the temperature of the intake port and the injected fuel changes according to the engine temperature and the amount of wet evaporation changes, the transient determination value is set according to the engine temperature information as in claim 4. May be. In this way, the transient determination value can be set to an appropriate value corresponding to the change in the amount of wet evaporation according to the engine temperature.
更に、請求項5のように、機関温度の情報として、内燃機関の油温、冷却水温、吸気温、変速装置の油温のうちの少なくとも1つを用いるようにしても良い。内燃機関の油温、冷却水温、吸気温、変速装置の油温は、いずれも機関温度を精度良く反映したパラメータとなる。 Furthermore, as in claim 5, at least one of the oil temperature of the internal combustion engine, the cooling water temperature, the intake air temperature, and the oil temperature of the transmission may be used as the engine temperature information. The oil temperature of the internal combustion engine, the cooling water temperature, the intake air temperature, and the oil temperature of the transmission are all parameters that accurately reflect the engine temperature.
以下、本発明を実施するための最良の形態を2つの実施例1,2を用いて説明する。 Hereinafter, the best mode for carrying out the present invention will be described using two Examples 1 and 2.
本発明の実施例1を図1乃至図6に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって開度調節されるスロットルバルブ16と、スロットル開度を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An
更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。
Further, a
一方、エンジン11の排気管23(排気通路)には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側と下流側に、それぞれ排出ガスのリッチ/リーンを検出する酸素センサ25,26(排出ガスセンサ)が設けられている。
On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with a
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられている。このクランク角センサ28の出力信号に基づいてクランク角やエンジン回転速度が検出される。
A cooling
これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)29に入力される。このECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。
Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 29. The ECU 29 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the
また、ECU29は、図2乃至図5に示す空燃比F/B(フィードバック)制御用の各プログラムを実行することで、上流側の酸素センサ25の出力電圧をリッチ/リーン判定電圧(目標値)と比較して排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチかリーンかを判定し、排出ガスの空燃比がリッチのときには空燃比F/B補正量FAFを積分量KIずつリーン方向に補正して空燃比がリッチからリーンに反転した時点で空燃比F/B補正量FAFをスキップ量KPだけリッチ方向に補正し、その後、排出ガスの空燃比がリーンのときには空燃比F/B補正量FAFを積分量KIずつリッチ方向に補正して空燃比がリーンからリッチに反転した時点で空燃比F/B補正量FAFをスキップKP量だけリーン方向に補正する処理を繰り返すPI制御を行うことで、排出ガスの空燃比を目標空燃比(例えば理論空燃比)付近に制御する。
Further, the
その際、吸気管圧力センサ19で検出した吸気管圧力PMとそのなまし値PMSMとの偏差DPMを所定の過渡判定値と比較して、筒内に吸入される混合気の空燃比が変動する過渡状態であるか否かを判定し、過渡状態であると判定されたときに、過渡状態以外のとき(つまり定常状態)よりも積分量KIを小さくしてスキップ量KPを大きくすることで、過渡時に空燃比制御の応答性を確保しながら、空燃比F/B補正量FAFの過補正を防止して空燃比の収束性を高めるようにしている。
At this time, the deviation DPM between the intake pipe pressure PM detected by the intake
ここで、吸気管圧力PMとそのなまし値PMSMとの偏差DPMを過渡判定値と比較して過渡状態であるか否かを判定する理由を説明する。
吸気管圧力PMのなまし値PMSMは、吸気管圧力PMの変化(燃料噴射量の変化)に対して遅れて変化するウエット蒸発量(吸気ポートの内壁面等に付着した燃料の蒸発量)を反映した情報となるため、吸気管圧力PMとそのなまし値PMSMとの偏差DPMは、ウエット蒸発量の遅れの情報となる。前述したように、加速時や減速時等の過渡時には、ウエット蒸発量の遅れによって筒内に吸入される混合気の空燃比が目標空燃比付近に維持されずに変動するため、吸気管圧力PMとそのなまし値PMSMとの偏差DPM(ウエット蒸発量の遅れの情報)を過渡判定値と比較することで、筒内に吸入される混合気の空燃比が目標空燃比付近からずれて変動する過渡状態であるか否かを精度良く判定することができる。
Here, the reason for determining whether or not the state is in the transient state by comparing the deviation DPM between the intake pipe pressure PM and the smoothed value PMSM with the transient determination value will be described.
The smoothing value PMSM of the intake pipe pressure PM is a wet evaporation amount (evaporation amount of fuel adhering to the inner wall surface of the intake port, etc.) that changes later than the change of the intake pipe pressure PM (change of the fuel injection amount). Since the information is reflected, the deviation DPM between the intake pipe pressure PM and the smoothed value PMSM is information on the delay of the wet evaporation amount. As described above, at the time of transition such as acceleration or deceleration, the air-fuel ratio of the air-fuel mixture sucked into the cylinder fluctuates without being maintained in the vicinity of the target air-fuel ratio due to a delay in the amount of wet evaporation. By comparing the deviation DPM (information on the delay of the wet evaporation amount) with the annealing value PMSM with the transient judgment value, the air-fuel ratio of the air-fuel mixture sucked into the cylinder fluctuates from the vicinity of the target air-fuel ratio. It is possible to accurately determine whether or not the state is a transient state.
以下、ECU28が実行する図2乃至図5に示す空燃比F/B制御用の各プログラムの処理内容を説明する。
Hereinafter, processing contents of each program for air-fuel ratio F / B control shown in FIGS. 2 to 5 executed by the
[空燃比メイン制御]
図2に示す空燃比メイン制御プログラムは、エンジン運転中に所定周期で実行される。本プログラムが起動されると、まず、ステップ101で、後述する図3の過渡状態判定プログラムを実行することで、吸気管圧力PMとそのなまし値PMSMとの偏差DPMを過渡判定値と比較して、筒内に吸入される混合気の空燃比が目標空燃比付近からずれて変動する過渡状態であるか否かを判定する。
[Air-fuel ratio main control]
The air-fuel ratio main control program shown in FIG. 2 is executed at a predetermined cycle during engine operation. When this program is started, first, in
この後、ステップ102に進み、後述する図4のスキップ量・積分量算出プログラムを実行することで、過渡状態のときには、定常状態のときよりも積分量KIを小さくしてスキップ量KPを大きくする。 Thereafter, the process proceeds to step 102, and a skip amount / integral amount calculation program shown in FIG. 4 to be described later is executed, whereby the integral amount KI is decreased and the skip amount KP is increased in the transient state than in the steady state. .
この後、ステップ103に進み、後述する図5の空燃比F/B補正量算出プログラムを実行することで、上流側の酸素センサ25の出力電圧をリッチ/リーン判定電圧と比較して排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチかリーンかを判定し、排出ガスの空燃比がリッチのときには空燃比F/B補正量FAFを積分量KIずつリーン方向に補正して空燃比がリッチからリーンに反転した時点で空燃比F/B補正量FAFをスキップ量KPだけリッチ方向に補正し、その後、排出ガスの空燃比がリーンのときには空燃比F/B補正量FAFを積分量KIずつリッチ方向に補正して空燃比がリーンからリッチに反転した時点で空燃比F/B補正量FAFをスキップKP量だけリーン方向に補正する処理を繰り返すPI制御を行う。 After that, the routine proceeds to step 103, where the output voltage of the upstream oxygen sensor 25 is compared with the rich / lean determination voltage by executing an air-fuel ratio F / B correction amount calculation program of FIG. It is determined whether the air-fuel ratio is richer or leaner than the target air-fuel ratio (for example, the theoretical air-fuel ratio). When the air-fuel ratio of the exhaust gas is rich, the air-fuel ratio F / B correction amount FAF is corrected in the lean direction by the integral amount KI. When the air-fuel ratio reverses from rich to lean, the air-fuel ratio F / B correction amount FAF is corrected in the rich direction by the skip amount KP. Thereafter, when the air-fuel ratio of the exhaust gas is lean, the air-fuel ratio F / B correction amount FAF is PI control that repeats the process of correcting the air-fuel ratio F / B correction amount FAF in the lean direction by the skip KP amount when the air-fuel ratio is reversed from lean to rich by correcting the integral amount KI in the rich direction. Do.
[過渡状態判定]
図3に示す過渡状態判定プログラムは、図2の空燃比メイン制御プログラムのステップ101で実行されるサブルーチンであり、特許請求の範囲でいう過渡状態判定手段としての役割を果たす。
[Transient state judgment]
The transient state determination program shown in FIG. 3 is a subroutine executed in
本プログラムが起動されると、まず、ステップ201で、吸気管圧力センサ19で検出した現在の吸気管圧力PMをなまし処理して、吸気管圧力なまし値PMSMを求める。
PMSM(n) =PMSM(n-1) ×(1−K)+PM×K
ここで、PMSM(n) は今回の吸気管圧力なまし値、PMSM(n-1) は前回の吸気管圧力なまし値、Kはなまし係数である。
When this program is started, first, in
PMSM (n) = PMSM (n-1) * (1-K) + PM * K
Here, PMSM (n) is the current intake pipe pressure smoothed value, PMSM (n-1) is the previous intake pipe pressure smoothed value, and K is the smoothing coefficient.
この後、ステップ202に進み、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMを算出する。
DPM=PM−PMSM
Thereafter, the routine proceeds to step 202, where a deviation DPM between the intake pipe pressure PM and the intake pipe pressure smoothed value PMSM is calculated.
DPM = PM-PMSM
この後、ステップ203に進み、加速時過渡判定値DPMAのテーブルを用いて、冷却水温センサ27で検出した現在の冷却水温に応じた加速時過渡判定値DPMAを求めた後、ステップ204に進み、減速時過渡判定値DPMDのテーブル用いて、現在の冷却水温に応じた減速時過渡判定値DPMDを求める。
Thereafter, the process proceeds to step 203, and after using the acceleration transient determination value DPMA table to determine the acceleration transient determination value DPMA corresponding to the current coolant temperature detected by the
この後、ステップ205に進み、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが加速時過渡判定値DPMAよりも大きいか否かを判定する。その結果、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが加速時過渡判定値DPMAよりも大きいと判定された場合には、ステップ207に進み、過渡状態判定フラグTRANSを加速時の過渡状態であることを意味する「1」にセットする。 Thereafter, the routine proceeds to step 205, where it is determined whether or not the deviation DPM between the intake pipe pressure PM and the intake pipe pressure smoothed value PMSM is larger than the acceleration transient determination value DPMA. As a result, when it is determined that the deviation DPM between the intake pipe pressure PM and the intake pipe pressure smoothed value PMSM is larger than the acceleration transient determination value DPMA, the process proceeds to step 207, and the transient state determination flag TRANS is set to the acceleration state. It is set to “1” which means that it is a transient state.
一方、上記ステップ205で、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが加速時過渡判定値DPMA以下であると判定された場合には、ステップ206に進み、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが減速時過渡判定値DPMDよりも小さいか否かを判定する。その結果、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが減速時過渡判定値DPMDよりも小さいと判定された場合には、ステップ208に進み、過渡状態判定フラグTRANSを減速時の過渡状態であることを意味する「3」にセットする。
On the other hand, if it is determined in
また、上記ステップ205で吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが加速時過渡判定値DPMA以下であると判定され、且つ、上記ステップ206で吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMが減速時過渡判定値DPMD以上である(DPMD≦DPM≦DPMA)と判定された場合には、ステップ209に進み、過渡状態判定フラグTRANSを定常状態であることを意味する「2」にセットする。
In
[スキップ量・積分量算出]
図4に示すスキップ量・積分量算出プログラムは、図2の空燃比メイン制御プログラムのステップ102で実行されるサブルーチンである。本プログラムが起動されると、まず、ステップ301で、上流側の酸素センサ25の出力電圧がリッチ/リーン判定電圧よりも高いか否かによって排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチであるか否かを判定する。
[Skip amount and integral amount calculation]
The skip amount / integration amount calculation program shown in FIG. 4 is a subroutine executed in
その結果、排出ガスの空燃比がリッチであると判定された場合には、ステップ302に進み、リッチ時のスキップ量KPRのテーブルを用いて、過渡状態判定フラグTRANSに応じたスキップ量KPRを求める。このリッチ時のスキップ量KPRのテーブルは、過渡状態判定フラグTRANS=2(定常状態)のときよりもTRANS=1(加速時の過渡状態)やTRANS=3(減速時の過渡状態)のときの方が、スキップ量KPRが大きくなるように設定されている。 As a result, if it is determined that the air-fuel ratio of the exhaust gas is rich, the process proceeds to step 302, and the skip amount KPR corresponding to the transient state determination flag TRANS is obtained using the table of the skip amount KPR when rich. . The table of the skip amount KPR at the time of rich is more in the case of TRANS = 1 (transient state during acceleration) and TRANS = 3 (transient state during deceleration) than when the transient state determination flag TRANS = 2 (steady state). However, the skip amount KPR is set to be larger.
この後、ステップ303に進み、リッチ時の積分量KIRのテーブルを用いて、過渡状態判定フラグTRANSに応じた積分量KIRを求める。このリッチ時の積分量KIRのテーブルは、過渡状態判定フラグTRANS=2(定常状態)のときよりもTRANS=1(加速時の過渡状態)やTRANS=3(減速時の過渡状態)のときの方が、積分量KIRが小さくなるように設定されている。 Thereafter, the process proceeds to step 303, and the integration amount KIR corresponding to the transient state determination flag TRANS is obtained using the table of the integration amount KIR at the rich time. The table of the integration amount KIR at the time of rich is more in the case of TRANS = 1 (transient state during acceleration) and TRANS = 3 (transient state during deceleration) than when the transient state determination flag TRANS = 2 (steady state). However, the integral amount KIR is set to be smaller.
一方、上記ステップ301で、排出ガスの空燃比がリーンであると判定された場合には、ステップ304に進み、リーン時のスキップ量KPLのテーブルを用いて、過渡状態判定フラグTRANSに応じたスキップ量KPLを求める。このリーン時のスキップ量KPLのテーブルは、過渡状態判定フラグTRANS=2(定常状態)のときよりもTRANS=1(加速時の過渡状態)やTRANS=3(減速時の過渡状態)のときの方が、スキップ量KPLが大きくなるように設定されている。
On the other hand, if it is determined in
この後、ステップ305に進み、リーン時の積分量KILのテーブルを用いて、過渡状態判定フラグTRANSに応じた積分量KILを求める。このリーン時の積分量KILのテーブルは、過渡状態判定フラグTRANS=2(定常状態)のときよりもTRANS=1(加速時の過渡状態)やTRANS=3(減速時の過渡状態)のときの方が、積分量KILが小さくなるように設定されている。
これらのステップ302〜305の処理が特許請求の範囲でいう過渡時補正手段としての役割を果たす。
Thereafter, the process proceeds to step 305, and the integration amount KIL corresponding to the transient state determination flag TRANS is obtained using the table of the lean integration amount KIL. The table of the integral amount KIL at the time of lean is more in the case of TRANS = 1 (transient state during acceleration) and TRANS = 3 (transient state during deceleration) than when the transient state determination flag TRANS = 2 (steady state). However, the integral amount KIL is set to be smaller.
The processing of these
[空燃比F/B補正量算出]
図5に示す空燃比F/B補正量算出プログラムは、図2の空燃比メイン制御プログラムのステップ103で実行されるサブルーチンである。本プログラムが起動されると、まず、ステップ401で、前回の上流側の酸素センサ25の出力電圧がリッチ/リーン判定電圧よりも高いか否かによって前回の排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチであるか否かを判定し、前回の排出ガスの空燃比がリッチであると判定された場合には、ステップ402に進み、今回の上流側の酸素センサ25の出力電圧がリッチ/リーン判定電圧よりも高いか否かによって今回の排出ガスの空燃比が目標空燃比よりもリッチであるか否かを判定する。
[Calculation of air-fuel ratio F / B correction amount]
The air-fuel ratio F / B correction amount calculation program shown in FIG. 5 is a subroutine executed in
その結果、上記ステップ401で前回の排出ガスの空燃比がリッチであると判定され、且つ、上記ステップ402で今回の排出ガスの空燃比がリッチであると判定された場合には、ステップ403に進み、空燃比F/B補正量FAFを積分量KIRだけリーン方向に補正する。
FAF(n) =FAF(n-1) −KIR
As a result, if it is determined in
FAF (n) = FAF (n-1) -KIR
その後、上記ステップ402で、今回の排出ガスの空燃比がリーンであると判定された時点、つまり、排出ガスの空燃比がリッチからリーンに反転した時点で、ステップ404に進み、空燃比F/B補正量FAFをスキップ量KPLだけリッチ方向に補正する。
FAF(n) =FAF(n-1) +KPL
Thereafter, when it is determined in
FAF (n) = FAF (n-1) + KPL
一方、上記ステップ401で、前回の排出ガスの空燃比がリーンであると判定された場合には、ステップ405に進み、今回の上流側の酸素センサ25の出力電圧がリッチ/リーン判定電圧よりも高いか否かによって今回の排出ガスの空燃比が目標空燃比よりもリッチであるか否かを判定する。
On the other hand, if it is determined in
その結果、上記ステップ401で前回の排出ガスの空燃比がリーンであると判定され、且つ、上記ステップ405で今回の排出ガスの空燃比がリーンであると判定された場合には、ステップ406に進み、空燃比F/B補正量FAFを積分量KILだけリッチ方向に補正する。
FAF(n) =FAF(n-1) +KIL
As a result, if it is determined in
FAF (n) = FAF (n-1) + KIL
その後、上記ステップ405で、今回の排出ガスの空燃比がリッチであると判定された時点、つまり、排出ガスの空燃比がリーンからリッチに反転した時点で、ステップ407に進み、空燃比F/B補正量FAFをスキップ量KPRだけリーン方向に補正する。
FAF(n) =FAF(n-1) −KPR
Thereafter, when it is determined in
FAF (n) = FAF (n-1) -KPR
以上説明した本実施例1の空燃比制御の実行例を図6を用いて説明する。例えば、図6に示すように、暖機運転中の減速時に吸入空気量PMの減少に伴って実空燃比A/Fがリッチ方向に大きく変動すると、それに追従して空燃比F/B補正量FAFが所定の制御周期で積分量KIずつリーン方向に変化して、実空燃比A/Fがリーン方向に戻される。 An execution example of the air-fuel ratio control of the first embodiment described above will be described with reference to FIG. For example, as shown in FIG. 6, when the actual air-fuel ratio A / F greatly fluctuates in the rich direction as the intake air amount PM decreases during deceleration during warm-up operation, the air-fuel ratio F / B correction amount follows this. The FAF changes in the lean direction by the integral amount KI in a predetermined control cycle, and the actual air-fuel ratio A / F is returned to the lean direction.
この場合、本実施例1では、過渡状態判定フラグTRANS=3、つまり、減速時の過渡状態であると判定されている期間中は、定常状態よりも積分量KIを小さくするため、空燃比F/B補正量FAFがリーン方向に過補正されてしまうことを防止することができる。これにより、実空燃比A/Fが目標空燃比よりもリーン側へオーバーシュートする量を低減することができ、空燃比の収束性を高めることができる。しかも、減速時の過渡状態であると判定されている期間中は、定常状態よりもスキップ量KPを大きくするため、積分量KIを小さくしても、空燃比制御の応答性を確保することができる。 In this case, in the first embodiment, the transient state determination flag TRANS = 3, that is, during the period when it is determined that the vehicle is in the transient state during deceleration, the air-fuel ratio F is reduced in order to make the integral amount KI smaller than the steady state. It is possible to prevent the / B correction amount FAF from being overcorrected in the lean direction. As a result, the amount by which the actual air-fuel ratio A / F overshoots leaner than the target air-fuel ratio can be reduced, and the convergence of the air-fuel ratio can be improved. In addition, during the period in which it is determined that the vehicle is in a transient state during deceleration, the skip amount KP is made larger than in the steady state, so that the responsiveness of the air-fuel ratio control can be ensured even if the integral amount KI is made small. it can.
前述したように、吸気管圧力PMとそのなまし値PMSMとの偏差DPMは、ウエット蒸発量の遅れの情報となり、加速時や減速時等の過渡時には、ウエット蒸発量の遅れによって筒内に吸入される混合気の空燃比が目標空燃比付近に維持されずに変動する。これらの点に着目して、本実施例1では、吸気管圧力PMとそのなまし値PMSMとの偏差DPM(ウエット蒸発量の遅れの情報)を過渡判定値と比較して過渡状態であるか否かを判定するようにしたので、筒内に吸入される混合気の空燃比が目標空燃比付近からずれて変動する過渡状態であるか否かを精度良く判定することができる。 As described above, the deviation DPM between the intake pipe pressure PM and the smoothed value PMSM becomes information on the delay of the wet evaporation amount, and is sucked into the cylinder due to the delay of the wet evaporation amount at the time of transient such as acceleration or deceleration. The air-fuel ratio of the air-fuel mixture to be changed fluctuates without being maintained near the target air-fuel ratio. Paying attention to these points, in the first embodiment, whether or not the deviation DPM (information on the delay in wet evaporation) between the intake pipe pressure PM and the smoothed value PMSM is in a transient state by comparing with the transient judgment value. Therefore, it is possible to accurately determine whether or not the air-fuel ratio of the air-fuel mixture sucked into the cylinder is in a transient state in which the air-fuel ratio deviates from the vicinity of the target air-fuel ratio.
更に、エンジン温度に応じて吸気ポート内や噴射燃料の温度が変化してウエット蒸発量が変化することを考慮して、本実施例1では、エンジン温度の代用情報である冷却水温に応じて加速時過渡判定値DPMAや減速時過渡判定値DPMDを設定するようにしたので、エンジン温度に応じてウエット蒸発量が変化するのに対応して加速時過渡判定値DPMAや減速時過渡判定値DPMDを適正な値に設定することができる。 Further, in consideration of the fact that the amount of wet evaporation changes due to changes in the temperature of the intake port and the injected fuel according to the engine temperature, in the first embodiment, acceleration is performed according to the coolant temperature, which is substitute information of the engine temperature. Since the time transient judgment value DPMA and the deceleration transient judgment value DPMD are set, the acceleration transient judgment value DPMA and the deceleration transient judgment value DPMD are set in response to the amount of wet evaporation changing according to the engine temperature. An appropriate value can be set.
次に、図7を用いて本発明の実施例2を説明する。
前記実施例1では、吸気管圧力PMとそのなまし値PMSMとの偏差DPM(ウエット蒸発量の遅れの情報)を過渡判定値と比較して過渡状態であるか否かを判定するようにしたが、過渡時にウエット蒸発量の遅れを考慮して燃料噴射量を補正するシステムでは、燃料噴射量の過渡補正量がウエット蒸発量の遅れの情報となることに着目して、本実施例2では、燃料噴射量の過渡補正量を過渡判定値と比較して過渡状態であるか否かを判定するようにしている。
Next,
In the first embodiment, the deviation DPM (information about the delay in wet evaporation) between the intake pipe pressure PM and the smoothed value PMSM is compared with the transient determination value to determine whether or not it is in a transient state. However, in the second embodiment, focusing on the fact that the transient correction amount of the fuel injection amount becomes information on the delay of the wet evaporation amount in the system that corrects the fuel injection amount in consideration of the delay of the wet evaporation amount at the time of transition. Then, the transient correction amount of the fuel injection amount is compared with the transient determination value to determine whether or not it is in a transient state.
以下、本実施例2で実行する図7の過渡状態判定プログラムの処理内容を説明する。本プログラムが起動されると、まず、ステップ501で、吸気管圧力PMをなまし処理して吸気管圧力なまし値PMSMを求めた後、ステップ502に進み、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPMを算出する。
The processing contents of the transient state determination program of FIG. 7 executed in the second embodiment will be described below. When this program is started, first, at
この後、ステップ503に進み、吸気管圧力PMと吸気管圧力なまし値PMSMとの偏差DPM(ウエット蒸発量の遅れの情報)に係数Kを乗算して燃料噴射量の過渡補正量FAEWを求める。
FAEW=DPM×K
After this, the routine proceeds to step 503, where the deviation DPM (information on the delay of the wet evaporation amount) between the intake pipe pressure PM and the intake pipe pressure smoothed value PMSM is multiplied by a coefficient K to obtain a transient correction amount FAEW of the fuel injection amount. .
FAEW = DPM × K
この後、ステップ504に進み、現在の冷却水温に応じた加速時過渡判定値DPMAをテーブル等により求めた後、ステップ505に進み、現在の冷却水温に応じた減速時過渡判定値DPMDをテーブル等により求める。 Thereafter, the process proceeds to step 504, and the acceleration transient determination value DPMA corresponding to the current cooling water temperature is obtained from a table or the like. Then, the process proceeds to step 505, and the deceleration transient determination value DPMD corresponding to the current cooling water temperature is determined from the table or the like. Ask for.
この後、ステップ506に進み、燃料噴射量の過渡補正量FAEWが加速時過渡判定値DPMAよりも大きいか否かを判定する。その結果、燃料噴射量の過渡補正量FAEWが加速時過渡判定値DPMAよりも大きいと判定された場合には、ステップ508に進み、過渡状態判定フラグTRANSを加速時の過渡状態であることを意味する「1」にセットする。 Thereafter, the routine proceeds to step 506, where it is determined whether or not the transient correction amount FAEW of the fuel injection amount is larger than the acceleration transient determination value DPMA. As a result, when it is determined that the transient correction amount FAEW of the fuel injection amount is larger than the acceleration transient determination value DPMA, the process proceeds to step 508, which means that the transient state determination flag TRANS is in a transient state during acceleration. Set to “1”.
一方、上記ステップ506で、燃料噴射量の過渡補正量FAEWが加速時過渡判定値DPMA以下であると判定された場合には、ステップ507に進み、燃料噴射量の過渡補正量FAEWが減速時過渡判定値DPMDよりも小さいか否かを判定する。その結果、燃料噴射量の過渡補正量FAEWが減速時過渡判定値DPMDよりも小さいと判定された場合には、ステップ509に進み、過渡状態判定フラグTRANSを減速時の過渡状態であることを意味する「3」にセットする。
On the other hand, if it is determined in
また、上記ステップ506で燃料噴射量の過渡補正量FAEWが加速時過渡判定値DPMA以下であると判定され、且つ、上記ステップ507で燃料噴射量の過渡補正量FAEWが減速時過渡判定値DPMD以上である(DPMD≦FAEW≦DPMA)と判定された場合には、ステップ510に進み、過渡状態判定フラグTRANSを定常状態であることを意味する「2」にセットする。
In
以上説明した本実施例2においても、筒内に吸入される混合気の空燃比が変動する過渡状態であるか否かを精度良く判定することができる。
尚、上記各実施例1,2では、吸気管圧力PMとそのなまし値PMSMとの偏差DPMをウエット蒸発量の遅れの情報として用いたが、吸入空気量とそのなまし値との偏差をウエット蒸発量の遅れの情報として用いるようにしても良い。
Also in the second embodiment described above, it can be accurately determined whether or not it is a transient state in which the air-fuel ratio of the air-fuel mixture sucked into the cylinder fluctuates.
In each of the first and second embodiments, the deviation DPM between the intake pipe pressure PM and its annealing value PMSM is used as information on the delay of the wet evaporation amount. However, the deviation between the intake air amount and its annealing value is calculated as follows. It may be used as information on the delay in the amount of wet evaporation.
また、上記各実施例1,2では、エンジン温度の代用情報として、冷却水温を用いたが、エンジン11の油温、吸気温度、自動変速装置の油温をエンジン温度の代用情報として用いるようにしても良い。 In the first and second embodiments, the coolant temperature is used as the engine temperature substitute information. However, the oil temperature of the engine 11, the intake air temperature, and the oil temperature of the automatic transmission are used as the engine temperature substitute information. May be.
また、上記各実施例1,2では、排出ガスのリッチ/リーンを検出する酸素センサ25の出力に基づいてPI制御を行う空燃比制御システムに本発明を適用した実施例を説明したが、排出ガスの空燃比をリニアに検出する空燃比センサの出力に基づいてPI制御を行う空燃比制御システムに本発明を適用しても良い。 In the first and second embodiments, the embodiment in which the present invention is applied to the air-fuel ratio control system that performs the PI control based on the output of the oxygen sensor 25 that detects the rich / lean of the exhaust gas has been described. The present invention may be applied to an air-fuel ratio control system that performs PI control based on the output of an air-fuel ratio sensor that linearly detects the air-fuel ratio of gas.
11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、19…吸気管圧力センサ、21…燃料噴射弁、22…点火プラグ、23…排気管(排気通路)、25,26…酸素センサ(排出ガスセンサ)、27…冷却水温センサ、29…ECU(過渡状態判定手段,過渡時補正手段) DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 19 ... Intake pipe pressure sensor, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe (exhaust passage), 25, 26 ... Oxygen Sensor (exhaust gas sensor), 27 ... cooling water temperature sensor, 29 ... ECU (transient state determination means, transient correction means)
Claims (5)
所定の過渡状態であるか否かを判定する過渡状態判定手段と、
前記過渡状態であると判定されたときに、該過渡状態以外のときよりも前記積分量を小さくして前記スキップ量を大きくする過渡時補正手段と
を備えていることを特徴とする内燃機関の空燃比制御装置。 When the output of the exhaust gas sensor disposed in the exhaust passage of the internal combustion engine is corrected toward the target value by an air-fuel ratio correction amount by a predetermined integral amount, and the output of the exhaust gas sensor exceeds the target value, the air-fuel ratio In the air-fuel ratio control apparatus for an internal combustion engine that repeats the process of correcting the correction amount by a predetermined skip amount in the opposite direction,
Transient state determining means for determining whether or not a predetermined transient state;
And a transient correction means for reducing the integral amount and increasing the skip amount when it is determined to be in the transient state. Air-fuel ratio control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270866A JP4258733B2 (en) | 2004-09-17 | 2004-09-17 | Air-fuel ratio control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270866A JP4258733B2 (en) | 2004-09-17 | 2004-09-17 | Air-fuel ratio control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006083795A true JP2006083795A (en) | 2006-03-30 |
JP4258733B2 JP4258733B2 (en) | 2009-04-30 |
Family
ID=36162507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004270866A Expired - Fee Related JP4258733B2 (en) | 2004-09-17 | 2004-09-17 | Air-fuel ratio control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258733B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074777A (en) * | 2009-09-29 | 2011-04-14 | Mitsubishi Electric Corp | Control device of internal combustion engine |
JP2019064367A (en) * | 2017-09-29 | 2019-04-25 | トヨタ自動車株式会社 | Hybrid-vehicular control apparatus |
-
2004
- 2004-09-17 JP JP2004270866A patent/JP4258733B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074777A (en) * | 2009-09-29 | 2011-04-14 | Mitsubishi Electric Corp | Control device of internal combustion engine |
JP2019064367A (en) * | 2017-09-29 | 2019-04-25 | トヨタ自動車株式会社 | Hybrid-vehicular control apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4258733B2 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4363398B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4835497B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP5348190B2 (en) | Control device for internal combustion engine | |
JP4314636B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2009162139A (en) | Air-fuel ratio control device for internal combustion engine | |
US9109524B2 (en) | Controller for internal combustion engine | |
US8463532B2 (en) | Control device for engine | |
US20170145939A1 (en) | Control apparatus for internal combustion engine | |
JP5295177B2 (en) | Engine control device | |
JP2009092002A (en) | Air-fuel ratio control device for internal combustion engine | |
JP4258733B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2006299925A (en) | Control device of diesel engine | |
JP2000130221A (en) | Fuel injection control device of internal combustion engine | |
JP2007187119A (en) | Air-fuel ratio control method of internal combustion engine | |
JP2007077842A (en) | Control device for internal combustion engine | |
JP4321406B2 (en) | Fuel supply control device for internal combustion engine | |
JP2010084671A (en) | Air-fuel ratio control device of internal combustion engine | |
JP3982626B2 (en) | Control device for internal combustion engine | |
JPH07119520A (en) | Air-fuel ratio controller of engine | |
JP2009024496A (en) | Air-fuel ratio control system of internal combustion engine | |
JP2008232095A (en) | Control device for internal combustion engine | |
JP2017115802A (en) | Air fuel ratio controller for internal combustion engine | |
JPH11173195A (en) | Air-fuel ratio control device and air-fuel ratio control method of engine | |
JP2000097081A (en) | Air-fuel ratio control device of internal-combustion engine | |
JP3966177B2 (en) | Air-fuel ratio control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080724 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |