JP2008232095A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2008232095A
JP2008232095A JP2007076009A JP2007076009A JP2008232095A JP 2008232095 A JP2008232095 A JP 2008232095A JP 2007076009 A JP2007076009 A JP 2007076009A JP 2007076009 A JP2007076009 A JP 2007076009A JP 2008232095 A JP2008232095 A JP 2008232095A
Authority
JP
Japan
Prior art keywords
opening
tcv
internal combustion
combustion engine
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076009A
Other languages
Japanese (ja)
Inventor
Masateru Nishiyama
征輝 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007076009A priority Critical patent/JP2008232095A/en
Publication of JP2008232095A publication Critical patent/JP2008232095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To increase fuel consumption reduction effect by a tumble control valve (TCV) in a partial zone. <P>SOLUTION: Opening of TCV 33 is set to an open side as engine speed NE increases and opening of the TCV 33 is set to the open side as engine load PM increases in the partial zone. Consequently, opening of the TCV 33 can be controlled to a direction (open side) to reduce intake resistance with corresponding to increase of intake air quantity due to increase of engine speed NE, and pumping loss in the partial zone by the TCV 33 can be reduced. Ignition retarded quantity from standard ignition timing is set small as opening of the TCV 33 shifts to open side. Consequently, ignition timing can be corrected to a direction approaching to optimal ignition timing with corresponding to shift of optimal ignition timing (MBT) to advanced side due to decrease of combustion speed as opening of the TCV 33 shifts to open side, and fuel consumption reduction effect can be increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の吸気通路に設けられた気流制御弁の開度を調整することで筒内の気流強度を制御する機能を備えた内燃機関の制御装置に関する発明である。   The present invention relates to a control apparatus for an internal combustion engine having a function of controlling the airflow intensity in a cylinder by adjusting the opening degree of an airflow control valve provided in an intake passage of the internal combustion engine.

内燃機関の燃焼状態を改善して燃費や排気エミッションを向上させるために、内燃機関の吸気通路の一部を開閉する気流制御弁(例えばタンブル制御弁やスワール制御弁)を設け、この気流制御弁を閉じて吸入空気の流路を狭くして流速を速めることで、筒内の気流(例えばタンブル流やスワール流)の強度を強くして混合気の均一化を促進するようにしたものがある。   In order to improve the combustion state of the internal combustion engine and improve fuel consumption and exhaust emission, an air flow control valve (for example, a tumble control valve or a swirl control valve) that opens and closes a part of the intake passage of the internal combustion engine is provided. By closing the air intake and narrowing the flow path of the intake air to increase the flow velocity, the strength of the airflow in the cylinder (eg, tumble flow or swirl flow) is increased to promote the homogenization of the air-fuel mixture .

しかし、内燃機関の運転領域のなかで最も使用頻度の高いパーシャル域(部分負荷域)では、内燃機関の回転速度が高くなって吸入空気量が増加すると、気流制御弁による吸気絞り効果によって吸気抵抗が大きくなってポンピングロスが増大してしまい、却って燃費が悪化する傾向がある。   However, in the partial range (partial load range), which is the most frequently used in the operating range of the internal combustion engine, when the rotational speed of the internal combustion engine increases and the intake air amount increases, the intake air resistance causes the intake resistance due to the intake throttle effect. However, the pumping loss increases and the fuel consumption tends to deteriorate.

このような気流制御弁によるポンピングロスを低減する技術としては、特許文献1(特開2006−161633号公報)に記載されているように、吸気バルブのリフト量を変化させて吸入空気量を制御する内燃機関において、吸気行程毎に開閉する吸気バルブの開度(リフト量)に応じて気流制御弁の開度を変化させるようにしたものがある。
特開2006−161633号公報(第2頁〜第6頁、図3等)
As a technique for reducing the pumping loss due to such an airflow control valve, as described in Japanese Patent Application Laid-Open No. 2006-161633, the intake air amount is controlled by changing the lift amount of the intake valve. In some internal combustion engines, the opening degree of the airflow control valve is changed according to the opening degree (lift amount) of the intake valve that opens and closes for each intake stroke.
JP 2006-161633 A (2nd to 6th pages, FIG. 3 etc.)

内燃機関の運転中は、吸気行程毎に吸気バルブが高速で開閉されるため、上記特許文献1のように、吸気行程毎に吸気バルブの開度(リフト量)の変化に同期させて気流制御弁の開度を高速で変化させる構成を実現するには、気流制御弁の開閉駆動機構を設計変更する必要があり、かなりコストアップするものと思われる。しかも、吸気行程毎に気流制御弁の開度を高速で変化させると、気流制御弁を通過する空気の流れが乱れて吸気抵抗が大きくなり、ポンピングロス低減効果が小さくなると思われる。更に、気流制御弁を通過した空気が吸気バルブに到達するまでの遅れ時間があり、この遅れ時間が吸入空気の流速によって変化するため、吸気行程毎に吸気バルブの開度の変化に正確に同期させて気流制御弁の開度を高速で変化させても、十分なポンピングロス低減効果を得ることは難しいと思われる。   During operation of the internal combustion engine, since the intake valve is opened and closed at high speed for each intake stroke, air flow control is performed in synchronization with the change in the opening (lift amount) of the intake valve for each intake stroke, as in Patent Document 1 described above. In order to realize a configuration in which the opening degree of the valve is changed at high speed, it is necessary to change the design of the opening / closing drive mechanism of the airflow control valve, which is considered to increase the cost considerably. Moreover, if the opening degree of the airflow control valve is changed at high speed for each intake stroke, the flow of air passing through the airflow control valve is disturbed, the intake resistance is increased, and the pumping loss reduction effect is reduced. In addition, there is a delay time until the air that has passed through the airflow control valve reaches the intake valve, and this delay time changes depending on the flow velocity of the intake air, so that it accurately synchronizes with the change in the intake valve opening for each intake stroke Even if the opening degree of the airflow control valve is changed at a high speed, it is difficult to obtain a sufficient pumping loss reduction effect.

また、一般に気流制御弁の開度を小さくして気流の強度を強くするほど、燃焼状態が改善されて燃焼速度が速くなるため、気流制御弁の開度に応じて最適点火時期(MBT)が変化し、その結果、実際の点火時期と最適点火時期とのずれが大きくなると、燃費が悪化するが、上記特許文献1には、点火時期の制御に関する記載が全くない。   In general, the smaller the opening of the airflow control valve and the stronger the airflow, the better the combustion state and the faster the combustion speed. Therefore, the optimal ignition timing (MBT) is set according to the opening of the airflow control valve. As a result, when the difference between the actual ignition timing and the optimum ignition timing becomes large, the fuel consumption deteriorates. However, Patent Document 1 does not have any description regarding the control of the ignition timing.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、パーシャル域でのポンピングロスの低減と点火時期の適正化とを低コストで実現することができ、パーシャル域での気流制御弁による燃費低減効果を大きくすることができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of such circumstances. Accordingly, the object of the present invention is to realize a reduction in pumping loss and optimization of the ignition timing in the partial region at a low cost. Another object of the present invention is to provide a control device for an internal combustion engine that can increase the fuel consumption reduction effect of the airflow control valve.

上記目的を達成するために、請求項1に係る発明は、内燃機関の吸気通路に設けられた気流制御弁の開度を調整することで筒内の気流強度を制御する内燃機関の制御装置において、内燃機関の回転速度に応じて気流制御弁の開度を気流制御手段によって制御すると共に、この気流制御弁の開度に応じて基準点火時期に対する点火遅角量を点火時期制御手段によって制御するようにしたものである。   In order to achieve the above object, an invention according to claim 1 provides a control device for an internal combustion engine that controls the airflow intensity in a cylinder by adjusting the opening degree of an airflow control valve provided in an intake passage of the internal combustion engine. The airflow control valve controls the opening degree of the airflow control valve according to the rotational speed of the internal combustion engine, and the ignition timing control means controls the ignition delay amount with respect to the reference ignition timing according to the airflow control valve opening degree. It is what I did.

この構成では、内燃機関の回転速度に応じて気流制御弁の開度を制御するため、内燃機関の回転速度が高くなって吸入空気量が増加するのに対応して、気流制御弁の開度を吸気抵抗が小さくなる方向(開き側)に制御することが可能となり、気流制御弁によるパーシャル域でのポンピングロスを低減することができる。しかも、気流制御弁の開度に応じて基準点火時期に対する点火遅角量を制御するため、気流制御弁の開度変化によって最適点火時期(MBT)が変化するのに対応して、点火時期を最適点火時期とのずれが少なくなる方向に補正することが可能となり、上述したポンピングロス低減効果と相俟って、パーシャル域での燃費低減効果を低コストで大きくすることができる。   In this configuration, since the opening degree of the airflow control valve is controlled according to the rotational speed of the internal combustion engine, the opening degree of the airflow control valve corresponds to the increase in the intake air amount due to the increase in the rotational speed of the internal combustion engine. Can be controlled in the direction in which the intake resistance is reduced (open side), and the pumping loss in the partial region by the airflow control valve can be reduced. Moreover, since the ignition delay amount with respect to the reference ignition timing is controlled according to the opening degree of the airflow control valve, the ignition timing is set in response to the change of the optimal ignition timing (MBT) due to the opening degree change of the airflow control valve. It becomes possible to correct the deviation from the optimum ignition timing so that the fuel consumption reduction effect in the partial region can be increased at a low cost in combination with the above-described pumping loss reduction effect.

具体的には、請求項2のように、内燃機関の回転速度が高くなるほど気流制御弁の開度を開き側に設定し、気流制御弁の開度が開き側になるほど基準点火時期に対する点火遅角量を小さくするようにすれば良い。このように、内燃機関の回転速度が高くなるほど、気流制御弁の開度を開き側に設定すれば、パーシャル域で気流制御弁による吸気抵抗(ポンピングロス)が過大にならない範囲内で気流制御弁の開度を閉じ側に設定して気流制御弁による燃焼改善効果を得ることができる。また、気流制御弁の開度が開き側になるほど、気流の強度が弱くなって燃焼速度が遅くなり、最適点火時期が進角側にずれるため、気流制御弁の開度が開き側になるほど基準点火時期に対する点火遅角量を小さくすれば、点火時期を最適点火時期に近付ける方向に補正することができ、燃費低減効果を大きくすることができる。   Specifically, as described in claim 2, the opening degree of the airflow control valve is set to the open side as the rotational speed of the internal combustion engine increases, and the ignition delay with respect to the reference ignition timing is set as the opening degree of the airflow control valve becomes open side. What is necessary is just to make an angular amount small. Thus, if the opening degree of the airflow control valve is set to the open side as the rotational speed of the internal combustion engine increases, the airflow control valve within a range where the intake resistance (pumping loss) by the airflow control valve does not become excessive in the partial region. Is set to the closed side, and the combustion improvement effect by the airflow control valve can be obtained. Also, the more the airflow control valve opening is on the open side, the weaker the airflow is, the slower the combustion speed is, and the optimal ignition timing is shifted to the advance side. If the ignition delay amount with respect to the ignition timing is reduced, the ignition timing can be corrected so as to approach the optimum ignition timing, and the fuel consumption reduction effect can be increased.

更に、請求項3のように、内燃機関の回転速度と負荷(吸気管圧力、吸入空気量、燃料噴射量等)に応じて気流制御弁の開度を制御するようにしても良い。内燃機関の回転速度と負荷の両方を用いれば、気流制御弁による吸気抵抗(ポンピングロス)や燃焼状態を、より正確に評価することができるため、内燃機関の回転速度と負荷に応じて気流制御弁の開度を制御すれば、パーシャル域での気流制御弁の開度をより精度良く制御することができる。   Further, the opening degree of the airflow control valve may be controlled according to the rotational speed and load (intake pipe pressure, intake air amount, fuel injection amount, etc.) of the internal combustion engine. By using both the rotational speed and load of the internal combustion engine, it is possible to more accurately evaluate the intake resistance (pumping loss) and combustion state of the airflow control valve, so airflow control according to the rotational speed and load of the internal combustion engine If the opening degree of the valve is controlled, the opening degree of the air flow control valve in the partial region can be controlled more accurately.

また、請求項4のように、内燃機関の回転速度が所定値A以上又は負荷が所定値B以上であるときに気流制御弁の開度を所定値C以上(好ましくは全開)に設定するようにすると良い。このようにすれば、高回転・高負荷域で、気流制御弁の開度を大きくして気流制御弁による吸気抵抗(ポンピングロス)を小さくすることができ、高回転・高負荷域での燃費を向上できる。   Further, as in claim 4, when the rotational speed of the internal combustion engine is equal to or greater than the predetermined value A or the load is equal to or greater than the predetermined value B, the opening degree of the airflow control valve is set to be equal to or greater than the predetermined value C (preferably fully open). It is good to make it. In this way, the airflow control valve opening can be increased in the high rotation / high load range to reduce the intake resistance (pumping loss) by the airflow control valve, and the fuel consumption in the high rotation / high load range can be reduced. Can be improved.

更に、請求項5のように、内燃機関の暖機状態及び/又はスロットル開度に応じて気流制御弁の開度を補正するようにしても良い。内燃機関の暖機前は、暖機後と比較して噴射燃料の霧化が促進されにくいため、暖機前に気流制御弁の開度を閉じ側に補正して気流の強度を強くすれば、噴射燃料の霧化を促進して燃焼状態を改善することができる。また、スロットル開度が大きくなるほど、吸入空気量が増加するため、スロットル開度が大きくなるに従って、気流制御弁の開度を吸気抵抗が小さくなる方向(開き側)に補正すれば、パーシャル域での気流制御弁によるポンピングロスの増加を抑制することができる。   Further, the opening degree of the airflow control valve may be corrected according to the warm-up state of the internal combustion engine and / or the throttle opening degree. Before warming up the internal combustion engine, atomization of the injected fuel is less likely to be accelerated than after warming up.If the airflow control valve opening is corrected to the closed side before warming up, the airflow strength is increased. The atomization of the injected fuel can be promoted to improve the combustion state. Also, as the throttle opening increases, the amount of intake air increases. Therefore, if the opening of the airflow control valve is corrected so that the intake resistance decreases (open side) as the throttle opening increases, in the partial range. The increase in pumping loss due to the airflow control valve can be suppressed.

以上説明した本発明の気流制御弁と点火時期の制御は、内燃機関のアイドル運転中には禁止するようにすると良い(請求項6)。内燃機関のアイドル運転中は、内燃機関の回転速度が目標アイドル回転速度に制御されるため、パーシャル域の制御とは異なる制御を行った方がアイドル回転の安定化やエミッション低減につながるためである。   The airflow control valve and ignition timing control according to the present invention described above may be prohibited during idling operation of the internal combustion engine (claim 6). This is because during the idling operation of the internal combustion engine, the rotation speed of the internal combustion engine is controlled to the target idle rotation speed, so that performing control different from the control in the partial range leads to stabilization of idle rotation and reduction of emissions. .

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力PMを検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の下流部が各気筒の吸気ポート29に接続されている。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure PM is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and a downstream portion of the intake manifold 20 of each cylinder is connected to an intake port 29 of each cylinder.

各気筒の吸気マニホールド20の下流部には、それぞれ吸気通路を上下に仕切る仕切板30が設けられ、この仕切板30によって上側通路31と下側通路32とが仕切り形成されている。各気筒の下側通路32の入口部には、それぞれ下側通路32を開閉するタンブル制御弁33(気流制御弁)が設けられ、このタンブル制御弁(以下「TCV」と表記する)33を閉じて上側通路31に吸入空気を流して吸入空気の流速を速めることで、筒内のタンブル流(縦方向の吸気旋回流)の強度を強くして混合気の均一化を促進して燃焼状態を改善するようにしている。   A partition plate 30 is provided downstream of the intake manifold 20 of each cylinder so as to partition the intake passage vertically. An upper passage 31 and a lower passage 32 are partitioned by the partition plate 30. A tumble control valve 33 (air flow control valve) that opens and closes the lower passage 32 is provided at the inlet of the lower passage 32 of each cylinder, and the tumble control valve (hereinafter referred to as “TCV”) 33 is closed. In this way, the intake air is caused to flow through the upper passage 31 to increase the flow velocity of the intake air, thereby increasing the strength of the tumble flow in the cylinder (vertical intake swirl flow) and promoting the homogenization of the air-fuel mixture. I try to improve.

各気筒のTCV33は、共通のモータ(図示せず)によって開閉駆動されて、TCV33の開度が全開位置(例えば0°)から全閉位置(例えば90°)までの間で調整されるようになっている。尚、各気筒毎又は各気筒群毎にTCV33を個別のモータで開閉駆動するようにしても良い。   The TCV 33 of each cylinder is driven to open and close by a common motor (not shown) so that the opening of the TCV 33 is adjusted between a fully open position (for example, 0 °) and a fully closed position (for example, 90 °). It has become. The TCV 33 may be driven to open and close by an individual motor for each cylinder or each cylinder group.

また、各気筒のTCV33の下流側には、それぞれ燃料を噴射する燃料噴射弁21が取り付けられ、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a fuel injection valve 21 for injecting fuel is attached to the downstream side of the TCV 33 of each cylinder, and a spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder. The air-fuel mixture in the cylinder is ignited by the discharge.

一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas. A catalyst 25 such as a three-way catalyst for purifying gas is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ27が取り付けられている。このクランク角センサ27の出力信号に基づいてクランク角やエンジン回転速度NEが検出される。   A cooling water temperature sensor 26 that detects the cooling water temperature and a crank angle sensor 27 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 27, the crank angle and the engine speed NE are detected.

これら各種センサの出力は、エンジン制御用の制御回路(以下「ECU」と表記する)28に入力される。このECU28は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御すると共に、エンジン運転状態に応じてTCV33の開度を制御する。   Outputs of these various sensors are input to a control circuit (hereinafter referred to as “ECU”) 28 for engine control. The ECU 28 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 21 can be changed according to the engine operating state. The ignition timing of the spark plug 22 is controlled, and the opening of the TCV 33 is controlled according to the engine operating state.

ここで、図2及び図3を用いてパーシャル域でのTCV33による燃費低減効果を説明する。
図2は、エンジン回転速度が1600rpmで無負荷時におけるTCV33(開口率30%)の燃費低減効果をTCV無し時(TCV33全開時)と比較して示す図である。TCV33によって吸入空気の流路を狭くして気流の強度を強くすると、混合気の均一化が促進されて燃焼状態が改善されるため、この実験例では、エンジン回転速度が1600rpmで無負荷時の場合に、最適点火時期(MBT)において、TCV無し時と比較してTCV33(開口率30%)によって2.5%の燃費低減効果が得られた。
Here, the fuel consumption reduction effect by the TCV 33 in the partial region will be described with reference to FIGS. 2 and 3.
FIG. 2 is a diagram showing the fuel consumption reduction effect of TCV33 (opening ratio 30%) when the engine rotation speed is 1600 rpm and no load compared to when TCV is not present (when TCV33 is fully open). If the intake air flow path is narrowed by the TCV 33 to increase the strength of the airflow, the air-fuel mixture is homogenized and the combustion state is improved. In this experimental example, the engine speed is 1600 rpm and no load is applied. In this case, at the optimal ignition timing (MBT), a fuel efficiency reduction effect of 2.5% was obtained by TCV33 (opening ratio 30%) as compared with the case without TCV.

しかし、エンジン運転領域のなかで最も使用頻度の高いパーシャル域(部分負荷域)では、エンジン回転速度が高くなって吸入空気量が増加すると、TCV33による吸気絞り効果によって吸気抵抗が大きくなってポンピングロスが増大してしまい、却って燃費が悪化する傾向がある。   However, in the partial range (partial load range), which is the most frequently used in the engine operating range, when the engine speed increases and the intake air amount increases, the intake air resistance increases due to the intake throttle effect by the TCV 33, resulting in a pumping loss. However, the fuel consumption tends to deteriorate.

この対策として、本実施例では、エンジン回転速度が高くなるほどTCV33の開度を開き側に設定するようにしている。このようにすれば、エンジン回転速度が高くなって吸入空気量が増加するのに対応して、TCV33の開度を吸気抵抗が小さくなる方向(開き側)に制御することが可能となり、TCV33によるパーシャル域でのポンピングロスを低減することができる。   As a countermeasure, in this embodiment, the opening degree of the TCV 33 is set to the open side as the engine speed increases. In this way, it is possible to control the opening of the TCV 33 in a direction (open side) in which the intake resistance decreases in response to the increase in the engine speed and the intake air amount. Pumping loss in the partial area can be reduced.

同様に、エンジン負荷(吸気管圧力、吸入空気量、燃料噴射量等)が大きくなるほど、TCV33の開度を開き側に設定するようにしている。このようにすれば、エンジン負荷が増加するのに対応して、TCV33の開度を吸気抵抗が小さくなる方向(開き側)に制御することが可能となり、エンジン負荷の増大に伴うポンピングロスの増加を抑えることができる。   Similarly, as the engine load (intake pipe pressure, intake air amount, fuel injection amount, etc.) increases, the opening of the TCV 33 is set to the open side. In this way, it is possible to control the opening of the TCV 33 in a direction (open side) in which the intake resistance decreases in response to an increase in engine load, and an increase in pumping loss accompanying an increase in engine load. Can be suppressed.

図3は、エンジン回転速度が1600rpmで車速20km/hにおけるTCV33(開口率30%)の燃費低減効果をTCV無し時(TCV33全開時)と比較して示す図である。この実験例では、エンジン回転速度が1600rpmで車速20km/hの場合に、最適点火時期(MBT)において、TCV無し時と比較してTCV33(開口率30%)によって1.5%程度の燃費低減効果が得られた。   FIG. 3 is a graph showing the fuel consumption reduction effect of TCV33 (opening ratio 30%) at an engine rotation speed of 1600 rpm and a vehicle speed of 20 km / h compared to when TCV is not present (when TCV33 is fully open). In this experimental example, when the engine rotation speed is 1600 rpm and the vehicle speed is 20 km / h, the fuel consumption is reduced by about 1.5% by TCV33 (opening ratio 30%) at the optimal ignition timing (MBT) compared with the case without TCV. The effect was obtained.

この場合、TCV33の開度を小さくして気流の強度を強くするほど、燃焼状態が改善されて燃焼速度が速くなるため、TCV33の開度に応じて最適点火時期(MBT)が変化し、その結果、実際の点火時期と最適点火時期とのずれが大きくなると、燃費が悪化する。   In this case, as the opening of the TCV 33 is reduced and the strength of the airflow is increased, the combustion state is improved and the combustion speed is increased. Therefore, the optimal ignition timing (MBT) changes according to the opening of the TCV 33, As a result, when the difference between the actual ignition timing and the optimum ignition timing becomes large, the fuel consumption deteriorates.

そこで、本実施例では、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さくするようにしている。TCV33の開度が開き側になるほど、気流の強度が弱くなって燃焼速度が遅くなり、最適点火時期が進角側にずれるため、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さくすれば、点火時期を最適点火時期に近付ける方向に補正することができ、燃費低減効果を大きくすることができる。   Therefore, in this embodiment, the ignition retard amount with respect to the reference ignition timing is reduced as the opening of the TCV 33 is opened. As the opening of the TCV 33 becomes the opening side, the strength of the airflow becomes weaker and the combustion speed becomes slower, and the optimum ignition timing shifts to the advance side. Therefore, as the opening of the TCV 33 becomes the opening side, the ignition delay with respect to the reference ignition timing. If the amount is reduced, the ignition timing can be corrected so as to approach the optimum ignition timing, and the fuel consumption reduction effect can be increased.

以上説明した本実施例のパーシャル域でのTCV33の開度制御と点火時期の制御は、ECU28によって図4のTCV開度・点火時期制御ルーチンに従って次のように実行される。図4のTCV開度・点火時期制御ルーチンは、ECU28の電源ON中に所定周期で実行され、特許請求の範囲でいう気流制御手段及び点火時期制御手段として機能する。本ルーチンが起動されると、まずステップ101で、IGスイッチ(イグニッションスイッチ)がONされているか否かを判定し、IGスイッチがOFFされていれば、以降の処理を行うことなく、本ルーチンを終了する。   The opening control and ignition timing control of the TCV 33 in the partial region of the present embodiment described above are executed by the ECU 28 as follows according to the TCV opening / ignition timing control routine of FIG. The TCV opening / ignition timing control routine of FIG. 4 is executed at a predetermined cycle while the ECU 28 is powered on, and functions as an airflow control means and an ignition timing control means in the claims. When this routine is started, it is first determined in step 101 whether or not the IG switch (ignition switch) is turned on. If the IG switch is turned off, this routine is executed without performing the subsequent processing. finish.

一方、上記ステップ101で、IGスイッチがONされていると判定されれば、ステップ102に進み、始動完了後か否かを判定し、始動完了前(始動中)であれば、TCV33を閉じ側の所定開度に固定して本ルーチンを終了する。   On the other hand, if it is determined in step 101 that the IG switch is ON, the process proceeds to step 102, where it is determined whether or not the start is completed. If the start is not completed (during start), the TCV 33 is closed. The routine is terminated with the predetermined opening being fixed.

その後、上記ステップ102で、始動完了後と判定された時点で、ステップ104に進み、アイドルスイッチがOFFであるか否か(パーシャル域であるか否か)を判定し、アイドルスイッチがON(アイドル運転中)と判定されれば、以降の処理を行うことなく、本ルーチンを終了する。このステップ104の処理が特許請求の範囲でいう禁止手段としての役割を果たす。   Thereafter, when it is determined in step 102 that the start is completed, the process proceeds to step 104, where it is determined whether the idle switch is OFF (whether it is a partial area), and the idle switch is ON (idle If it is determined that the operation is in progress, the routine is terminated without performing the subsequent processing. The processing in step 104 serves as prohibition means in the claims.

これに対して、上記ステップ104で、アイドルスイッチがOFF(パーシャル域)と判定されれば、ステップ105に進み、エンジン回転速度NEが所定値A未満且つエンジン負荷(例えば吸気管圧力PM)が所定値B未満であるか否かを判定する。その結果、エンジン回転速度NEが所定値A以上であるか又はエンジン負荷PMが所定値B以上であると判定されれば、ステップ106に進み、TCV33の開度を全開位置に固定する。尚、TCV33の開度を全開位置に近い所定開度(所定値C以上の開度)に固定しても良い。このようにすれば、高回転・高負荷域で、TCV33の開度を大きくしてTCV33による吸気抵抗(ポンピングロス)を小さくすることができ、高回転・高負荷域での燃費を向上できる。   On the other hand, if it is determined in step 104 that the idle switch is OFF (partial range), the process proceeds to step 105 where the engine speed NE is less than a predetermined value A and the engine load (for example, intake pipe pressure PM) is predetermined. It is determined whether or not the value is less than B. As a result, if it is determined that the engine speed NE is greater than or equal to the predetermined value A or the engine load PM is greater than or equal to the predetermined value B, the process proceeds to step 106 and the opening of the TCV 33 is fixed at the fully open position. In addition, you may fix the opening degree of TCV33 to the predetermined opening degree (opening more than the predetermined value C) close | similar to a fully open position. In this way, the opening of the TCV 33 can be increased in the high rotation / high load range to reduce the intake resistance (pumping loss) by the TCV 33, and the fuel efficiency in the high rotation / high load range can be improved.

その後、エンジン回転速度NEが所定値A未満且つエンジン負荷PMが所定値B未満の運転状態になった時点で、ステップ107に進み、図5に示すエンジン回転速度NEとエンジン負荷PMをパラメータとするTCV開度マップを参照して、現在のエンジン回転速度NEとエンジン負荷PMに応じたTCV33の開度を設定する。図5のTCV開度マップは、エンジン回転速度NEが高くなるほどTCV33の開度を開き側に設定し、且つ、エンジン負荷PMが大きくなるほどTCV33の開度を開き側に設定するように作成されている。これにより、エンジン回転速度NEが高くなって吸入空気量が増加するのに対応して、TCV33の開度を吸気抵抗が小さくなる方向(開き側)に制御することが可能となり、TCV33によるパーシャル域でのポンピングロスを低減することができる。   Thereafter, when the engine speed NE is less than the predetermined value A and the engine load PM is less than the predetermined value B, the routine proceeds to step 107, where the engine speed NE and the engine load PM shown in FIG. 5 are used as parameters. With reference to the TCV opening map, the opening of the TCV 33 is set according to the current engine speed NE and the engine load PM. The TCV opening degree map of FIG. 5 is created so that the opening degree of the TCV 33 is set to the open side as the engine speed NE increases, and the opening degree of the TCV 33 is set to the opening side as the engine load PM increases. Yes. As a result, the opening of the TCV 33 can be controlled in a direction (open side) in which the intake resistance is reduced in response to the increase in the engine speed NE and the intake air amount. The pumping loss at can be reduced.

この後、ステップ108に進み、図6に示すTCV33の開度をパラメータとする点火遅角量マップを参照して、基準点火時期に対する点火遅角量を現在のTCV33の開度に応じて設定する。図6の点火遅角量マップは、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さく設定するように作成されている。TCV33の開度が開き側になるほど、気流の強度が弱くなって燃焼速度が遅くなり、最適点火時期(MBT)が進角側にずれるため、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さくすれば、点火時期を最適点火時期に近付ける方向に補正することができ、燃費低減効果を大きくすることができる。   Thereafter, the routine proceeds to step 108, where the ignition delay amount map with the opening degree of the TCV 33 shown in FIG. 6 as a parameter is set, and the ignition delay amount with respect to the reference ignition timing is set according to the current opening degree of the TCV 33. . The ignition delay amount map of FIG. 6 is created so that the ignition delay amount with respect to the reference ignition timing is set to be smaller as the opening of the TCV 33 is opened. As the opening of the TCV 33 is on the open side, the strength of the airflow is weakened and the combustion speed is slowed down, and the optimum ignition timing (MBT) is shifted to the advance side, so that the opening of the TCV 33 is on the open side, If the ignition retard amount is reduced, the ignition timing can be corrected in a direction approaching the optimal ignition timing, and the fuel consumption reduction effect can be increased.

以上説明した本実施例のパーシャル域でのTCV33の開度制御と点火時期の制御の一例を図7を用いて説明する。図7の例では、アイドル運転中はTCV33の開度が全閉(例えば90°)に固定される。そして、スロットル開度が開かれて、IGスイッチがOFFされた時点t1 で、パーシャル域の制御に移行する。パーシャル域では、エンジン回転速度NEが高くなるほどTCV33の開度を開き側に設定し、且つ、エンジン負荷PMが大きくなるほどTCV33の開度を開き側に設定すると共に、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さく設定する。   An example of the opening degree control and ignition timing control of the TCV 33 in the partial range of the present embodiment described above will be described with reference to FIG. In the example of FIG. 7, the opening of the TCV 33 is fixed to be fully closed (for example, 90 °) during idle operation. Then, at the time t1 when the throttle opening is opened and the IG switch is turned off, the control shifts to partial area control. In the partial range, as the engine speed NE increases, the opening degree of the TCV 33 is set to the opening side, and as the engine load PM increases, the opening degree of the TCV 33 is set to the opening side, and the opening degree of the TCV 33 is set to the opening side. The ignition delay amount with respect to the reference ignition timing is set to be smaller.

そして、エンジン回転速度NEが所定値A以上になった時点t2 で、TCV33の開度を全開(例えば0°)に固定する。その後、エンジン回転速度NEが所定値A未満に低下した時点t3 で、上述したパーシャル域の制御を再開し、エンジン回転速度NEとエンジン負荷PMに応じてTCV33の開度を設定すると共に、基準点火時期に対する点火遅角量を現在のTCV33の開度に応じて設定する。これにより、t4 〜t5 の期間では、TCV33の開度が30°に設定され、基準点火時期に対する点火遅角量が図6のマップから5℃Aに設定され、t6 以降は、TCV33の開度が60°に設定され、基準点火時期に対する点火遅角量が図6のマップから7℃Aに設定される。   Then, at the time t2 when the engine rotational speed NE becomes equal to or higher than the predetermined value A, the opening degree of the TCV 33 is fixed fully open (for example, 0 °). Thereafter, at the time point t3 when the engine speed NE drops below the predetermined value A, the above-described partial range control is resumed, the opening of the TCV 33 is set according to the engine speed NE and the engine load PM, and the reference ignition is performed. The ignition retard amount with respect to the timing is set according to the current opening of the TCV 33. As a result, during the period from t4 to t5, the opening of the TCV 33 is set to 30 °, the ignition delay amount with respect to the reference ignition timing is set to 5 ° C. from the map of FIG. 6, and after t6, the opening of the TCV 33 is set. Is set to 60 °, and the ignition delay amount with respect to the reference ignition timing is set to 7 ° C. from the map of FIG.

以上説明した本実施例では、パーシャル域では、エンジン回転速度NEが高くなるほどTCV33の開度を開き側に設定し、且つ、エンジン負荷PMが大きくなるほどTCV33の開度を開き側に設定するようにしたので、エンジン回転速度NEが高くなって吸入空気量が増加するのに対応して、TCV33の開度を吸気抵抗が小さくなる方向(開き側)に制御することが可能となり、TCV33によるパーシャル域でのポンピングロスを低減することができる。しかも、TCV33の開度が開き側になるほど基準点火時期に対する点火遅角量を小さく設定するようにしたので、TCV33の開度が開き側になるほど、燃焼速度が遅くなって最適点火時期(MBT)が進角側にずれるのに対応して、点火時期を最適点火時期に近付ける方向に補正することができ、燃費低減効果を大きくすることができる。   In the present embodiment described above, in the partial range, the opening degree of the TCV 33 is set to the open side as the engine rotational speed NE increases, and the opening degree of the TCV 33 is set to the open side as the engine load PM increases. As a result, the opening of the TCV 33 can be controlled in a direction (open side) in which the intake resistance decreases in response to the increase in the engine speed NE and the intake air amount. The pumping loss at can be reduced. In addition, since the ignition delay amount with respect to the reference ignition timing is set to be smaller as the opening degree of the TCV 33 becomes the opening side, the combustion speed becomes slower as the opening degree of the TCV 33 becomes the opening side, and the optimal ignition timing (MBT). Corresponding to the shift to the advance side, the ignition timing can be corrected so as to approach the optimal ignition timing, and the fuel consumption reduction effect can be increased.

尚、本実施例では、エンジン回転速度NEとエンジン負荷PMに応じたTCV33の開度を設定するようにしたが、エンジン11の暖機状態及び/又はスロットル開度に応じてTCV33の開度を補正するようにしても良い。エンジン11の暖機前は、暖機後と比較して噴射燃料の霧化が促進されにくいため、暖機前にTCV33の開度を閉じ側に補正して気流の強度を強くすれば、噴射燃料の霧化を促進して燃焼状態を改善することができる。また、スロットル開度が大きくなるほど、吸入空気量が増加するため、スロットル開度が大きくなるに従って、TCV33の開度を吸気抵抗が小さくなる方向(開き側)に補正すれば、パーシャル域でのTCV33によるポンピングロスの増加を抑制することができる。   In this embodiment, the opening of the TCV 33 is set according to the engine speed NE and the engine load PM. However, the opening of the TCV 33 is set according to the warm-up state of the engine 11 and / or the throttle opening. You may make it correct | amend. Before the engine 11 is warmed up, atomization of the injected fuel is less likely to be accelerated than after the engine is warmed up. Therefore, if the opening of the TCV 33 is corrected to the closed side before the engine is warmed up, Fuel atomization can be promoted to improve the combustion state. Further, since the intake air amount increases as the throttle opening increases, the TCV 33 in the partial region can be corrected by correcting the opening of the TCV 33 in a direction (open side) in which the intake resistance decreases as the throttle opening increases. The increase of the pumping loss due to can be suppressed.

本実施例では、筒内にタンブル流(縦方向の吸気旋回流)を発生させるタンブル制御弁33を備えたシステムに本発明を適用したが、筒内にスワール流(横方向の吸気旋回流)を発生させるスワール制御弁を備えたシステムに本発明を適用しても良い。   In the present embodiment, the present invention is applied to a system including a tumble control valve 33 that generates a tumble flow (longitudinal intake swirl flow) in the cylinder. However, a swirl flow (lateral intake swirl flow) is generated in the cylinder. The present invention may be applied to a system including a swirl control valve that generates the above.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. エンジン回転速度が1600rpmで無負荷時におけるTCV(開口率30%)の燃費低減効果をTCV無し時(TCV全開時)と比較して示す図である。It is a figure which shows the fuel consumption reduction effect of TCV (opening ratio 30%) at the time of engine load speed 1600rpm and no load compared with the time of TCV absence (at the time of TCV full open). エンジン回転速度が1600rpmで車速20km/hにおけるTCV(開口率30%)の燃費低減効果をTCV無し時(TCV全開時)と比較して示す図である。It is a figure which shows the fuel consumption reduction effect of TCV (opening ratio 30%) at the engine speed of 1600 rpm and a vehicle speed of 20 km / h in comparison with no TCV (when TCV is fully open). TCV開度・点火時期制御ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of TCV opening degree and ignition timing control routine. エンジン回転速度NEとエンジン負荷PMをパラメータとするTCV開度マップの一例を示す図である。It is a figure which shows an example of the TCV opening degree map which uses engine speed NE and engine load PM as parameters. TCV開度をパラメータとする点火遅角量マップの一例を示す図である。It is a figure which shows an example of the ignition retard amount map which makes a TCV opening degree a parameter. パーシャル域でのTCV開度制御と点火時期の制御の一例を説明するタイムチャートである。It is a time chart explaining an example of TCV opening degree control in the partial region, and control of ignition timing.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、26…冷却水温センサ、27…クランク角センサ、28…ECU(気流制御手段,点火時期制御手段,禁止手段)、33…タンブル制御弁(気流制御弁)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe, 26 ... Cooling water temperature sensor, 27 ... Crank angle sensor, 28 ... ECU ( Airflow control means, ignition timing control means, prohibition means), 33 ... tumble control valve (airflow control valve)

Claims (6)

内燃機関の吸気通路に設けられた気流制御弁の開度を調整することで筒内の気流強度を制御する内燃機関の制御装置において、
前記内燃機関の回転速度に応じて前記気流制御弁の開度を制御する気流制御手段と、
前記気流制御弁の開度に応じて基準点火時期に対する点火遅角量を制御する点火時期制御手段と
を備えていることを特徴とする内燃機関の制御装置。
In the control device for an internal combustion engine that controls the airflow intensity in the cylinder by adjusting the opening degree of the airflow control valve provided in the intake passage of the internal combustion engine,
Airflow control means for controlling the opening of the airflow control valve in accordance with the rotational speed of the internal combustion engine;
An internal combustion engine control device comprising: an ignition timing control means for controlling an ignition delay amount with respect to a reference ignition timing in accordance with an opening of the airflow control valve.
前記気流制御手段は、前記内燃機関の回転速度が高くなるほど前記気流制御弁の開度を開き側に設定し、
前記点火時期制御手段は、前記気流制御弁の開度が開き側になるほど前記基準点火時期に対する点火遅角量を小さくすることを特徴とする請求項1に記載の内燃機関の制御装置。
The air flow control means sets the opening of the air flow control valve to the open side as the rotational speed of the internal combustion engine increases,
2. The control device for an internal combustion engine according to claim 1, wherein the ignition timing control unit decreases an ignition delay amount with respect to the reference ignition timing as the opening of the airflow control valve is opened.
前記気流制御手段は、前記内燃機関の回転速度と負荷に応じて前記気流制御弁の開度を制御することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The control device for an internal combustion engine according to claim 1, wherein the air flow control unit controls an opening degree of the air flow control valve in accordance with a rotation speed and a load of the internal combustion engine. 前記気流制御手段は、前記内燃機関の回転速度が所定値A以上又は負荷が所定値B以上であるときに前記気流制御弁の開度を所定値C以上に設定することを特徴とする請求項3に記載の内燃機関の制御装置。   The airflow control means sets the opening degree of the airflow control valve to a predetermined value C or more when the rotational speed of the internal combustion engine is a predetermined value A or more or the load is a predetermined value B or more. The control device for an internal combustion engine according to claim 3. 前記気流制御手段は、前記内燃機関の暖機状態及び/又はスロットル開度に応じて前記気流制御弁の開度を補正することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の制御装置。   5. The internal combustion engine according to claim 1, wherein the air flow control unit corrects an opening degree of the air flow control valve in accordance with a warm-up state of the internal combustion engine and / or a throttle opening degree. Control device. 前記内燃機関のアイドル運転中に前記気流制御手段及び前記点火時期制御手段による制御を禁止する禁止手段を備えていることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の制御装置。   6. The control device for an internal combustion engine according to claim 1, further comprising prohibiting means for prohibiting control by the airflow control means and the ignition timing control means during idle operation of the internal combustion engine. .
JP2007076009A 2007-03-23 2007-03-23 Control device for internal combustion engine Pending JP2008232095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076009A JP2008232095A (en) 2007-03-23 2007-03-23 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076009A JP2008232095A (en) 2007-03-23 2007-03-23 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008232095A true JP2008232095A (en) 2008-10-02

Family

ID=39905190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076009A Pending JP2008232095A (en) 2007-03-23 2007-03-23 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008232095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180799A (en) * 2011-03-02 2012-09-20 Nissan Motor Co Ltd Gas flow control device of internal combustion engine
JP2016125476A (en) * 2015-01-08 2016-07-11 富士重工業株式会社 Engine ignition timing control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910736A (en) * 1982-07-07 1984-01-20 Toyota Motor Corp Suction control method of internal-combustion engine
JPS62171641U (en) * 1986-04-22 1987-10-30
JP2002250261A (en) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp Ignition timing control device of engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910736A (en) * 1982-07-07 1984-01-20 Toyota Motor Corp Suction control method of internal-combustion engine
JPS62171641U (en) * 1986-04-22 1987-10-30
JP2002250261A (en) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp Ignition timing control device of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180799A (en) * 2011-03-02 2012-09-20 Nissan Motor Co Ltd Gas flow control device of internal combustion engine
JP2016125476A (en) * 2015-01-08 2016-07-11 富士重工業株式会社 Engine ignition timing control device

Similar Documents

Publication Publication Date Title
JP4306642B2 (en) Internal combustion engine control system
US7287500B2 (en) Start controller for internal combustion engine
JP2009299631A (en) Control device for internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
US9890736B2 (en) Injection control device for internal combustion engine of cylinder-injection type
JP5835364B2 (en) Fuel injection device for internal combustion engine
JP2004251157A (en) Valve timing control device for engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP2006112385A (en) Variable valve timing controller of internal combustion engine
JP2008232095A (en) Control device for internal combustion engine
JP6585496B2 (en) Control device for internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP2005146908A (en) Vibration dampening control device of internal combustion engine
JP2002195141A (en) Device for controlling ignition timing of internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP2017155662A (en) Control device of internal combustion engine
JP2010168931A (en) Ignition timing control device for spark ignition type internal combustion engine
JP2011236802A (en) Internal combustion engine control apparatus
JP4114201B2 (en) Control device for internal combustion engine
JP4697473B2 (en) Control device for internal combustion engine
JP2009133204A (en) Control device of internal combustion engine
JP2008223558A (en) Control device for internal combustion engine
JP2006132400A (en) Fuel injection control method of internal combustion engine
JP2008025548A (en) Intake air flow control device and control method for internal combustion engine
JP2001098964A (en) Controller for spark ignition type direct injection engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302