JP2017155662A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2017155662A
JP2017155662A JP2016040208A JP2016040208A JP2017155662A JP 2017155662 A JP2017155662 A JP 2017155662A JP 2016040208 A JP2016040208 A JP 2016040208A JP 2016040208 A JP2016040208 A JP 2016040208A JP 2017155662 A JP2017155662 A JP 2017155662A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
hydrogen
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016040208A
Other languages
Japanese (ja)
Inventor
匡史 篠田
Tadashi Shinoda
匡史 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016040208A priority Critical patent/JP2017155662A/en
Publication of JP2017155662A publication Critical patent/JP2017155662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise a temperature of an exhaust purification catalyst while suppressing the deterioration of fuel economy, in a control device of an internal combustion engine having a hydrogen fuel injection valve and a gasoline injection valve.SOLUTION: This control device of an internal combustion engine having an exhaust purification catalyst, a hydrogen injection valve and a gasoline injection valve comprises operation control means for selectively performing hydrogen drive or gasoline drive, and when the hydrogen drive is performed by the operation control means, and a temperature of the catalyst is lower than an activation temperature, and also when the gasoline drive is not performed until now after engine start of the internal combustion engine, normal hydrogen drive for controlling an air-fuel ratio of an air-fuel mixture to a prescribed lean air-fuel ratio which is higher than a theoretical air-fuel ratio is performed.SELECTED DRAWING: Figure 5

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

一次燃料として水素、二次燃料としてガソリンを用いて、これら燃料を燃焼させるバイフューエル内燃機関が知られている。そして、特許文献1には、このようなバイフューエル内燃機関において、内燃機関の燃焼室で燃焼させる燃料を機関負荷に応じて変更する技術が開示されている。当該技術では、機関負荷が低負荷の場合に、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より高いリーン空燃比にして、燃焼室において該混合気を燃焼させる。一方で、機関負荷が中負荷よりも高い場合に、燃焼室において水素とガソリンと内燃機関の吸入空気との混合気を燃焼させる。   2. Description of the Related Art A bi-fuel internal combustion engine that uses hydrogen as a primary fuel and gasoline as a secondary fuel and burns these fuels is known. Patent Document 1 discloses a technique for changing the fuel burned in the combustion chamber of the internal combustion engine in accordance with the engine load in such a bi-fuel internal combustion engine. In this technique, when the engine load is low, the air-fuel ratio of the mixture of hydrogen and intake air of the internal combustion engine is set to a lean air-fuel ratio higher than the stoichiometric air-fuel ratio, and the air-fuel mixture is burned in the combustion chamber. On the other hand, when the engine load is higher than the medium load, an air-fuel mixture of hydrogen, gasoline, and intake air of the internal combustion engine is burned in the combustion chamber.

また、特許文献2には、水素を燃料とした水素内燃機関において、該内燃機関の機関始動時に排気浄化触媒を昇温させる技術が開示されている。当該技術では、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして、燃焼室で該混合気を燃焼させる。その結果、排気温度が上昇し、排気浄化触媒が昇温する。   Patent Document 2 discloses a technique for raising the temperature of an exhaust purification catalyst at the time of starting the engine in a hydrogen internal combustion engine using hydrogen as a fuel. In this technique, the air-fuel ratio of the mixture of hydrogen and intake air of the internal combustion engine is set to a rich air-fuel ratio lower than the stoichiometric air-fuel ratio, and the mixture is burned in the combustion chamber. As a result, the exhaust temperature rises and the exhaust purification catalyst rises in temperature.

特表2013−528260号公報Special table 2013-528260 gazette 特開2007−056700号公報JP 2007-056700 A 特開2006−242076号公報JP 2006-242076 A

従来技術によれば、水素とガソリンとを燃料として用いる内燃機関において、機関負荷が低負荷の場合には、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より高いリーン空燃比にして、燃焼室で該混合気を燃焼させ、該内燃機関から排出されるNOx量が略ゼロになるようにしている。そして、前記内燃機関において機関負荷が高負荷の場合には、燃焼室で水素とともにガソリンも燃焼させるが、このときにはガソリンの燃焼によって生成される燃焼生成物を排気浄化触媒で浄化する必要がある。また、内燃機関の機関始動時のエミッション低減のために、燃料と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させ、排気浄化触媒を昇温させることが行われているが、この場合には一般的に燃費が悪化してしまう。そして、水素とガソリンとを燃料として用いる内燃機関において、排気浄化触媒の昇温と燃費の悪化抑制とを制御する手法については、未だ改良の余地を残すものである。   According to the prior art, in an internal combustion engine using hydrogen and gasoline as fuel, when the engine load is low, the air-fuel ratio of the mixture of hydrogen and intake air of the internal combustion engine is set to a lean air-fuel ratio higher than the stoichiometric air-fuel ratio. The air-fuel mixture is combusted in the combustion chamber at the fuel ratio so that the amount of NOx discharged from the internal combustion engine becomes substantially zero. When the engine load is high in the internal combustion engine, gasoline is burned together with hydrogen in the combustion chamber. At this time, it is necessary to purify the combustion products generated by the combustion of the gasoline with an exhaust purification catalyst. Further, in order to reduce emissions at the time of engine start of the internal combustion engine, the air-fuel ratio of the mixture of fuel and intake air of the internal combustion engine is set to a rich air-fuel ratio lower than the theoretical air-fuel ratio, and the air-fuel mixture is burned in the combustion chamber, The temperature of the exhaust purification catalyst is raised, but in this case, the fuel efficiency is generally deteriorated. In an internal combustion engine using hydrogen and gasoline as fuels, there is still room for improvement in the method for controlling the temperature increase of the exhaust purification catalyst and the suppression of deterioration of fuel consumption.

本発明は、水素燃料噴射弁とガソリン噴射弁とを備えた内燃機関の制御装置において、燃費の悪化を抑制しつつ排気浄化触媒を昇温させることを目的とする。   An object of the present invention is to increase the temperature of an exhaust purification catalyst while suppressing deterioration of fuel consumption in a control device for an internal combustion engine provided with a hydrogen fuel injection valve and a gasoline injection valve.

上記課題を解決するために本発明に係る内燃機関の制御装置は、内燃機関の排気通路に設けられた排気浄化触媒と、水素燃料を噴射可能な第一噴射弁と、ガソリンを噴射可能な第二噴射弁と、を有する前記内燃機関の制御装置であって、前記内燃機関の運転状態に応じて、前記第一噴射弁によって噴射される前記水素燃料と前記内燃機関が吸入する吸入空気との混合気を燃焼させる第一運転、又は前記第二噴射弁によって噴射される前記ガソリンと前記内燃機関が吸入する吸入空気との混合気を燃焼させる第二運転を選択的に実行す
る運転制御手段と、前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が理論空燃比より高い所定のリーン空燃比に制御される通常水素運転を行う通常水素運転手段と、前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が前記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行う触媒昇温水素運転手段と、を備え、前記運転制御手段によって前記第一運転が実行される場合であり、且つ前記排気浄化触媒の温度が該排気浄化触媒の活性化温度よりも低い場合において、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われた場合には、前記触媒昇温水素運転手段によって前記触媒昇温水素運転が行われ、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われていない場合には、前記通常水素運転手段によって前記通常水素運転が行われる。
In order to solve the above problems, an internal combustion engine control apparatus according to the present invention includes an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, a first injection valve capable of injecting hydrogen fuel, and a first engine capable of injecting gasoline. A control device for the internal combustion engine having two injection valves, wherein the hydrogen fuel injected by the first injection valve and the intake air sucked by the internal combustion engine according to the operating state of the internal combustion engine An operation control means for selectively executing a first operation for burning an air-fuel mixture or a second operation for burning an air-fuel mixture of the gasoline injected by the second injection valve and the intake air taken in by the internal combustion engine; A normal hydrogen operation means for performing a normal hydrogen operation in which the air-fuel ratio of the mixture of the hydrogen fuel and the intake air is controlled to a predetermined lean air-fuel ratio higher than the stoichiometric air-fuel ratio in the first operation; For driving And a catalyst temperature increase hydrogen operation means for performing a catalyst temperature increase hydrogen operation in which the air fuel ratio of the mixture of the hydrogen fuel and the intake air is controlled to a rich air fuel ratio rather than the predetermined lean air fuel ratio, In the case where the first operation is executed by the operation control means and the temperature of the exhaust purification catalyst is lower than the activation temperature of the exhaust purification catalyst, from the start of the internal combustion engine to the present When the second operation is performed by the operation control means, the catalyst temperature increase hydrogen operation is performed by the catalyst temperature increase hydrogen operation means, and the operation control means is from the start of the internal combustion engine to the present. When the second operation is not performed by the above, the normal hydrogen operation is performed by the normal hydrogen operation means.

本発明によれば、水素燃料噴射弁とガソリン噴射弁とを備えた内燃機関の制御装置において、燃費の悪化を抑制しつつ排気浄化触媒を昇温させることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the control apparatus of the internal combustion engine provided with the hydrogen fuel injection valve and the gasoline injection valve, it is possible to raise the temperature of the exhaust purification catalyst while suppressing the deterioration of fuel consumption.

本発明の実施例に係る内燃機関とその吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which concerns on the Example of this invention, and its intake / exhaust system. 本発明の実施例に係る内燃機関の運転制御マップを示す図である。It is a figure which shows the operation control map of the internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る水素運転における空気過剰率に対する排気温度、NOx排出量、および熱効率の相関を示す図である。It is a figure which shows the correlation of the exhaust temperature with respect to the excess air ratio in the hydrogen operation which concerns on the Example of this invention, NOx discharge | emission amount, and thermal efficiency. 通常水素運転と触媒昇温水素運転との比較を説明するための、水素運転における空気過剰率に対する排気温度、NOx排出量、および熱効率の相関を示す図である。It is a figure which shows the correlation of the exhaust temperature with respect to the excess air ratio in hydrogen operation, NOx discharge | emission amount, and thermal efficiency for demonstrating the comparison with normal hydrogen operation and catalyst temperature rising hydrogen operation. 本発明の実施例に係る触媒昇温制御フローを示すフローチャートである。It is a flowchart which shows the catalyst temperature rising control flow which concerns on the Example of this invention.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

(概略構成)
図1は、本実施例に係る内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する火花点火式の内燃機関である。
(Outline configuration)
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its intake / exhaust system according to the present embodiment. An internal combustion engine 1 shown in FIG. 1 is a spark ignition type internal combustion engine having four cylinders 2.

内燃機関1は、各吸気ポートへ水素燃料を噴射する水素燃料噴射弁3を備えている。また、各気筒2には該気筒2内にガソリンを直接噴射するガソリン噴射弁4が設けられている。そして、各気筒2には、筒内の混合気に着火するための点火プラグ5が取り付けられている。なお、本実施例においては、水素燃料噴射弁3が本発明における第一噴射弁に相当し、ガソリン噴射弁4が本発明における第二噴射弁に相当する。   The internal combustion engine 1 includes a hydrogen fuel injection valve 3 that injects hydrogen fuel into each intake port. Each cylinder 2 is provided with a gasoline injection valve 4 that directly injects gasoline into the cylinder 2. Each cylinder 2 is provided with a spark plug 5 for igniting the air-fuel mixture in the cylinder. In this embodiment, the hydrogen fuel injection valve 3 corresponds to the first injection valve in the present invention, and the gasoline injection valve 4 corresponds to the second injection valve in the present invention.

また、内燃機関1は吸気通路6と接続されている。吸気通路6にはターボチャージャ9のコンプレッサ9aが設置されている。また、内燃機関1は排気通路7と接続されている。排気通路7にはターボチャージャ9のタービン9bが設置されている。   The internal combustion engine 1 is connected to the intake passage 6. A compressor 9 a of a turbocharger 9 is installed in the intake passage 6. The internal combustion engine 1 is connected to the exhaust passage 7. A turbine 9 b of a turbocharger 9 is installed in the exhaust passage 7.

吸気通路6におけるコンプレッサ9aよりも上流側にはエアフローメータ24が設けられている。エアフローメータ24は、吸気通路6内を流れる吸気(空気)の量(質量)に応じた電気信号を出力する。吸気通路6におけるコンプレッサ9aよりも下流側にはスロットル弁10が設けられている。スロットル弁10は、吸気通路6内の通路断面積を変更することで、内燃機関1の吸入空気量を調整する。また、タービン9bより下流側の排気通路7には、排気浄化触媒70が設けられている。排気通路7における排気浄化触媒70の下流側には温度センサ71が設けられている。   An air flow meter 24 is provided upstream of the compressor 9 a in the intake passage 6. The air flow meter 24 outputs an electrical signal corresponding to the amount (mass) of intake air (air) flowing through the intake passage 6. A throttle valve 10 is provided in the intake passage 6 on the downstream side of the compressor 9a. The throttle valve 10 adjusts the intake air amount of the internal combustion engine 1 by changing the passage cross-sectional area in the intake passage 6. An exhaust purification catalyst 70 is provided in the exhaust passage 7 on the downstream side of the turbine 9b. A temperature sensor 71 is provided downstream of the exhaust purification catalyst 70 in the exhaust passage 7.

そして、内燃機関1には電子制御ユニット(ECU)20が併設されている。ECU20は、内燃機関1の運転状態等を制御するユニットである。ECU20には、上記のエアフローメータ24、クランクポジションセンサ21、アクセルポジションセンサ22、水温センサ23、および温度センサ71等の各種センサが電気的に接続されている。クランクポジションセンサ21は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電気信号を出力するセンサである。アクセルポジションセンサ22は、図示しないアクセルペダルの操作量(アクセル開度)に相関した電気信号を出力するセンサである。水温センサ23は、内燃機関1を冷却する冷却水の温度(以下、単に「冷却水温」と称する場合もある。)に応じた電気信号を出力する。温度センサ71は排気の温度に応じた電気信号を出力する。そして、これらのセンサの出力信号がECU20に入力される。ECU20は、クランクポジションセンサ21の出力信号に基づいて内燃機関1の機関回転速度を導出する。また、ECU20は、アクセルポジションセンサ22の出力信号に基づいて内燃機関1の機関負荷を導出する。また、ECU20は、水温センサ23で冷却水温を検出し、温度センサ71の出力値に基づいて排気浄化触媒70の温度(以下、単に「触媒温度」と称する場合もある。)を推定する。   The internal combustion engine 1 is also provided with an electronic control unit (ECU) 20. The ECU 20 is a unit that controls the operating state and the like of the internal combustion engine 1. Various sensors such as the air flow meter 24, the crank position sensor 21, the accelerator position sensor 22, the water temperature sensor 23, and the temperature sensor 71 are electrically connected to the ECU 20. The crank position sensor 21 is a sensor that outputs an electrical signal correlated with the rotational position of the engine output shaft (crankshaft) of the internal combustion engine 1. The accelerator position sensor 22 is a sensor that outputs an electrical signal correlated with an operation amount (accelerator opening) of an accelerator pedal (not shown). The water temperature sensor 23 outputs an electrical signal corresponding to the temperature of the cooling water that cools the internal combustion engine 1 (hereinafter sometimes simply referred to as “cooling water temperature”). The temperature sensor 71 outputs an electrical signal corresponding to the exhaust temperature. Then, the output signals of these sensors are input to the ECU 20. The ECU 20 derives the engine speed of the internal combustion engine 1 based on the output signal of the crank position sensor 21. Further, the ECU 20 derives the engine load of the internal combustion engine 1 based on the output signal of the accelerator position sensor 22. Further, the ECU 20 detects the cooling water temperature with the water temperature sensor 23 and estimates the temperature of the exhaust purification catalyst 70 (hereinafter sometimes simply referred to as “catalyst temperature”) based on the output value of the temperature sensor 71.

また、ECU20には、水素燃料噴射弁3、ガソリン噴射弁4、およびスロットル弁10等の各種装置が電気的に接続されている。そして、ECU20によって、これら各種装置が制御される。   Various devices such as the hydrogen fuel injection valve 3, the gasoline injection valve 4, and the throttle valve 10 are electrically connected to the ECU 20. The various devices are controlled by the ECU 20.

上記の通り構成される内燃機関1は、水素燃料噴射弁3によって吸気ポートへ噴射される水素燃料と内燃機関1が吸入する吸入空気(以下、単に「吸入空気」と称する場合もある。)との混合気を、内燃機関1の燃焼室内で燃焼させる運転(以下、「水素運転」と称する場合もある。)を行う。なお、本実施例に係る水素運転では、後述するように内燃機関1から排出されるNOx量が略ゼロになるように、前記水素燃料と吸入空気との混合気の空燃比が制御される。なお、本実施例においては、水素運転が本発明における第一運転に相当する。   The internal combustion engine 1 configured as described above includes hydrogen fuel that is injected into the intake port by the hydrogen fuel injection valve 3 and intake air that the internal combustion engine 1 sucks (hereinafter may be simply referred to as “intake air”). The operation of burning the air-fuel mixture in the combustion chamber of the internal combustion engine 1 (hereinafter also referred to as “hydrogen operation”) is performed. In the hydrogen operation according to this embodiment, the air-fuel ratio of the mixture of hydrogen fuel and intake air is controlled so that the amount of NOx discharged from the internal combustion engine 1 becomes substantially zero, as will be described later. In this embodiment, the hydrogen operation corresponds to the first operation in the present invention.

また、内燃機関1は、ガソリン噴射弁4によって気筒2内へ噴射されるガソリンと吸入空気との混合気を、内燃機関1の燃焼室内で燃焼させる運転(以下、「ガソリン運転」と称する場合もある。)を行うこともできる。なお、本実施例においては、ガソリン運転が本発明における第二運転に相当する。   Further, the internal combustion engine 1 is an operation in which a mixture of gasoline and intake air injected into the cylinder 2 by the gasoline injection valve 4 is combusted in the combustion chamber of the internal combustion engine 1 (hereinafter also referred to as “gasoline operation”). Yes.) In the present embodiment, the gasoline operation corresponds to the second operation in the present invention.

(運転制御)
本実施例に係る内燃機関1の制御装置では、ECU20が、内燃機関1の運転状態に応じて、水素運転またはガソリン運転を選択的に実行する。より詳しくは、ECU20は、内燃機関1の機関回転速度および機関負荷に基づいて、水素運転を行うかガソリン運転を行うかを判別し、内燃機関1の運転を制御する。なお、本実施例においては、ECU20が、内燃機関1の運転を制御することで、本発明に係る運転制御手段として機能する。
(Operation control)
In the control device for the internal combustion engine 1 according to the present embodiment, the ECU 20 selectively executes the hydrogen operation or the gasoline operation according to the operation state of the internal combustion engine 1. More specifically, the ECU 20 determines whether to perform a hydrogen operation or a gasoline operation based on the engine speed and engine load of the internal combustion engine 1 and controls the operation of the internal combustion engine 1. In the present embodiment, the ECU 20 functions as an operation control unit according to the present invention by controlling the operation of the internal combustion engine 1.

本実施例における内燃機関1の運転制御マップを図2に示す。図2に示すように、内燃機関1では、その運転状態が低負荷領域に属する場合には、水素運転が行われる。そして、本実施例に係る内燃機関1の制御装置は、当該水素運転の一つである、後述する「通常水素運転」において、水素燃料噴射弁3によって吸気ポートへ噴射される水素燃料と吸入空気との混合気の空燃比を理論空燃比より高い所定のリーン空燃比に制御する。更に、制御装置は、当該水素運転の一つである、後述する「触媒昇温水素運転」において、前記空燃比を前記所定のリーン空燃比よりもリッチ空燃比に制御する。そして、「通常水素運転」および「触媒昇温水素運転」では、内燃機関1から排出されるNOx量が略ゼロになっている。すなわち、図2に示す水素運転が行われる運転領域は、内燃機関1から排出され
るNOx量が略ゼロになる領域として設定される。また、図2に示すように、内燃機関1の運転状態が高負荷領域に属する場合には、ガソリン運転が行われる。
An operation control map of the internal combustion engine 1 in this embodiment is shown in FIG. As shown in FIG. 2, in the internal combustion engine 1, when the operating state belongs to the low load region, the hydrogen operation is performed. The control apparatus for the internal combustion engine 1 according to the present embodiment uses hydrogen fuel and intake air that are injected into the intake port by the hydrogen fuel injection valve 3 in “normal hydrogen operation” to be described later, which is one of the hydrogen operations. The air / fuel ratio of the air / fuel mixture is controlled to a predetermined lean air / fuel ratio higher than the stoichiometric air / fuel ratio. Further, the control device controls the air-fuel ratio to be richer than the predetermined lean air-fuel ratio in “catalyst-temperature-raising hydrogen operation” described later, which is one of the hydrogen operations. In the “normal hydrogen operation” and the “catalyst temperature rising hydrogen operation”, the amount of NOx discharged from the internal combustion engine 1 is substantially zero. That is, the operation region where the hydrogen operation shown in FIG. 2 is performed is set as a region where the amount of NOx discharged from the internal combustion engine 1 is substantially zero. Further, as shown in FIG. 2, when the operation state of the internal combustion engine 1 belongs to the high load region, the gasoline operation is performed.

ここで、内燃機関1が水素運転を行っているときの、空気過剰率に対する排気温度、NOx排出量、および熱効率の相関について図3に示す。図3に示すように、空気過剰率が大きくなるのに応じて排気温度が低くなる。また、空気過剰率が所定値よりも小さいときには空気過剰率が大きくなるのに応じてNOx排出量が少なくなり、空気過剰率が所定値以上のときにはNOx排出量は略ゼロになる。また、空気過剰率が大きくなるのに応じて熱効率が高くなり、空気過剰率の単位増加量当たりの熱効率の増加量を変化率としたとき、該変化率は空気過剰率が大きくなるのに応じて小さくなる。そして、内燃機関1が行う通常の水素運転(以下、単に「通常水素運転」と称する場合もある。)においては、図3に示すように、熱効率が可及的に高くなる空気過剰率で内燃機関1の運転が行われる。このときの空気過剰率に対応する空燃比が、通常水素運転における上記所定のリーン空燃比である。そして、このときのNOx排出量は略ゼロになっている。なお、本実施例においては、ECU20が、前記水素燃料と前記吸入空気との混合気の空燃比が上記所定のリーン空燃比に制御される通常水素運転を行うことで、本発明に係る通常水素運転手段として機能する。   Here, FIG. 3 shows the correlation between the exhaust temperature, the NOx emission amount, and the thermal efficiency with respect to the excess air ratio when the internal combustion engine 1 is operating with hydrogen. As shown in FIG. 3, the exhaust temperature decreases as the excess air ratio increases. Further, when the excess air ratio is smaller than a predetermined value, the NOx emission amount decreases as the excess air ratio increases, and when the excess air ratio is equal to or greater than the predetermined value, the NOx emission amount becomes substantially zero. In addition, the thermal efficiency increases as the excess air ratio increases, and when the increase rate of the thermal efficiency per unit increase of the excess air ratio is defined as the change rate, the change rate corresponds to the increase of the excess air ratio. Become smaller. In the normal hydrogen operation performed by the internal combustion engine 1 (hereinafter sometimes simply referred to as “normal hydrogen operation”), as shown in FIG. 3, the internal combustion engine is operated with an excess air ratio at which the thermal efficiency becomes as high as possible. The engine 1 is operated. The air-fuel ratio corresponding to the excess air ratio at this time is the predetermined lean air-fuel ratio in normal hydrogen operation. At this time, the NOx emission amount is substantially zero. In this embodiment, the ECU 20 performs the normal hydrogen operation in which the air-fuel ratio of the mixture of the hydrogen fuel and the intake air is controlled to the predetermined lean air-fuel ratio, so that the normal hydrogen according to the present invention is obtained. It functions as a driving means.

(触媒昇温制御)
上述したように、本実施例に係る内燃機関1の制御装置では、ECU20が、内燃機関1の運転状態に応じて、水素運転またはガソリン運転を選択的に実行する。そして、内燃機関1が水素運転を行っているときは、内燃機関1から排出されるNOx量が略ゼロになっている。また、本実施例における水素運転では、HCやCOが内燃機関1から排出されることはない。したがって、水素運転時には、排気浄化触媒70によって排気を浄化する必要はない。一方、内燃機関1がガソリン運転を行っているときは、従来のガソリン機関と同様にHC、CO、およびNOxが内燃機関1から排出されるため、これらを排気浄化触媒70によって浄化する必要がある。そして、内燃機関1の機関始動時や通常水素運転時には、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合がある。したがって、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低い場合には、ガソリン運転によって排出されるHC、CO、およびNOxを浄化するために、排気浄化触媒70を昇温させる制御(以下、「触媒昇温制御」と称する場合もある。)を行う必要がある。
(Catalyst temperature rise control)
As described above, in the control device for the internal combustion engine 1 according to the present embodiment, the ECU 20 selectively executes the hydrogen operation or the gasoline operation according to the operation state of the internal combustion engine 1. When the internal combustion engine 1 is operating with hydrogen, the amount of NOx discharged from the internal combustion engine 1 is substantially zero. Further, in the hydrogen operation in this embodiment, HC and CO are not discharged from the internal combustion engine 1. Therefore, it is not necessary to purify the exhaust by the exhaust purification catalyst 70 during the hydrogen operation. On the other hand, when the internal combustion engine 1 is in gasoline operation, HC, CO, and NOx are discharged from the internal combustion engine 1 as in the conventional gasoline engine. . In some cases, the temperature of the exhaust purification catalyst 70 is lower than the activation temperature of the exhaust purification catalyst 70 when the internal combustion engine 1 is started or during normal hydrogen operation. Therefore, when the temperature of the exhaust purification catalyst 70 is lower than the activation temperature of the exhaust purification catalyst 70, the temperature of the exhaust purification catalyst 70 is raised in order to purify HC, CO, and NOx discharged by the gasoline operation. It is necessary to perform control (hereinafter also referred to as “catalyst temperature rise control”).

従来技術では、内燃機関の機関始動時のエミッション低減のために、燃料と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させ、排気浄化触媒を昇温させることが行われているが、この場合には一般的に燃費が悪化してしまう。   In the prior art, the air-fuel ratio of the mixture of fuel and intake air of the internal combustion engine is set to a rich air-fuel ratio lower than the stoichiometric air-fuel ratio in order to reduce emissions at the time of engine start of the internal combustion engine. The temperature of the exhaust gas purification catalyst is raised, and in this case, the fuel efficiency is generally deteriorated.

また、本実施例に係る通常水素運転では、上述したように排気温度が低くなる。そして、通常水素運転時のNOx排出量が略ゼロになることからもわかるように、通常水素運転時の排気温度はガソリン運転時の排気温度よりも低くなる。従って、本実施例に係る通常水素運転時には、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合があり得る。   Further, in the normal hydrogen operation according to the present embodiment, the exhaust temperature is lowered as described above. As can be seen from the fact that the NOx emission amount during normal hydrogen operation becomes substantially zero, the exhaust temperature during normal hydrogen operation is lower than the exhaust temperature during gasoline operation. Therefore, during normal hydrogen operation according to the present embodiment, the temperature of the exhaust purification catalyst 70 may be lower than the activation temperature of the exhaust purification catalyst 70.

ここで、本実施例に係る内燃機関1においても、ガソリン運転によるHC、CO、およびNOxの排出に備えて、水素運転が行われているときに、例えば、水素燃料と吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させることにより排気浄化触媒70を昇温させることは可能である。しかしながら、排気浄化触媒70によって排気を浄化する必要がない水素運転時において、ガソリン運転によるHC、CO、およびNOxの排出に備えて排気浄化触媒70を昇温させておくことは、内
燃機関1の燃費の悪化をもたらす。そこで、本発明の発明者は、内燃機関1の機関始動時から現在までの運転履歴に基づいて水素運転時の触媒昇温制御を行うことによって、触媒昇温制御に起因する内燃機関1の燃費の悪化を抑制できることを見出した。
Here, also in the internal combustion engine 1 according to the present embodiment, when the hydrogen operation is performed in preparation for the discharge of HC, CO, and NOx by the gasoline operation, for example, an air-fuel mixture of hydrogen fuel and intake air It is possible to raise the temperature of the exhaust purification catalyst 70 by burning the air-fuel mixture in the combustion chamber with a rich air-fuel ratio lower than the stoichiometric air-fuel ratio. However, during the hydrogen operation in which it is not necessary to purify the exhaust gas by the exhaust purification catalyst 70, it is important to raise the temperature of the exhaust purification catalyst 70 in preparation for the discharge of HC, CO, and NOx by the gasoline operation. Deterioration of fuel consumption is brought about. Therefore, the inventor of the present invention performs the catalyst temperature increase control during the hydrogen operation based on the operation history from the start of the engine of the internal combustion engine 1 to the present time, so that the fuel consumption of the internal combustion engine 1 resulting from the catalyst temperature increase control is achieved. It has been found that the deterioration of can be suppressed.

本実施例に係る内燃機関1の制御装置では、内燃機関1の機関始動が水素運転によって行われる。そして、内燃機関1が水素運転を行っているときに、ECU20によって機関始動時から現在までにガソリン運転が行われているか否かが判別され、すでにガソリン運転が行われていると判別される場合には、現在から先の期間においても再びガソリン運転が行われるとみなして、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低いときに、排気浄化触媒70を昇温させる。   In the control device for the internal combustion engine 1 according to this embodiment, the engine start of the internal combustion engine 1 is performed by hydrogen operation. When the internal combustion engine 1 is performing a hydrogen operation, the ECU 20 determines whether or not the gasoline operation has been performed from the start of the engine to the present, and it is determined that the gasoline operation has already been performed. Therefore, it is assumed that the gasoline operation is performed again in the period from now on, and when the temperature of the exhaust purification catalyst 70 is lower than the activation temperature of the exhaust purification catalyst 70, the temperature of the exhaust purification catalyst 70 is raised. .

詳しくは、内燃機関1の機関始動時から現在までにガソリン運転が行われていない場合には、水素運転時において、触媒温度にかかわらず排気浄化触媒70を昇温させない。一方で、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、その後の水素運転時においては所定の条件(例えば、触媒温度が所定温度よりも低くなっている場合)に該当するときに、排気浄化触媒70を昇温させる。これは、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、現在の内燃機関1の運転が水素運転であったとしても、現在から先の期間においては再びガソリン運転が行われるとみなして、水素運転時にガソリン運転によるHC、CO、およびNOxの排出に備えるものである。   Specifically, when the gasoline operation is not performed from the start of the internal combustion engine 1 to the present time, the temperature of the exhaust purification catalyst 70 is not raised during the hydrogen operation regardless of the catalyst temperature. On the other hand, when the gasoline operation is performed from the start of the engine of the internal combustion engine 1 to the present, a predetermined condition (for example, when the catalyst temperature is lower than the predetermined temperature) during the subsequent hydrogen operation ), The temperature of the exhaust purification catalyst 70 is raised. This is because, when the gasoline operation is performed from the start of the engine of the internal combustion engine 1 to the present time, even if the current operation of the internal combustion engine 1 is the hydrogen operation, the gasoline operation is again performed in the previous period from the present time. It is assumed that the operation is performed, and prepares for the discharge of HC, CO, and NOx by the gasoline operation during the hydrogen operation.

なお、内燃機関1の機関始動時から現在までの運転履歴に基づいて排気浄化触媒70を昇温させない場合であっても、上述したように、水素運転時にはHC、CO、およびNOxが内燃機関1から排出されることはないため、排気浄化触媒70が活性化していなくても問題はない。   Even when the temperature of the exhaust purification catalyst 70 is not raised based on the operation history from the start of the engine of the internal combustion engine 1 to the present time, as described above, HC, CO, and NOx are in the internal combustion engine 1 during the hydrogen operation. There is no problem even if the exhaust purification catalyst 70 is not activated.

また、本実施例では、上述したように、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、水素運転時に所定の条件に該当するときに、排気浄化触媒70を昇温させるための水素運転(以下、「触媒昇温水素運転」と称する場合もある。)が行われる。ここで、前記所定の条件とは、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合である。排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっているか否かは、温度センサ71の出力値に基づいて推定される上述の触媒温度が所定温度よりも低くなっているか否かによって判別することができる。または、内燃機関1を冷却する冷却水の温度(以下、単に「冷却水温」と称する場合もある。)が所定水温よりも低くなっているか否かによって判別することができる。すなわち、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合であって、且つ排気浄化触媒70が所定の排気浄化能力を発揮できる程度に排気浄化触媒70が昇温されていないと推定される場合に、触媒昇温水素運転が行われる。なお、ECU20は、水温センサ23で冷却水温を検出する。   In the present embodiment, as described above, when the gasoline operation is performed from the start of the internal combustion engine 1 to the present time, when the predetermined condition is satisfied during the hydrogen operation, the exhaust purification catalyst 70 is obtained. A hydrogen operation for raising the temperature of the catalyst (hereinafter sometimes referred to as “catalyst temperature-raising hydrogen operation”) is performed. Here, the predetermined condition is when the temperature of the exhaust purification catalyst 70 is lower than the activation temperature of the exhaust purification catalyst 70. Whether or not the temperature of the exhaust purification catalyst 70 is lower than the activation temperature of the exhaust purification catalyst 70 depends on whether or not the above-mentioned catalyst temperature estimated based on the output value of the temperature sensor 71 is lower than a predetermined temperature. It can be determined by whether or not there is. Alternatively, the determination can be made based on whether or not the temperature of the cooling water for cooling the internal combustion engine 1 (hereinafter sometimes simply referred to as “cooling water temperature”) is lower than the predetermined water temperature. That is, the temperature of the exhaust purification catalyst 70 is raised to such an extent that the gasoline operation has been performed from the start of the engine of the internal combustion engine 1 to the present and the exhaust purification catalyst 70 can exhibit a predetermined exhaust purification capability. When it is estimated that there is no catalyst, the catalyst temperature increase hydrogen operation is performed. The ECU 20 detects the cooling water temperature with the water temperature sensor 23.

そして、触媒昇温水素運転では、水素燃料と吸入空気との混合気の空燃比を通常水素運転時の所定のリーン空燃比よりもリッチ空燃比にして該混合気を燃焼させる。さらに、触媒昇温水素運転では、点火時期の遅角化が行われる。その結果、排気温度が上昇し、排気浄化触媒70を昇温させることができる。なお、本実施例においては、ECU20が、前記混合気の空燃比が上記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行うことで、本発明に係る触媒昇温水素運転手段として機能する。   In the catalyst temperature rising hydrogen operation, the air-fuel ratio of the mixture of hydrogen fuel and intake air is made richer than the predetermined lean air-fuel ratio during normal hydrogen operation, and the air-fuel mixture is combusted. Further, in the catalyst temperature rising hydrogen operation, the ignition timing is retarded. As a result, the exhaust temperature rises and the exhaust purification catalyst 70 can be raised in temperature. In the present embodiment, the ECU 20 performs the catalyst temperature-raising hydrogen operation in which the air-fuel ratio of the air-fuel mixture is controlled to a rich air-fuel ratio rather than the predetermined lean air-fuel ratio. Functions as a hydrogen operation means.

ここで、通常水素運転と触媒昇温水素運転との比較を行う。図4は、通常水素運転と触媒昇温水素運転との比較を説明するための、空気過剰率に対する排気温度、NOx排出量、および熱効率の相関について示す図である。図4に示すように、触媒昇温水素運転時に
は、通常水素運転時よりも空気過剰率が小さくなっている。そして、触媒昇温水素運転時の排気温度は、通常水素運転時の排気温度よりも高くなる。これは、上述した空気過剰率の減少および点火時期の遅角化の影響によるものである。このことにより、排気浄化触媒70の昇温が可能となる。また、触媒昇温水素運転時の熱効率は、通常水素運転時の熱効率よりも低くなる。これは、触媒昇温水素運転によって燃費が悪化することを意味している。そして、触媒昇温水素運転時には、通常水素運転時と同様にNOx排出量が略ゼロになっている。このように、触媒昇温水素運転では、内燃機関1から排出されるNOx量が略ゼロになるとともに排気温度が可及的に高くなる空気過剰率で内燃機関1の運転が行われる。
Here, a comparison between the normal hydrogen operation and the catalyst temperature rising hydrogen operation is performed. FIG. 4 is a diagram showing the correlation between the exhaust temperature, the NOx emission amount, and the thermal efficiency with respect to the excess air ratio, for explaining the comparison between the normal hydrogen operation and the catalyst temperature rising hydrogen operation. As shown in FIG. 4, the excess air ratio is smaller in the catalyst temperature rising hydrogen operation than in the normal hydrogen operation. And the exhaust temperature at the time of catalyst temperature rising hydrogen operation becomes higher than the exhaust temperature at the time of normal hydrogen operation. This is due to the influence of the reduction in the excess air ratio and the retarded ignition timing. As a result, the temperature of the exhaust purification catalyst 70 can be raised. In addition, the thermal efficiency during the catalyst temperature rising hydrogen operation is lower than the thermal efficiency during the normal hydrogen operation. This means that the fuel consumption deteriorates due to the catalyst temperature rising hydrogen operation. During the catalyst temperature increase hydrogen operation, the NOx emission amount is substantially zero as in the normal hydrogen operation. Thus, in the catalyst temperature rising hydrogen operation, the operation of the internal combustion engine 1 is performed at an excess air ratio at which the amount of NOx discharged from the internal combustion engine 1 becomes substantially zero and the exhaust temperature becomes as high as possible.

以上に述べたように、本実施例に係る内燃機関1の制御装置では、内燃機関1の運転要求が水素運転領域にある場合に、内燃機関1の機関始動時から現在までにガソリン運転が行われていないと判別されるときには、通常水素運転時よりも熱効率が低下する触媒昇温水素運転が行われることはなく、触媒温度にかかわらず通常水素運転が行われる。そして、内燃機関1の機関始動時から現在までにガソリン運転が行われていると判別されるときには、現在から先の期間においては再びガソリン運転が行われるとみなして、所定の条件で触媒昇温水素運転が行われる。そして、このように触媒昇温制御が実行されることによって、燃費の悪化を抑制しつつ排気浄化触媒70を昇温させることができる。   As described above, in the control apparatus for the internal combustion engine 1 according to the present embodiment, when the operation request for the internal combustion engine 1 is in the hydrogen operation region, the gasoline operation is performed from the start of the engine of the internal combustion engine 1 to the present. When it is determined that the temperature is not low, the catalyst temperature-raising hydrogen operation, in which the thermal efficiency is lower than that in the normal hydrogen operation, is not performed, and the normal hydrogen operation is performed regardless of the catalyst temperature. When it is determined that the gasoline operation has been performed from the time when the internal combustion engine 1 is started to the present, it is assumed that the gasoline operation is performed again from the present to the previous period, and the temperature of the catalyst is increased under a predetermined condition. Hydrogen operation is performed. By performing the catalyst temperature increase control in this manner, the exhaust purification catalyst 70 can be increased in temperature while suppressing deterioration in fuel consumption.

(触媒昇温制御フロー)
本実施例に係る内燃機関1の制御装置における、触媒昇温制御フローについて図5に基づいて説明する。図5は、本実施例に係る内燃機関1の制御装置における、触媒昇温制御フローを示すフローチャートである。本実施例では、ECU20によって、本フローが内燃機関1の機関始動時から機関停止時までの期間に所定の演算周期で繰り返し実行される。なお、上述したように、内燃機関1の機関始動は水素運転によって行われる。また、内燃機関1の機関始動時において、後述する運転履歴判定フラグNflgmおよび触媒昇温水素運転判定フラグNflgmhが0に初期化される。
(Catalyst temperature rise control flow)
A catalyst temperature increase control flow in the control apparatus for the internal combustion engine 1 according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing a catalyst temperature increase control flow in the control apparatus for the internal combustion engine 1 according to this embodiment. In the present embodiment, this flow is repeatedly executed by the ECU 20 at a predetermined calculation cycle during a period from when the internal combustion engine 1 is started to when the engine is stopped. As described above, the engine start of the internal combustion engine 1 is performed by hydrogen operation. Further, when the internal combustion engine 1 is started, an operation history determination flag Nflgm and a catalyst temperature increase hydrogen operation determination flag Nflgm described later are initialized to zero.

本フローでは、先ず、S101において、ECU20がアクセルポジションセンサ22の出力信号等に基づいて内燃機関1の運転要求を導出し、該運転要求が水素運転領域にあるか否かが判別される。ECU20のROMには、上述した図2に示すような運転制御マップが予め記憶されている。なお、上述したように、水素運転領域は、内燃機関1から排出されるNOx量が略ゼロになる領域として設定されている。S101では、このマップまたは該マップに基づく関数を用いて前記運転要求が水素運転領域にあるか否かが判別される。S101において肯定判定された場合、ECU20はS102の処理へ進み、S101において否定判定された場合、ECU20はS108の処理へ進む。   In this flow, first, in S101, the ECU 20 derives an operation request for the internal combustion engine 1 based on the output signal of the accelerator position sensor 22, and it is determined whether or not the operation request is in the hydrogen operation region. The operation control map as shown in FIG. 2 described above is stored in advance in the ROM of the ECU 20. As described above, the hydrogen operation region is set as a region where the amount of NOx discharged from the internal combustion engine 1 is substantially zero. In S101, it is determined whether or not the operation request is in the hydrogen operation region using this map or a function based on the map. If an affirmative determination is made in S101, the ECU 20 proceeds to the process of S102, and if a negative determination is made in S101, the ECU 20 proceeds to the process of S108.

S101において肯定判定された場合、次に、S102において、触媒昇温水素運転判定フラグNflgmhが0であるか否かが判別される。触媒昇温水素運転判定フラグNflgmhは、後述するように運転履歴判定フラグNflgmが1であると判別されるときに1に設定される。本フローでは、水素運転が要求される場合であって、触媒昇温水素運転判定フラグNflgmhが1で且つ後述する所定の条件に該当する場合に、触媒昇温水素運転が実行される。S102において肯定判定された場合、ECU20はS103の処理へ進み、S102において否定判定された場合、ECU20はS105の処理へ進む。   If an affirmative determination is made in S101, it is then determined in S102 whether or not a catalyst temperature increase hydrogen operation determination flag Nflgmh is zero. The catalyst temperature increase hydrogen operation determination flag Nflgm is set to 1 when it is determined that the operation history determination flag Nflgm is 1, as will be described later. In this flow, when the hydrogen operation is required and the catalyst temperature increase hydrogen operation determination flag Nflgm is 1 and a predetermined condition described later is satisfied, the catalyst temperature increase hydrogen operation is executed. If an affirmative determination is made in S102, the ECU 20 proceeds to the process of S103, and if a negative determination is made in S102, the ECU 20 proceeds to the process of S105.

S102において肯定判定された場合、次に、S103において、運転履歴判定フラグNflgmが1であるか否かが判別される。運転履歴判定フラグNflgmは、後述するように内燃機関1の運転要求がガソリン運転領域にあると判別されると1に設定される。ここで、運転履歴判定フラグNflgmが0である場合、すなわち、内燃機関1の機関始動時から現在までにガソリン運転が行われていないと判別される場合には、ECU20は
水素運転時に排気浄化触媒70を昇温させる制御を実行しない。S103において肯定判定された場合、ECU20はS104の処理へ進み、S103において否定判定された場合、ECU20はS107の処理へ進む。
If an affirmative determination is made in S102, it is then determined in S103 whether or not the driving history determination flag Nflgm is 1. The operation history determination flag Nflgm is set to 1 when it is determined that the operation request of the internal combustion engine 1 is in the gasoline operation region, as will be described later. Here, when the operation history determination flag Nflgm is 0, that is, when it is determined that the gasoline operation has not been performed from the start of the internal combustion engine 1 to the present, the ECU 20 performs the exhaust purification catalyst during the hydrogen operation. Control to raise the temperature of 70 is not executed. If an affirmative determination is made in S103, the ECU 20 proceeds to the process of S104, and if a negative determination is made in S103, the ECU 20 proceeds to the process of S107.

S103において肯定判定された場合、次に、S104において、触媒昇温水素運転判定フラグNflgmhが1に設定される。ここで、S104の処理が行われる場合は、内燃機関1の機関始動後に行われた一回目のガソリン運転の後に水素運転が要求される場合であり、換言すれば、水素運転が要求されたときに、機関始動後に既にガソリン運転が行われた場合である。そして、S104において触媒昇温水素運転判定フラグNflgmhが1に設定されると、内燃機関1の機関停止まで該フラグの値が維持される。触媒昇温水素運転判定フラグNflgmhが一度1に設定されると、後述する所定の条件に該当する場合に、触媒昇温水素運転が実行される。   If an affirmative determination is made in S103, then in S104, the catalyst temperature increase hydrogen operation determination flag Nflgh is set to 1. Here, the process of S104 is performed when the hydrogen operation is requested after the first gasoline operation performed after the engine start of the internal combustion engine 1, in other words, when the hydrogen operation is requested. In addition, the gasoline operation has already been performed after the engine is started. When the catalyst temperature increase hydrogen operation determination flag Nflgmh is set to 1 in S104, the value of the flag is maintained until the internal combustion engine 1 is stopped. When the catalyst temperature increase hydrogen operation determination flag Nflgmh is once set to 1, the catalyst temperature increase hydrogen operation is executed when a predetermined condition described later is satisfied.

次に、S105において、触媒温度Tbが判定閾値Tbthよりも小さいか否かが判別される。この判定閾値Tbthは、排気浄化触媒70が所定の排気浄化能力を発揮できる触媒温度として、ECU20のROMに予め記憶されている。また、S105では、上述したように、冷却水温が所定水温よりも低くなっている否かを判別してもよい。S105において肯定判定された場合、ECU20はS106の処理へ進み、S105において否定判定された場合、ECU20はS107の処理へ進む。   Next, in S105, it is determined whether or not the catalyst temperature Tb is lower than a determination threshold value Tbth. The determination threshold value Tbth is stored in advance in the ROM of the ECU 20 as a catalyst temperature at which the exhaust purification catalyst 70 can exhibit a predetermined exhaust purification capability. In S105, as described above, it may be determined whether or not the cooling water temperature is lower than the predetermined water temperature. If an affirmative determination is made in S105, the ECU 20 proceeds to the process of S106, and if a negative determination is made in S105, the ECU 20 proceeds to the process of S107.

S105において肯定判定された場合、次に、S106において、触媒昇温水素運転が実行される。一方、S105において否定判定された場合またはS103において否定判定された場合、次に、S107において、通常水素運転が実行される。S106では、ECU20が、水素燃料と吸入空気との混合気の空燃比を、上述した図4に示すような空気過剰率に対応する空燃比に制御する。すなわち、前記空燃比を、通常水素運転時の所定のリーン空燃比よりもリッチ空燃比であって内燃機関1から排出されるNOx量が略ゼロになるとともに排気温度が可及的に高くなる空燃比に制御する。そして、このときには、点火時期の遅角化が行われている。また、S107では、ECU20が、水素燃料と吸入空気との混合気の空燃比を、上述した図3に示すような空気過剰率に対応する空燃比に制御する。すなわち、前記空燃比を、前記所定のリーン空燃比であって内燃機関1から排出されるNOx量が略ゼロになるとともに熱効率が可及的に高くなる空燃比に制御する。そして、S106の処理の後、またはS107の処理の後、本フローの実行が終了される。   If an affirmative determination is made in S105, then a catalyst temperature increase hydrogen operation is executed in S106. On the other hand, if a negative determination is made in S105 or a negative determination is made in S103, then a normal hydrogen operation is performed in S107. In S106, the ECU 20 controls the air-fuel ratio of the mixture of hydrogen fuel and intake air to an air-fuel ratio corresponding to the excess air ratio as shown in FIG. That is, the air-fuel ratio is richer than a predetermined lean air-fuel ratio during normal hydrogen operation, the amount of NOx discharged from the internal combustion engine 1 becomes substantially zero, and the exhaust temperature becomes as high as possible. Control to fuel ratio. At this time, the ignition timing is retarded. In S107, the ECU 20 controls the air-fuel ratio of the mixture of hydrogen fuel and intake air to an air-fuel ratio corresponding to the excess air ratio as shown in FIG. That is, the air-fuel ratio is controlled to an air-fuel ratio at which the predetermined lean air-fuel ratio is reached and the NOx amount discharged from the internal combustion engine 1 becomes substantially zero and the thermal efficiency becomes as high as possible. Then, after the process of S106 or after the process of S107, the execution of this flow is terminated.

また、S101において否定判定された場合、すなわち、内燃機関1の運転要求がガソリン運転領域にあると判別される場合には、次に、S108において、運転履歴判定フラグNflgmが1に設定される。そして、S109において、触媒温度Tbが判定閾値Tbthよりも小さいか否かが判別される。このS109の処理は、上述したS105の処理と実質的に同一である。S109において肯定判定された場合、ECU20はS110の処理へ進み、S109において否定判定された場合、ECU20はS111の処理へ進む。   When a negative determination is made in S101, that is, when it is determined that the operation request of the internal combustion engine 1 is in the gasoline operation region, the operation history determination flag Nflgm is set to 1 in S108. In S109, it is determined whether or not the catalyst temperature Tb is smaller than the determination threshold value Tbth. The process of S109 is substantially the same as the process of S105 described above. If an affirmative determination is made in S109, the ECU 20 proceeds to the process of S110, and if a negative determination is made in S109, the ECU 20 proceeds to the process of S111.

S109において肯定判定された場合、次に、S110において、触媒昇温ガソリン運転が実行される。ここで、触媒昇温ガソリン運転とは、排気浄化触媒70を昇温させるためのガソリン運転のことであり、通常のガソリン運転時よりも空燃比がリッチ側の空燃比に設定され、且つ点火時期の遅角化が行われる。一方、S109において否定判定された場合、次に、S111において、通常ガソリン運転が実行される。ここで、通常ガソリン運転とは、内燃機関1が行う通常のガソリン運転のことをいう。そして、S110の処理の後、またはS111の処理の後、本フローの実行が終了される。   If an affirmative determination is made in S109, then a catalyst temperature rising gasoline operation is executed in S110. Here, the catalyst temperature rising gasoline operation is a gasoline operation for raising the temperature of the exhaust purification catalyst 70, and the air-fuel ratio is set to a richer air-fuel ratio than during normal gasoline operation, and the ignition timing is set. Is retarded. On the other hand, if a negative determination is made in S109, then a normal gasoline operation is executed in S111. Here, the normal gasoline operation refers to a normal gasoline operation performed by the internal combustion engine 1. Then, after the process of S110 or the process of S111, the execution of this flow is terminated.

本実施例によれば、触媒昇温制御が上述したフローに基づいて実行されることによって
、燃費の悪化を抑制しつつ排気浄化触媒70を昇温させることができる。
According to the present embodiment, the catalyst temperature raising control is executed based on the above-described flow, whereby the temperature of the exhaust purification catalyst 70 can be raised while suppressing deterioration of fuel consumption.

1・・・内燃機関
3・・・水素燃料噴射弁
4・・・ガソリン噴射弁
5・・・点火プラグ
6・・・吸気通路
7・・・排気通路
10・・スロットル弁
20・・ECU
23・・水温センサ
24・・エアフローメータ
70・・排気浄化触媒
71・・温度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 3 ... Hydrogen fuel injection valve 4 ... Gasoline injection valve 5 ... Spark plug 6 ... Intake passage 7 ... Exhaust passage 10 ... throttle valve 20 ... ECU
23..Water temperature sensor 24..Air flow meter 70..Exhaust gas purification catalyst 71..Temperature sensor

Claims (1)

内燃機関の排気通路に設けられた排気浄化触媒と、水素燃料を噴射可能な第一噴射弁と、ガソリンを噴射可能な第二噴射弁と、を有する前記内燃機関の制御装置であって、
前記内燃機関の運転状態に応じて、前記第一噴射弁によって噴射される前記水素燃料と前記内燃機関が吸入する吸入空気との混合気を燃焼させる第一運転、又は前記第二噴射弁によって噴射される前記ガソリンと前記内燃機関が吸入する吸入空気との混合気を燃焼させる第二運転を選択的に実行する運転制御手段と、
前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が理論空燃比より高い所定のリーン空燃比に制御される通常水素運転を行う通常水素運転手段と、
前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が前記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行う触媒昇温水素運転手段と、を備え、
前記運転制御手段によって前記第一運転が実行される場合であり、且つ前記排気浄化触媒の温度が該排気浄化触媒の活性化温度よりも低い場合において、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われた場合には、前記触媒昇温水素運転手段によって前記触媒昇温水素運転が行われ、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われていない場合には、前記通常水素運転手段によって前記通常水素運転が行われる内燃機関の制御装置。
A control device for an internal combustion engine, comprising: an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine; a first injection valve capable of injecting hydrogen fuel; and a second injection valve capable of injecting gasoline,
Depending on the operating state of the internal combustion engine, the first operation for burning the mixture of the hydrogen fuel injected by the first injection valve and the intake air sucked by the internal combustion engine, or the second injection valve Operation control means for selectively executing a second operation for burning an air-fuel mixture of the gasoline and the intake air taken in by the internal combustion engine;
Normal hydrogen operation means for performing normal hydrogen operation in which the air-fuel ratio of the mixture of the hydrogen fuel and the intake air is controlled to a predetermined lean air-fuel ratio higher than the stoichiometric air-fuel ratio in the first operation;
In the first operation, a catalyst temperature increase hydrogen operation means for performing a catalyst temperature increase hydrogen operation in which an air fuel ratio of the mixture of the hydrogen fuel and the intake air is controlled to be a rich air fuel ratio rather than the predetermined lean air fuel ratio; With
In the case where the first operation is executed by the operation control means and the temperature of the exhaust purification catalyst is lower than the activation temperature of the exhaust purification catalyst, from the start of the internal combustion engine to the present When the second operation is performed by the operation control means, the catalyst temperature increase hydrogen operation is performed by the catalyst temperature increase hydrogen operation means, and the operation control means is from the start of the internal combustion engine to the present. When the second operation is not performed, the control device for an internal combustion engine in which the normal hydrogen operation is performed by the normal hydrogen operation means.
JP2016040208A 2016-03-02 2016-03-02 Control device of internal combustion engine Pending JP2017155662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040208A JP2017155662A (en) 2016-03-02 2016-03-02 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040208A JP2017155662A (en) 2016-03-02 2016-03-02 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017155662A true JP2017155662A (en) 2017-09-07

Family

ID=59809353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040208A Pending JP2017155662A (en) 2016-03-02 2016-03-02 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017155662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678864A (en) * 2018-05-09 2018-10-19 北京工业大学 It is a kind of to start emission reduction for hydrogen engine and put and the control method of rate of consumption of hydrogen
CN114961942A (en) * 2022-06-14 2022-08-30 潍柴动力股份有限公司 Method and device for reducing methane emission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678864A (en) * 2018-05-09 2018-10-19 北京工业大学 It is a kind of to start emission reduction for hydrogen engine and put and the control method of rate of consumption of hydrogen
CN108678864B (en) * 2018-05-09 2020-06-16 北京工业大学 Control method for reducing emission and hydrogen consumption rate during starting of hydrogen engine
CN114961942A (en) * 2022-06-14 2022-08-30 潍柴动力股份有限公司 Method and device for reducing methane emission
CN114961942B (en) * 2022-06-14 2024-04-16 潍柴动力股份有限公司 Method and device for reducing methane emission

Similar Documents

Publication Publication Date Title
JP4306642B2 (en) Internal combustion engine control system
JP5729467B2 (en) Control device and method for internal combustion engine
US9932916B2 (en) Combustion control apparatus for internal combustion engine
JP5772025B2 (en) Control device for internal combustion engine
JP4474435B2 (en) Control device for internal combustion engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JPWO2014167649A1 (en) Control device for internal combustion engine
JP2009185628A (en) Fuel injection control system for internal combustion engine
JP4175385B2 (en) Internal combustion engine exhaust purification catalyst warm-up system
JP2008019729A (en) Control device of cylinder injection type engine
JP2014047654A (en) Control device for internal combustion engine
JP2009191649A (en) Control device of internal combustion engine
JP2017155662A (en) Control device of internal combustion engine
JP5556956B2 (en) Control device and method for internal combustion engine
JP2009156045A (en) Fuel injection control device of engine
JP4840240B2 (en) Internal combustion engine control system
JP2006002683A (en) Control device for internal combustion engine
JP2008267294A (en) Control system of internal combustion engine
JP2015121182A (en) Control device of engine
JP2011236802A (en) Internal combustion engine control apparatus
JP2010168931A (en) Ignition timing control device for spark ignition type internal combustion engine
JP2016125448A (en) Control device for internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP2014134144A (en) Internal combustion engine fuel injection system
JP2008232095A (en) Control device for internal combustion engine