JPH01273856A - Air quantity detecting device for internal combustion engine - Google Patents

Air quantity detecting device for internal combustion engine

Info

Publication number
JPH01273856A
JPH01273856A JP10509288A JP10509288A JPH01273856A JP H01273856 A JPH01273856 A JP H01273856A JP 10509288 A JP10509288 A JP 10509288A JP 10509288 A JP10509288 A JP 10509288A JP H01273856 A JPH01273856 A JP H01273856A
Authority
JP
Japan
Prior art keywords
intake air
smoothing
air quantity
opening degree
smoothing coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10509288A
Other languages
Japanese (ja)
Other versions
JP2550145B2 (en
Inventor
Toyoaki Nakagawa
豊昭 中川
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63105092A priority Critical patent/JP2550145B2/en
Priority to US07/343,204 priority patent/US4949694A/en
Priority to EP89107545A priority patent/EP0339603B1/en
Priority to DE8989107545T priority patent/DE68900704D1/en
Publication of JPH01273856A publication Critical patent/JPH01273856A/en
Application granted granted Critical
Publication of JP2550145B2 publication Critical patent/JP2550145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To suppress the pulsation of the intake quantity detection value, securing the responsiveness in transition, by calculating the smoothing coefficient for smoothing the intake air quantity from the parameters including at least a throttle valve opening degree and correcting the output of an intake quantity detecting means according to the smoothing coefficient. CONSTITUTION:In an air quantity detecting device for detecting the intake air quantity of an engine which is an important control factor used in the ignition control, fuel injection control, idle speed control, etc., an intake air quantity detecting means (a) such as a hot wire type mass flow rate meter using a hot wire, etc. is installed. Further, an opening degree detecting means (b) for detecting the opening degree of a throttle valve is installed. Then, in a smoothing coefficient calculating means (c), the smoothing coefficient for smoothing the intake air quantity is calculated on the basis of the parameters including the throttle opening degree detected by the opening degree detecting means (b), and the output of the intake air quantity detecting means (a) is corrected by the smoothing means (d) according to the smoothing coefficient. Therefore, the intake air quantity free from pulsation can be detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野) 本発明は、自動車等内燃機関の燃焼制御の入力情報とし
て必要な吸入空気量を正確に検出する装置に関する。 (従来の技術) 近時、内燃機関およびその周辺装置の制御も電子化され
、より緻密な制御が可能となっている。 このような制御には内燃機関状態その他の各種データが
用いられ、吸入空気量(あるいは吸入負圧)もエンジン
負荷を示すものとして重要なデータの1つである。この
吸入空気量は、例えば点火制御、燃料噴射制御、アイド
ルスピードコントロール等を正確に行う上で重要な制御
因子となっている。 吸入空気量を測定する装置として、例えばホットワイヤ
やホットフィルム等を用いるいわゆる熱線型質量流量針
がある。この熱線型質量流量計は、吸入空気流の中に白
金熱線(ホットワイヤ)を置いて電流で加熱し、空気流
量に従ってホットワイヤが冷却されて抵抗値が変化する
とその電流の大きさの変化によって空気流量を測定する
ようにしている。ホットワイヤはブリッジの一辺として
組み込まれ、熱容量も小さいので応答性がよく、特に質
量流量が測定できるという特徴がある。また、吸入空気
流のなかに渦発生柱(造渦体)を置くと、その下流に非
対象で規則的な渦(カルマン渦)が発生する。この渦の
数が吸入空気量にほぼ比例することを利用して滴数の疎
密を電気信号(パルス)に変換して吸入空気量を検出す
るカルマンセンサもある。 ところで、上記ホットワイヤエアフローメータやカルマ
ンセンサは過渡時の応答性が高い反面、機関の吸入行程
に応じて発生する吸気の脈動流をも敏感に検知してしま
う。脈動により吸入空気量が太き(変動すると、吸入空
気量を基に演算される基本噴射量’rpが変動すること
になって空燃比のずれから運転性悪化(サージ等の発生
)や排気ガス浄化性能の低下を惹き起こす。このような
不具合を防ぐためにエアフローメータの出力を平均化す
るようにしたものもあるが、エアフローメータの出力を
常に平均化していることから、加減速時に測定値の応答
遅れが生じ、加速時の燃料不足による加速性能の悪化あ
るいは減速時の燃料過多による排気ガス中のHCSCo
の増加を招いていた。そこで、特開昭57−17521
7号公報に記載のものでは吸入空気量の平均値を求め、
吸入空気量が該平均値より所定レベル以上増大した場合
を加速時と判断して平均化回路の時定数を切り換え、過
渡時の応答遅れを防止するようにしている。また、エア
フローメータから燃焼室までのマニホールドボリューム
分により過渡時にエアフローメータの測定値がずれてし
まうことを防ぐために、吸入空気量を回転数との比を実
際の値より緩く変化させるようにして実際にエアフロー
メータが要求する空気量に応じた燃焼噴射量を噴射しよ
うとするものもある(特開昭61−294148号公報
参照)。 (発明が解決しようとする課題) しかしながら、このような従来の内燃機関の空気量検出
装置にあっては、エアフローメータによる吸入空気量そ
れ自体から過渡状態を判断する構成となっていたため、
過渡状態の判断に物理的意味はなくいわばなりゆきで解
決しようとするものであるから十分な脈動抑制効果が得
られないという問題点があった。 例えば、急加速後に絞弁開度TVOがW OT (Wi
de open throtle :全速量)時となっ
たときには第4図(B)に示すように大きな脈動が発生
する場合があるが、吸入空気量自体から加速を判定する
ものでは加速状態を直接検知してはいないことから加速
の程度に合わせた最適な時定数が設定されず、必要以上
に応答性が低下したり、同図(B)に示すような脈動が
残ったりすることがあった。その結果、近年のように運
転性の向上は勿論のこと排気エミッション特性の改善に
極めて高レベルの対応が要求される状況下ではより一層
の精度向上が不可欠であり過渡時の応答性を確保しつつ
、脈動の影響を適切に排除することのできる装置の出現
が望まれている。 (発明の目的) そこで本発明は、少なくとも絞弁開度を含むパラメータ
から吸入空気量を平滑するための平滑係数を演算し、該
平滑係数に応じて吸気量検出手段の出力を補正すること
により、過渡時の応答性を確保しつつ、定常時やWO2
時には脈動を適切に平滑して吸入空気量の検出精度を高
めるようにした内燃機関の空気量検出装置を提供するこ
とを目的としている。 (課題を解決するための手段) 本発明による内燃機関の空気量検出装置は上記目的達成
のため、エンジンの吸入空気量を検出する吸気量検出手
段aと、絞弁の開度を検出する開度検出手段すと、少な
くとも絞弁開度を含むパラメータに基づいて吸入空気量
を平滑するための平滑係数を演算する平滑係数演算手段
Cと、吸気量検出手段aの出力を前記平滑係数に応じて
補正する平滑手段dと、を備えている。 (作用) 本発明では、少なくとも絞弁開度を含むパラメータから
吸入空気量を平滑するための平滑係数が演算され、該平
滑係数に応じて吸気量検出手段の出力が補正される。し
たがって、過渡時の応答性が確保され、定常時やWO2
時には脈動が適切に平滑されて吸入空気量の検出精度が
向上する。 (実施例) 以下、本発明を図面に基づいて説明する。 第2〜4図は本発明に係る内燃機関の空気量検出装置の
一実施例を示す図であり、本実施例は本発明を燃料供給
制御装置に適用した例である。まず、構成を説明する。 第2図は本装置の全体構成を示す図である。第2図にお
いて、1はエンジンであり、吸入空気はエアクリーナ2
から吸気管3を通り、燃料は噴射信号Siに基づきイン
ジェクタ4から噴射される。そして、気筒内で燃焼した
排気は排気管5を通して触媒コンバータ6に導入され、
触媒コンバーダ6内で排気中の有害成分(Co、HC,
N0x)を三元触媒により清浄化して排出される。 吸入空気の流量Qaはホットワイヤ式のエアフローメー
タ(吸気量検出手段)7により検出され、吸気管3内の
絞弁8によって制御される。なお、エアフローメータ7
のタイプとしては、ホットフィルム式でもよく、要は吸
入空気の流量を測定するものであればよい。したがって
、フラップ弐のものでもよいが、負圧センサは除かれる
。 絞弁8の開度TVOは絞弁開度センサ(開度検出手段)
9により検出され、エンジン1の回転数Nはクランク角
センサ10により検出される。また、ウォータジャケッ
トを流れる冷却水の温度TWは水温センサ11により検
出され、排気中の酸素濃度は酸素センサ12により検出
される。酸素センサ12は理論空燃比でその出力Vsが
急変する特性をもつもの等が用いられる。さらに、エン
ジン1のアイドル状態はアイドルスイッチ13により検
出される。 上記エアフローメータ7、絞弁開度センサ9、クランク
角センサ10、水温センサ11は運転状態検出手段14
を構成しており、運転状態検出手段14、酸素センサ1
2およびアイドルスイッチ13からの出力はコントロー
ルユニット20に入力される。 コントロールユニット20は、平滑係数演算手段および
平滑手段としての機能を有し、CP U21、ROM2
2、RAM23およびI10ポート24により構成され
る。CPU21はROM22に書き込まれているプログ
ラムに従って110ポート24より必要とする外部デー
タを取り込んだり、またRAM23との間でデータの授
受を行ったりしながら平滑吸気量や空燃比制御に必要な
処理値を演算処理し、必要に応じて処理したデータをI
10ボート24へ出力する。I10ポート24にはセン
サ群7.14.12からの信号が入力されるととも、I
10ポート24からは噴射信号Stが出力される。RO
M22はCP U21における演算プログラムを格納し
ており、RAM23は演算に使用するデータをマツプ等
の形で記憶している。 次に、作用を説明する。 第3図はフラン)A/F修正基本パルス幅TrTpを演
算するプログラムを示すフローチャートであり、本プロ
グラムは、例えばlQm s毎に一度実行される。まず
、P、で次式■に従って平滑部基本パルス幅Tpoを演
算し、Tpoを加重平均して基本パルス幅Tpを演算す
る。これにより、エアフローメータ7の出力に基づく脈
動が平滑化される。 a Tpo=  −X K  ・・・・・・■但し、K:定
数 次いで、P2で現在のフラソI−A/F修正基本パルス
幅TrTpを所定のメモリTr T p −+o□にス
トアし、P3で次式■に従ってA/F修正基本パルス幅
TrTpを求める。 TrTp=TpXKflat  −0 0式において、KflatはフラットA/F修正補正係
数であり、回転数Nとα−N重量Qhoとにより割付け
られたマツプから補間計算付きで求める。 なお、α−N流量とは絞弁開度TVOと回転数Nから空
気流量を求めるものであり、既に公知のものである。次
いで、P4でのα−N流量Qh’oを算出し、PSでア
イドルスイッチの0N10FFを判別する。アイドルス
イッチ13がONのときはP、で脈動平滑指数NDに〔
1〕を代入(ND=1)してP1□に進み、アイドルス
イッチ13がOFFのときはP?でQhoが急変後頭定
時間内か(すなわち、所定の過渡状態か)否かを判別す
る。所定の過渡状態にあるときはP、でNDに
(Field of Industrial Application) The present invention relates to a device that accurately detects the amount of intake air required as input information for combustion control of an internal combustion engine such as an automobile. (Prior Art) In recent years, control of internal combustion engines and their peripheral devices has also been computerized, allowing more precise control. Such control uses various data such as the state of the internal combustion engine, and the intake air amount (or intake negative pressure) is also one of the important data as it indicates the engine load. This intake air amount is an important control factor for accurately performing ignition control, fuel injection control, idle speed control, etc., for example. As a device for measuring the amount of intake air, there is a so-called hot wire mass flow needle using, for example, a hot wire or hot film. This hot wire mass flow meter places a platinum hot wire (hot wire) in the intake air flow and heats it with an electric current.When the hot wire is cooled according to the air flow rate and the resistance value changes, the change in the magnitude of the current causes I am trying to measure the air flow rate. The hot wire is incorporated as one side of the bridge and has a small heat capacity, so it has good responsiveness and is especially characterized by the ability to measure mass flow rate. Furthermore, when a vortex generating column (vortex forming body) is placed in the intake air flow, an asymmetric and regular vortex (Karman vortex) is generated downstream of the column. There is also a Kalman sensor that uses the fact that the number of vortices is approximately proportional to the amount of intake air to convert the density of the number of drops into an electrical signal (pulse) to detect the amount of intake air. Incidentally, although the hot wire air flow meter and the Kalman sensor have high responsiveness during transient periods, they also sensitively detect the pulsating flow of intake air that occurs in response to the intake stroke of the engine. The intake air amount increases due to pulsation (if it fluctuates, the basic injection amount 'rp, which is calculated based on the intake air amount, fluctuates), resulting in poor drivability (occurrence of surges, etc.) due to air-fuel ratio deviation, and exhaust gas. This causes a decrease in purification performance.In order to prevent such problems, some devices average the output of the air flow meter, but since the output of the air flow meter is always averaged, the measured values may vary during acceleration and deceleration. A delay in response occurs, resulting in deterioration of acceleration performance due to insufficient fuel during acceleration, or HCSCo in exhaust gas due to excess fuel during deceleration.
This led to an increase in Therefore, JP-A-57-17521
In the method described in Publication No. 7, the average value of the intake air amount is calculated,
When the amount of intake air increases by more than a predetermined level than the average value, it is determined that acceleration is occurring, and the time constant of the averaging circuit is switched to prevent response delays during transient times. In addition, in order to prevent the measured value of the air flow meter from deviating during transients due to the manifold volume from the air flow meter to the combustion chamber, the ratio of the intake air amount to the rotational speed is changed more slowly than the actual value. Some fuel injection engines attempt to inject a combustion injection amount corresponding to the amount of air required by an air flow meter (see Japanese Patent Laid-Open No. 61-294148). (Problem to be Solved by the Invention) However, in such a conventional air amount detection device for an internal combustion engine, a transient state is determined from the intake air amount itself measured by an air flow meter.
There is a problem that a sufficient pulsation suppressing effect cannot be obtained because the determination of the transient state has no physical meaning and is attempted to be resolved as it happens. For example, after sudden acceleration, the throttle valve opening TVO becomes WOT (Wi
When the engine reaches full speed, large pulsations may occur as shown in Figure 4 (B), but in systems that determine acceleration from the amount of intake air itself, the acceleration state cannot be directly detected. As a result, an optimal time constant was not set according to the degree of acceleration, resulting in unnecessarily decreased responsiveness and pulsation as shown in FIG. 2(B). As a result, in recent years, where an extremely high level of response is required not only to improve drivability but also to improve exhaust emission characteristics, it is essential to further improve accuracy and ensure responsiveness during transients. At the same time, there is a desire for a device that can appropriately eliminate the effects of pulsation. (Object of the Invention) Therefore, the present invention calculates a smoothing coefficient for smoothing the intake air amount from parameters including at least the throttle valve opening, and corrects the output of the intake air amount detection means according to the smoothing coefficient. , while ensuring responsiveness during transient times, while maintaining responsiveness during steady state and WO2
It is an object of the present invention to provide an air amount detection device for an internal combustion engine that can sometimes appropriately smooth out pulsations to improve the accuracy of detecting the amount of intake air. (Means for Solving the Problems) In order to achieve the above object, the air amount detection device for an internal combustion engine according to the present invention includes an intake air amount detection means a that detects the intake air amount of the engine, and an air amount detection means a that detects the opening degree of the throttle valve. The smoothing coefficient calculating means C calculates a smoothing coefficient for smoothing the intake air amount based on at least parameters including the throttle valve opening, and the output of the intake air amount detecting means a is adjusted according to the smoothing coefficient. and a smoothing means d for correcting. (Operation) In the present invention, a smoothing coefficient for smoothing the intake air amount is calculated from parameters including at least the throttle valve opening, and the output of the intake air amount detection means is corrected in accordance with the smoothing coefficient. Therefore, responsiveness during transient times is ensured, and during steady state and WO2
In some cases, the pulsation is appropriately smoothed, improving the accuracy of intake air amount detection. (Example) Hereinafter, the present invention will be explained based on the drawings. 2 to 4 are diagrams showing an embodiment of an air amount detection device for an internal combustion engine according to the present invention, and this embodiment is an example in which the present invention is applied to a fuel supply control device. First, the configuration will be explained. FIG. 2 is a diagram showing the overall configuration of this device. In Fig. 2, 1 is an engine, and intake air is supplied to an air cleaner 2.
The fuel passes through the intake pipe 3 and is injected from the injector 4 based on the injection signal Si. Then, the exhaust gas burned in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5,
Harmful components (Co, HC,
NOx) is purified by a three-way catalyst and discharged. The intake air flow rate Qa is detected by a hot wire type air flow meter (intake air amount detection means) 7 and controlled by a throttle valve 8 in the intake pipe 3. In addition, air flow meter 7
The type may be a hot film type, as long as it measures the flow rate of intake air. Therefore, the second flap may be used, but the negative pressure sensor is excluded. The opening TVO of the throttle valve 8 is determined by the throttle valve opening sensor (opening detection means).
9, and the rotation speed N of the engine 1 is detected by a crank angle sensor 10. Further, the temperature TW of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 12. The oxygen sensor 12 used has a characteristic that its output Vs changes suddenly at the stoichiometric air-fuel ratio. Further, the idle state of the engine 1 is detected by an idle switch 13. The air flow meter 7, throttle valve opening sensor 9, crank angle sensor 10, and water temperature sensor 11 are connected to the operating state detection means 14.
It comprises an operating state detection means 14, an oxygen sensor 1
The outputs from the idle switch 2 and the idle switch 13 are input to the control unit 20. The control unit 20 has functions as a smoothing coefficient calculation means and a smoothing means, and has a CPU 21, a ROM 2
2. Consists of RAM 23 and I10 port 24. The CPU 21 takes in necessary external data from the 110 port 24 according to the program written in the ROM 22, and while exchanging data with the RAM 23, processes values necessary for smooth intake air amount and air-fuel ratio control. Calculate and process the data as necessary.
10 output to boat 24. Signals from sensor group 7.14.12 are input to I10 port 24, and I
The injection signal St is output from the 10 port 24. R.O.
The M22 stores a calculation program for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like. Next, the effect will be explained. FIG. 3 is a flowchart showing a program for calculating the A/F corrected basic pulse width TrTp, and this program is executed once every 1Qms, for example. First, the smoothing section basic pulse width Tpo is calculated in accordance with the following equation (2) using P, and the basic pulse width Tp is calculated by weighted averaging of Tpo. As a result, pulsations based on the output of the air flow meter 7 are smoothed out. a Tpo= -X K ......■ However, K: Constant Next, in P2, the current Fraso I-A/F corrected basic pulse width TrTp is stored in a predetermined memory Tr T p -+o□, and in P3 The A/F correction basic pulse width TrTp is determined according to the following equation (2). TrTp=TpXKflat -0 In the formula, Kflat is a flat A/F correction coefficient, which is obtained with interpolation from a map assigned by the rotational speed N and the α-N weight Qho. Note that the α-N flow rate is the air flow rate determined from the throttle valve opening TVO and the rotational speed N, and is already known. Next, the α-N flow rate Qh'o at P4 is calculated, and PS determines whether the idle switch is 0N10FF. When the idle switch 13 is ON, P is used as the pulsation smoothing index ND.
1] is substituted (ND=1) and proceeds to P1□, and when the idle switch 13 is OFF, P? Then, it is determined whether Qho is within a predetermined period of time after the sudden change (that is, in a predetermined transient state). When in a predetermined transient state, P is set to ND.

〔0〕を
代入(ND=0)してP1□に進み、所定の過渡状態に
ないときはP、でQhoが所定値以上か否かを判別する
。Qhoが所定値以上のときは絞弁開度TVOがWOT
に近い全開付近にあると判断してPl。でNDに〔3〕
を代入(ND=3)L、Qhoが所定値より小さいとき
はTVOが比較的小さ目であると判断してpHでNDに
〔2〕を代入(ND=2)してP1□に進む。P1□で
は上記ステップP6 、P 6 、P +。、pHで設
定した脈動平滑指数NDを基に次式■に従ってTrTp
を入れ換え加重平均して今回の処理を終了する。 ・・・・・・■ 但し、TrTp ’ : P、で演算した値” rT 
I’ −rams  : P zでストアした値そして
、次式■に従って噴射弁部空気量相当パルス幅AvTp
 (平滑吸気量に対応)を演算する。 AvTp=TrTpxF1oad+AvTp−+oes
X  (1−Fload)  +Th5tp・・・・・
・■ 但し、A、 v T p −rams  :前回のAv
Tp■式において、Floadは加重平均係数であり、
F 1oad= F 1oad+ K 2 D (減速
のみ)によって与えられる。F 1oadは吸気ボリュ
ウムのみの関数とするため、絞弁8によって決まる流量
面積AAと(回転数×排気量)NMVとからマツプによ
り求める。したがって、0式の第1項および2項はエア
フローメータ7の出力を脈動修正した値に基づいて演算
されたフラッl−A/F修正基本パルス幅TrTpにつ
いて、F 1oadを用いて加重平均した値、言い換え
ればTrTpの一次遅れを計算により(ソフトにより)
算出する部分に相当する。また、0式の第3項は絞弁開
度TVOによる先取り補正の部分であり、この部分は、
本実施例で初めて開示するものである。 このような第3項のTh5tpを加えた効果は第4図の
ように示される。第4図において、あるタイミングで加
速した場合、絞弁開度の変化にやや遅れて基本パルス幅
Tpo、Tpが変化し、Tpo、Tpを修正した波形は
フラッI−A/F修正基本パルス幅TrTpとして同図
(C)のように変化する。一方、α−N流量Qhoは絞
弁8に開き具合に応じて同図(D)に示すようにステッ
プ的に変化しており、この開度変化量により遅れ修正パ
ルス幅Th5tpが演算される。一方、平滑噴射量Av
TpはTrTpの一次遅れで与えられ、T hs tp
なしの従来の位相制御の場合は図中の一点鎖線で示す変
化となり、応答性に欠ける。このとき、吸入負圧は破線
で示され、噴射弁部(インジェクタ4部)の空気流量に
略等しいが、これとて絞弁8の開度変化に遅れなく追随
できるものではない。 これに対して、本実施例のA v T pは図中実線で
示すように、T hs tpなる補正項がα−Nの先取
り補正(10m sの先取り補正)として加えられてい
るから、極めて応答性が良く実際の空気流量変化にマン
チしたものとなる。なお、高地の例も図示している。 以上述べてきたように、本実施例ではα−N流1iQh
oに応じて脈動平滑指数NDをアイドル用(ND=i)
、定常用(ND=2) 、WOT用(ND=3)、過渡
用(ND=3)との4段階にそれぞれ切換えている。し
たがって、第4図(C)に示すように過渡時にあっては
加重平均が行われず、TrTpがそのまま用いられて応
答性が確保され、また、WOT時には十分な加重平均(
1/8入れ換え加重平均)によってパルス幅の脈動が適
切に平滑化される。このように、加速の程度に合わせて
最適なNDが設定されるので過渡時の応答性を確保した
まま脈動分のみを適切に除去することができる。その結
果、本発明に係る内燃機関の空気量検出装置を、例えば
空燃比制御装置に適用すれば、その制御精度を格段に向
上させることができる。 なお、本実施例では絞弁開度TVOを含むパラメータと
してα−N流量Qhoを用いているが、これに限らず、
TVOあるいは変化量ΔTVOを直接用いてNDを決定
するようにしてもよい。 (効果) 本発明によれば、少なくとも絞弁開度を含むパラメータ
から吸入空気量を平滑するための平滑係数を演算し、該
平滑係数に応じて吸気量検出手段の出力を補正するよう
にしているので、過渡時の応答性を確保しつつ、定常時
やWOT時には脈動を適切に平滑することができ、吸入
空気量の検出精度を高めることができる。
[0] is substituted (ND=0) and the process proceeds to P1□, and if it is not in a predetermined transient state, it is determined at P whether Qho is greater than or equal to a predetermined value. When Qho is greater than a predetermined value, the throttle valve opening TVO is WOT.
Judging that it is close to full throttle, Pl. to ND [3]
When L and Qho are smaller than a predetermined value, it is determined that TVO is relatively small, and [2] is substituted for ND at pH (ND=2), and the process proceeds to P1□. In P1□, the above steps P6, P6, P+. , TrTp according to the following formula (■) based on the pulsation smoothing index ND set at pH.
The current process ends after replacing and taking a weighted average.・・・・・・■ However, TrTp': The value calculated by P" rT
I'-rams: The value stored in Pz, and the pulse width AvTp corresponding to the amount of air in the injector according to the following formula (■)
(corresponding to the smooth intake air amount). AvTp=TrTpxF1oad+AvTp−+oes
X (1-Fload) +Th5tp...
・■ However, A, v T p -rams: Previous Av
In the Tp formula, Flood is a weighted average coefficient,
Given by F 1oad=F 1oad+K 2 D (deceleration only). Since F1oad is a function only of the intake volume, it is determined from a map from the flow area AA determined by the throttle valve 8 and (rotation speed x displacement) NMV. Therefore, the first and second terms of Equation 0 are weighted average values using F 1oad for the flat A/F correction basic pulse width TrTp calculated based on the pulsation correction value of the output of the air flow meter 7. In other words, by calculating the first-order delay of TrTp (by software)
This corresponds to the part to be calculated. In addition, the third term in Equation 0 is a preemption correction part based on the throttle valve opening TVO, and this part is
This example is disclosed for the first time. The effect of adding the third term Th5tp is shown in FIG. In Fig. 4, when acceleration occurs at a certain timing, the basic pulse widths Tpo and Tp change slightly after the change in the throttle valve opening, and the waveform after correcting Tpo and Tp is a flat I-A/F corrected basic pulse width. TrTp changes as shown in the same figure (C). On the other hand, the α-N flow rate Qho changes stepwise as shown in FIG. 2D in accordance with the degree of opening of the throttle valve 8, and the delay correction pulse width Th5tp is calculated based on the amount of change in the degree of opening. On the other hand, smooth injection amount Av
Tp is given by the first-order delay of TrTp, and T hs tp
In the case of conventional phase control without this, the change is shown by the dashed line in the figure, and responsiveness is lacking. At this time, the suction negative pressure is shown by a broken line and is approximately equal to the air flow rate of the injection valve section (injector 4 section), but this cannot follow the change in the opening degree of the throttle valve 8 without delay. On the other hand, as shown by the solid line in the figure, A v T p in this embodiment is extremely It has good responsiveness and responds well to actual air flow rate changes. An example of a highland area is also shown. As described above, in this example, α-N flow 1iQh
pulsation smoothing index ND for idle according to o (ND=i)
, steady-state use (ND=2), WOT use (ND=3), and transient use (ND=3). Therefore, as shown in FIG. 4(C), weighted averaging is not performed during transient periods, and TrTp is used as is to ensure responsiveness, and during WOT, sufficient weighted averaging (
Pulse width pulsations are appropriately smoothed by 1/8 permuted weighted average). In this way, since the optimum ND is set according to the degree of acceleration, it is possible to appropriately remove only the pulsation component while ensuring responsiveness during transient times. As a result, if the air amount detection device for an internal combustion engine according to the present invention is applied to, for example, an air-fuel ratio control device, the control accuracy can be significantly improved. In this embodiment, the α-N flow rate Qho is used as a parameter including the throttle valve opening TVO, but the present invention is not limited to this.
ND may be determined using TVO or the amount of change ΔTVO directly. (Effects) According to the present invention, a smoothing coefficient for smoothing the intake air amount is calculated from parameters including at least the throttle valve opening, and the output of the intake air amount detection means is corrected according to the smoothing coefficient. Therefore, it is possible to appropriately smooth pulsations during steady state or WOT while ensuring responsiveness during transient times, and it is possible to improve the detection accuracy of the intake air amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜4図は本発明に係
る内燃機関の空気量検出装置の一実施例を示す図であり
、第2図はその全体構成図、第3図はそのフラットA/
F修正基本パルス幅TrTpを演算するプログラムを示
すフローチャート、第4図はその作用を説明するための
タイミングチャートである。 1・・・・・・エンジン、 7・・・・・・エアフローメータ(吸気量検出手段)、
9・・・・・・絞弁開度センサ(開度検出手段)、20
・・・・・・コントロールユニット(平滑係数演算手段
、平滑手段)。
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 4 are diagrams showing an embodiment of an air amount detection device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. is that flat A/
A flowchart showing a program for calculating the F corrected basic pulse width TrTp, and FIG. 4 is a timing chart for explaining its operation. 1... Engine, 7... Air flow meter (intake amount detection means),
9... Throttle valve opening sensor (opening detection means), 20
...Control unit (smoothing coefficient calculation means, smoothing means).

Claims (1)

【特許請求の範囲】 a)エンジンの吸入空気量を検出する吸気量検出手段と
、 b)絞弁の開度を検出する開度検出手段と、c)少なく
とも絞弁開度を含むパラメータに基づいて吸入空気量を
平滑するための平滑係数を演算する平滑係数演算手段と
、 d)吸気量検出手段の出力を前記平滑係数に応じて補正
する平滑手段と、 を備えたことを特徴とする内燃機関の空気量検出装置。
[Scope of Claims] a) intake air amount detection means for detecting the intake air amount of the engine; b) opening degree detection means for detecting the opening degree of the throttle valve; and c) based on a parameter including at least the throttle valve opening degree. d) a smoothing coefficient calculation means for calculating a smoothing coefficient for smoothing the intake air amount by using a smoothing coefficient; and d) a smoothing means for correcting the output of the intake air amount detection means according to the smoothing coefficient. Engine air amount detection device.
JP63105092A 1988-04-26 1988-04-26 Air amount detection device for internal combustion engine Expired - Lifetime JP2550145B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63105092A JP2550145B2 (en) 1988-04-26 1988-04-26 Air amount detection device for internal combustion engine
US07/343,204 US4949694A (en) 1988-04-26 1989-04-26 Fuel supply control system for internal combustion engine
EP89107545A EP0339603B1 (en) 1988-04-26 1989-04-26 Fuel supply control system for internal combustion engine
DE8989107545T DE68900704D1 (en) 1988-04-26 1989-04-26 SYSTEM FOR FUEL SUPPLY IN AN INTERNAL COMBUSTION ENGINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105092A JP2550145B2 (en) 1988-04-26 1988-04-26 Air amount detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01273856A true JPH01273856A (en) 1989-11-01
JP2550145B2 JP2550145B2 (en) 1996-11-06

Family

ID=14398271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105092A Expired - Lifetime JP2550145B2 (en) 1988-04-26 1988-04-26 Air amount detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2550145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115540A (en) * 1988-10-24 1990-04-27 Japan Electron Control Syst Co Ltd Fuel feed control device for internal combustion engine
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine
JPH0599053A (en) * 1991-10-09 1993-04-20 Hitachi Ltd Fuel injection amount controller of engine
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456945A (en) * 1987-08-26 1989-03-03 Hitachi Ltd Engine controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456945A (en) * 1987-08-26 1989-03-03 Hitachi Ltd Engine controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115540A (en) * 1988-10-24 1990-04-27 Japan Electron Control Syst Co Ltd Fuel feed control device for internal combustion engine
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine
JPH0599053A (en) * 1991-10-09 1993-04-20 Hitachi Ltd Fuel injection amount controller of engine
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Also Published As

Publication number Publication date
JP2550145B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
US6279537B1 (en) Air fuel ratio control apparatus for an internal combustion engine
US6600998B1 (en) Catalyst deteriorating state detecting apparatus
JP2006083796A (en) Air fuel ratio controller for internal combustion engine
JP2917632B2 (en) Engine air-fuel ratio control device
US5598702A (en) Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
JPH0670394B2 (en) Engine fuel controller
JPH01273856A (en) Air quantity detecting device for internal combustion engine
JPH06264787A (en) Air-fuel ratio control device of internal combustion engine
JPH08218934A (en) Intake air quantity detecting device of engine
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
WO2024018567A1 (en) Control device for internal combustion engine
JPH01294943A (en) Air amount detecting device for internal combustion engine
JP3324308B2 (en) Exhaust calorie calculation device
JP2668940B2 (en) Fuel supply control device for internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JPH01290951A (en) Air amount sensing device of internal combustion engine
JP2857917B2 (en) Catalyst deterioration detection device
JPH11159376A (en) Air-fuel ratio control device for internal combustion engine
JPH0631156Y2 (en) Air-fuel ratio controller for internal combustion engine
JP3726432B2 (en) Air quantity detection device for internal combustion engine
JP2715676B2 (en) Engine air volume detector
JPH01290949A (en) Air amount sensing device of internal combustion engine
JP4362835B2 (en) Exhaust gas purification control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12