JPH0670386B2 - Air-fuel ratio controller for internal combustion engine - Google Patents
Air-fuel ratio controller for internal combustion engineInfo
- Publication number
- JPH0670386B2 JPH0670386B2 JP6684786A JP6684786A JPH0670386B2 JP H0670386 B2 JPH0670386 B2 JP H0670386B2 JP 6684786 A JP6684786 A JP 6684786A JP 6684786 A JP6684786 A JP 6684786A JP H0670386 B2 JPH0670386 B2 JP H0670386B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- engine
- amount
- calculation means
- intake system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の空燃比制御装置に関し、詳しくは
火花点火式内燃機関の過渡的運転状態での空燃比制御精
度を高めることを目的とした空燃比制御装置の改良に関
する。Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to improving the air-fuel ratio control accuracy in a transient operation state of a spark ignition type internal combustion engine. To an improved air-fuel ratio control device.
(従来の技術) 車両用内燃機関等においては、機関に本来求められる出
力性能や運転性を改善しつつ排気浄化の要請に応える見
地から、機関に供給する燃料量ないし空燃比をいかに適
切に制御するかが重要な課題になっている。ことに車両
用機関は低速低負荷から高速高負荷に至る幅広い運転域
で使用されるため、加速や減速など過渡的な運動状態で
の空燃比制御の適否が運転性や排気エミッションに大き
く影響する。(Prior Art) In an internal combustion engine for vehicles, etc., how to appropriately control the amount of fuel or the air-fuel ratio supplied to the engine from the viewpoint of meeting the demand for exhaust gas purification while improving the output performance and drivability originally required for the engine. Whether you do it is an important issue. In particular, since the vehicle engine is used in a wide range of operation from low speed low load to high speed high load, suitability of air-fuel ratio control in transient motion conditions such as acceleration and deceleration greatly affects drivability and exhaust emission. .
そこで、燃料計量精度に優れた電子制御燃料噴射装置を
基本として、加速時または減速時に燃料噴射量を増量補
正または減量補正することにより過渡時を含むあらゆる
運転状態において適切な空燃比が得られるようにした制
御装置または制御方法が多くの車両用機関に採用されつ
つある。(この種の制御方法の公知例としては、たとえ
ば特開昭58−144632号、同144634号、同144636号、同15
0033号、同150042号、同150043号公報参照。) こうした過渡補正が必要な理由は、機関シリンダに達す
るまでの間に吸気管や吸入ポートの内壁面に付着する燃
料、あるいは吸入されずに吸気管内に浮遊している燃料
(これらの燃料を「吸気系の付着、浮遊燃料」と総称す
る。)の量が過渡時において空燃比ないし機関性能に影
響を及ぼすからであり、例えば加速時に吸気量に比例し
た量の燃料を供給しただけではその一部が吸気系に付着
して供給応答遅れを起こすために実空燃比が過薄となっ
て加速性能が悪化するという問題を生じる。Therefore, based on an electronically controlled fuel injection device with excellent fuel metering accuracy, the fuel injection amount is increased or decreased during acceleration or deceleration so that an appropriate air-fuel ratio can be obtained in all operating conditions including transitions. The control device or control method described above is being adopted in many vehicle engines. (Prior art examples of this type of control method include, for example, JP-A Nos. 58-144632, 144634, 144636 and 15).
See 0033, 150042, and 150043. ) The reason why such transient correction is necessary is that fuel that adheres to the inner wall surface of the intake pipe or the intake port before reaching the engine cylinder or fuel that is not sucked and floats in the intake pipe (these fuels are The amount of "adhesion of the intake system, floating fuel") affects the air-fuel ratio or engine performance during a transient state. Since the part adheres to the intake system and causes a delay in the supply response, the actual air-fuel ratio becomes too thin and the acceleration performance deteriorates.
(発明が解決しようとする問題点) ところで、この吸気系の付着、浮遊燃料の量は機関の運
転状態に応じて変化し、回転速度や機関温度、さらには
吸気管の絶対圧や燃料の揮発性等に影響されるのである
が、従来の空燃比制御では吸気管圧力の変化をパラメー
タとして予め実験的に定めた補正方式によって近似的に
過渡時燃料の過不足量を算出し、これに機関冷却水温度
に応じた補正を施すことにより空燃比を適正化するとい
う手法を基本としており、従って前述のように種々の要
因に基づいて変動する吸気系の付着、浮遊燃料量に対応
して常に適切な空燃比が得られるとは限らず、設計点に
あたる特定の運転状態のときを除き誤差を生じるのは避
けられなかった。(Problems to be solved by the invention) By the way, the adhesion of the intake system and the amount of floating fuel change according to the operating state of the engine, and the rotation speed and the engine temperature as well as the absolute pressure of the intake pipe and the volatilization of the fuel. However, in the conventional air-fuel ratio control, the transient fuel excess / deficiency amount is approximately calculated by a correction method that has been experimentally determined in advance using the change of the intake pipe pressure as a parameter. It is based on the method of optimizing the air-fuel ratio by making a correction according to the cooling water temperature.Therefore, as described above, the intake system always fluctuates based on various factors It is not always possible to obtain an appropriate air-fuel ratio, and it is inevitable that an error will occur except under the specific operating conditions that are the design points.
もっとも、これを解決するためには吸気系の付着、浮遊
燃料量に影響する総ての要因を検出して補正することに
なるが、この場合補正の要不要等に関する判定条件が多
くなることから、運転性や排気エミッションの要求を満
足させるためのマッチング作業に多くの行程が必要にな
ってしまう。However, in order to solve this, it is necessary to detect and correct all the factors that affect the adhesion of the intake system and the amount of floating fuel, but in this case there are many judgment conditions regarding the necessity of correction, etc. However, many steps are required for the matching work to satisfy the requirements of drivability and exhaust emission.
そこで、こうした点に着目して吸気系の付着、浮遊燃料
の平衡量M0を演算し、この平衡量M0とその時点での吸気
系の付着、浮遊燃料の予測変数Mとの差値M0−Mとこの
差値を燃料噴射量の補正にどの程度反映させるかを示す
補正係数DKとに基づいて過渡補正量DMを求め、しかもそ
の予測変数Mを燃料噴射に同期して更新するものを本出
願人が先に提案しており(特願昭60−243605号参照)、
この発明は先願をさらに改良するものである。Therefore, paying attention to these points, the intake system adhesion and the floating fuel equilibrium amount M0 are calculated, and the difference value M0-M between the equilibrium amount M0 and the intake system adherence and floating fuel prediction variable M at that time point. And a correction coefficient DK indicating how much this difference value is reflected in the correction of the fuel injection amount, the transient correction amount DM is obtained, and the predictive variable M is updated in synchronization with the fuel injection. People have proposed it first (see Japanese Patent Application No. 60-243605),
This invention is an improvement over the prior application.
すなわち、先願では、従来に比べて加減速に拘わらず応
答性の良好な空燃比特性を得ることができることになっ
たが、加速直後に機関を停止し、その直後に再始動する
等の特定の再始動時において、供給燃料の過多により却
って排気エミッションや始動性を不良にすることが考え
られる。That is, in the prior application, it was possible to obtain an air-fuel ratio characteristic with good response regardless of acceleration and deceleration compared to the conventional one, but it is specified that the engine is stopped immediately after acceleration and restarted immediately thereafter. When restarting the vehicle, it is conceivable that the exhaust emission and the startability may be deteriorated due to excessive supply of fuel.
これを説明すると、空燃比制御においては、差値(M0−
M)が大きいほど多くの燃料が供給されるので、始動性
を高めるため増量補正を行う機関始動時においては、初
期化ルーチンにて予測値(予測変数)Mについての初期
値M1をM1=0とすることにより、(M0−M)が大きくさ
れる。Explaining this, in the air-fuel ratio control, the difference value (M0−
Higher because many fuel supplied M) is large, at the time of engine startup to perform the increasing correction to increase startability, M 1 the initial value M 1 for the predicted value at initialization routine (predictors) M By setting = 0, (M0-M) is increased.
Mについての初期値を零とすることができる始動時と
は、始動と始動との間隔が長い、冷間始動を行うような
始動時であり、こうした始動時にあっては、吸気系の付
着、浮遊燃料が残留せず、したがって実状とも良く合致
する。これに対し、加速直後にアイドル運転を経過せ
ず、あるいは減速時間が殆どなくて機関を停止し、その
直後に再始動を行う場合においては、吸気系の付着、浮
遊燃料が残留する。The start-up time when the initial value of M can be set to zero is a start-up time in which the start-up time is long and the cold start-up is performed. Floating fuel does not remain, so it is in good agreement with the actual situation. On the other hand, when the idle operation is not performed immediately after acceleration or the engine is stopped with little deceleration time and restarted immediately thereafter, adhesion of the intake system and floating fuel remain.
こうした再始動時においても、先願では予測値について
の初期値を一律に零として制御を始めるので、この残留
する吸気系の付着、浮遊燃料量だけ多目に供給されるこ
とになり、所定の空燃比の混合気から外れて過濃とな
り、CO等の有害排出物の増大、点火プラグのくすぶり等
に起因する機関始動性の不良を生じるのである。Even at such a restart, in the previous application, the control is started by uniformly setting the initial value of the predicted value to zero, so that the remaining intake system adhesion and the floating fuel amount are supplied in large numbers, and the predetermined amount is supplied. If the air-fuel ratio is deviated from the air-fuel mixture, the air-fuel ratio becomes rich, and the engine startability becomes poor due to an increase in harmful emissions such as CO and smoldering of the spark plug.
こうした燃料過多を防止するためには、吸気系に残留す
る吸気系の付着、浮遊燃料量を予測することが必要とな
るが、ここに、吸気系の付着、浮遊燃料量はそのときの
機関温度と相関関係を有するので、機関温度をパラメー
タとすれば吸気系に残留する吸気系の付着、浮遊燃料量
を予測することが可能となり、この値を初期値とすれ
ば、残留する吸気系の付着、浮遊燃料量が空燃比制御に
取り込まれることになる。In order to prevent such excess fuel, it is necessary to predict the adhesion of the intake system remaining in the intake system and the amount of floating fuel. Here, the adhesion of the intake system and the amount of floating fuel are the engine temperature at that time. Therefore, if the engine temperature is used as a parameter, it is possible to predict the adhesion of the intake system remaining in the intake system and the amount of floating fuel. If this value is used as the initial value, the adhesion of the remaining intake system , The amount of floating fuel is taken into the air-fuel ratio control.
また、特開昭56−154133号に示されるものでは、機関の
再始動時の冷却水温度と吸気管温度とを検出し、これら
の温度から吸気系の付着、浮遊燃料の残留量の多少を判
定して再始動時の燃料増量補正を行うか否かを判定して
いる。しかしながら、このものは、始動時燃料補正の要
否を2値的に決定するだけで、吸気系の付着、浮遊燃料
の残留量の推定値と再始動時の運転状態に応じた吸気系
の付着、浮遊燃料の平衡量との差値によって始動時の燃
料量を補正するものでない。このため、始動時に過不足
なく燃料を供給して再始動性を高めることが十分に行え
るものでなかった。Further, in the one disclosed in JP-A-56-154133, the temperature of the cooling water and the temperature of the intake pipe at the time of restart of the engine are detected, and the adhesion of the intake system and the residual amount of floating fuel are detected from these temperatures. It is determined whether or not the fuel increase correction at the time of restart is performed. However, this method only determines the necessity of fuel correction at start-up in a binary manner, and the adhesion of the intake system, the estimated value of the residual amount of floating fuel, and the adherence of the intake system according to the operating state at restarting. However, the fuel amount at the time of starting is not corrected by the difference value with the equilibrium amount of floating fuel. For this reason, it has not been possible to sufficiently supply fuel at the time of start-up to improve restartability.
この発明はこうした問題点に着目してなされたもので、
始動時の機関温度に応じて吸気系の付着、浮遊燃料量の
予測値についての初期値を演算し、この初期値に基づい
て燃料を供給するようにした空燃比制御装置を提供する
ことを目的としている。This invention was made with attention to these problems,
It is an object of the present invention to provide an air-fuel ratio control device which calculates an initial value of a predicted value of adhesion of an intake system and a floating fuel amount according to an engine temperature at a start, and supplies fuel based on the initial value. I am trying.
(問題点を解決するための手段) 上記目的を達成するためにこの発明では、第1図に示す
ように、機関の運転状態を、少なくとも機関回転数、機
関負荷及び機関温度を含むパラメータから検出する運転
状態検出手段1と、機関の運転状態に基づいて燃料の基
本噴射量Tpを演算する基本噴射量演算手段2と、機関回
転数、機関負荷及び機関温度に基づいて吸気系の付着、
浮遊燃料の平衡量M0を演算する平衡量演算手段3と、平
衡量演算手段3で演算した付着、浮遊燃料の平衡量M0と
その時点での吸気系の付着、浮遊燃料の予測変数Mとの
差値M0−Mを演算する差値演算手段4と、差値演算手段
4で演算した差値M0−Mを燃料噴射量の補正にどの程度
反映させるかを示す補正係数DKを、機関回転数、機関負
荷及び機関温度に基づいて演算する補正係数演算手段5
と、前記差値M0−Mと前記補正係数DKとに基づいて過渡
補正量DMを演算する過渡補正量演算手段6と、過渡補正
量演算手段6で演算した過渡補正量DMと前記付着、浮遊
燃料の予測変数Mとを燃料噴射に同期して加算し、該加
算値で予測変数Mを更新する予測変数演算手段7と、前
記基本噴射量演算手段2で演算した基本噴射量Tpと前記
過渡補正量演算手段6で演算した過渡補正量DMとに基づ
いて燃料噴射量Tiを演算して噴射信号を出力する燃料噴
射量演算手段8と、前記噴射信号に基づいて機関に燃料
を供給する燃料供給手段9と、機関の始動を検出する機
関始動検出手段10と、機関の始動時に機関温度に基づい
て前記予測変数Mの初期値を演算する初期値演算手段11
とを備えた。(Means for Solving Problems) In order to achieve the above object, in the present invention, as shown in FIG. 1, the operating state of an engine is detected from parameters including at least engine speed, engine load and engine temperature. Operating state detection means 1, a basic injection amount calculation means 2 for calculating a basic injection amount Tp of fuel based on the operating state of the engine, and an intake system adhesion based on the engine speed, engine load and engine temperature,
The balance amount calculation means 3 for calculating the equilibrium amount M0 of the floating fuel, the adhesion calculated by the balance amount calculation means 3, the equilibrium amount M0 of the floating fuel and the adhesion of the intake system at that time, and the prediction variable M of the floating fuel The difference value calculating means 4 for calculating the difference value M0-M, and the correction coefficient DK indicating how much the difference value M0-M calculated by the difference value calculating means 4 are reflected in the correction of the fuel injection amount, , Correction coefficient calculation means 5 for calculating based on engine load and engine temperature
And a transient correction amount calculation means 6 for calculating a transient correction amount DM based on the difference value M0-M and the correction coefficient DK, and a transient correction amount DM calculated by the transient correction amount calculation means 6 and the adhesion and floating. Prediction variable calculation means 7 for adding the prediction variable M of fuel in synchronism with fuel injection and updating the prediction variable M with the added value, the basic injection amount Tp calculated by the basic injection amount calculation means 2 and the transient Fuel injection amount calculation means 8 for calculating the fuel injection amount Ti based on the transient correction amount DM calculated by the correction amount calculation means 6 and outputting an injection signal, and fuel for supplying fuel to the engine based on the injection signal. A supply means 9, an engine start detection means 10 for detecting the start of the engine, and an initial value calculation means 11 for calculating the initial value of the predictive variable M based on the engine temperature when the engine is started.
Equipped with.
(作用) このように構成すると、吸気系に残留する吸気系の付
着、浮遊燃料がそのときの機関温度に応じて求められ
る。(Operation) With this configuration, the adhesion of the intake system and the floating fuel remaining in the intake system are obtained according to the engine temperature at that time.
たとえば、機関温度が高い場合には、残留する吸気系の
付着、浮遊燃料量も多いが、この吸気系の付着、浮遊燃
料の残留量が初期値に設定される。このため、差値(M0
−M)が小さくなり、この差値に基づいて演算される最
終的な噴射量が少なくされる。For example, when the engine temperature is high, the amount of remaining intake system adhered and the amount of floating fuel are large, but the amount of adhered intake system and residual amount of floating fuel are set to initial values. Therefore, the difference value (M0
-M) becomes small, and the final injection amount calculated based on this difference value is decreased.
すなわち、吸気系に吸気系の付着、浮遊燃料が残留する
機関停止直後の再始動に際しては、吸気系に残留する吸
気系の付着、浮遊燃料量を見越して予め少なめに噴射量
を供給するのであり、これにより、加速直後に機関停止
し、吸気系に吸気系の付着、浮遊燃料を多く残留させた
まま、直ぐに再始動しても、燃料の供給過多による有害
排出物の増大や始動性不良を防ぐことができるのであ
る。That is, when the intake system adheres to the intake system, and when the engine is restarted immediately after the suspended fuel remains with the suspended fuel remaining, the injection amount is supplied in advance in anticipation of the adherence of the intake system remaining in the intake system and the floating fuel amount. As a result, even if the engine is stopped immediately after acceleration, the intake system adheres to the intake system, and even if it restarts immediately after leaving a large amount of floating fuel remaining, an increase in harmful emissions due to excessive fuel supply and poor startability may occur. It can be prevented.
以下、この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
(実施例) 第2図はこの発明をスロットル弁15上流の吸気通路16に
一個の燃料噴射弁17を設けた、いわゆる単点噴射式の電
子制御燃料噴射装置に適用した実施例の機械的構成を示
す。(Embodiment) FIG. 2 is a mechanical configuration of an embodiment in which the present invention is applied to a so-called single-point injection type electronically controlled fuel injection device in which one fuel injection valve 17 is provided in an intake passage 16 upstream of a throttle valve 15. Indicates.
先願とほぼ同様である部分から説明すると、吸気量Qaを
検出する空気流量センサ20、機関回転速度Nを検出する
クランク角センサ21、冷却水温Twを検出する水温センサ
22、さらにフィードバック制御に必要となる実際の空燃
比を検出する空燃比センサ23からの各種信号がコントロ
ールユニット30に入力され、コントロールユニット30で
は、これらの信号に基づいて噴射弁17の駆動制御を行
う。Describing from the parts that are almost the same as the previous application, an air flow rate sensor 20 that detects the intake air amount Qa, a crank angle sensor 21 that detects the engine rotation speed N, and a water temperature sensor that detects the cooling water temperature Tw.
22, further various signals from the air-fuel ratio sensor 23 for detecting the actual air-fuel ratio necessary for feedback control are input to the control unit 30, and the control unit 30 controls the drive of the injection valve 17 based on these signals. To do.
こうした構成に対し、この発明では、始動時の機関温度
を知る必要があり、機関温度は冷却水温Twで代用するこ
とにし、また始動時の判別のためにスタータスイッチ24
からの信号がコントロールユニット30に入力される。In contrast to such a configuration, in the present invention, it is necessary to know the engine temperature at the time of starting, and the engine temperature is substituted by the cooling water temperature Tw, and the starter switch 24
The signal from is input to the control unit 30.
なお、過渡時は、基本的にはスロットルセンサ25からの
アクセルペダル開度に相当するスロットル開度の変化量
と機関回転速度Nの変化量とから判別される。During the transition, it is basically determined from the amount of change in the throttle opening corresponding to the accelerator pedal opening from the throttle sensor 25 and the amount of change in the engine speed N.
コントロールユニット30は、CPU31,ROM32,RAM33,I/Oポ
ート34等からなるマイクロコンピュータで構成され、第
1図に示した手段1,9,10を除いた残りの手段の全機能を
有し、空燃比制御(噴射量制御)に関する処理を集中的
に行う。The control unit 30 is composed of a microcomputer including a CPU 31, a ROM 32, a RAM 33, an I / O port 34, etc., and has all the functions of the remaining means except the means 1, 9, 10 shown in FIG. Processes relating to air-fuel ratio control (injection amount control) are intensively performed.
なお、噴射弁17への燃料圧力を一定に保持させることに
より、噴射量が開弁パルス幅に比例するので、コントロ
ールユニット内で実際に演算されるのは開弁パルス幅で
あり、したがって、以下にはパルス幅制御として説明す
る。By keeping the fuel pressure to the injection valve 17 constant, the injection amount is proportional to the valve opening pulse width, so that the valve opening pulse width is actually calculated in the control unit. Will be described as pulse width control.
第3図〜第6図はコントロールユニット内にて実行され
るルーチンを説明する流れ図であり、このうち第3図,
第4図がパルス幅制御のメインルーチンに当たり、第5
図、第6図がその過程で使用する補正値等を求めるため
のサブルーチンに相当する。図中の番号は処理番号を示
し、第3図、第5図、第6図の処理は所定時間毎あるい
は機関回転に同期して、また第4図の処理だけは機関回
転に同期して(正確には噴射に同期して)実行される。3 to 6 are flow charts for explaining the routine executed in the control unit. Of these, FIG.
Fig. 4 shows the main routine of pulse width control,
FIG. 6 and FIG. 6 correspond to a subroutine for obtaining a correction value and the like used in the process. The numbers in the figure indicate the process numbers. The processes of FIGS. 3, 5, and 6 are synchronized with the engine rotation at predetermined time intervals or in synchronization with the engine rotation, and only the processing of FIG. 4 is synchronized with the engine rotation ( (Exactly in synchronization with the injection).
基本的な噴射弁のパルス幅制御については周知の通りで
あり、例えば第3図,第4図に示すように、空気流量セ
ンサ20とクランク角センサ21にて検出した吸入空気流量
Qaと回転速度Nの関係からテーブルルックアップ等によ
り所定の空燃比(たとえば理論空燃比)が得られる基本
パルス幅Tp(=K・Qa/N、ただし、Kは定数)を求め、
これに空燃比センサ23の出力に基づいて決定したフィー
ドバック補正係数αとその他の補正係数の総和COEFとを
乗じ、さらに無効パルス幅Tsを加えて最終的な噴射パル
ス幅TI(=Tp・COEF・α+Ts)を求め、このTIに基づく
駆動信号を噴射弁17に付与する(40,51,52)。The basic pulse width control of the injection valve is well known. For example, as shown in FIGS. 3 and 4, the intake air flow rate detected by the air flow rate sensor 20 and the crank angle sensor 21.
A basic pulse width Tp (= K · Qa / N, where K is a constant) for obtaining a predetermined air-fuel ratio (for example, theoretical air-fuel ratio) is obtained from the relationship between Qa and the rotational speed N by table lookup or the like,
This is multiplied by the feedback correction coefficient α determined based on the output of the air-fuel ratio sensor 23 and the total COEF of other correction coefficients, and the invalid pulse width Ts is added to the final injection pulse width TI (= Tp COEF α + Ts) is obtained and a drive signal based on this TI is given to the injection valve 17 (40, 51, 52).
先願ではこうした噴射パルス幅TIを求める過程でさらに
過渡的な運転状態に対応した補正を吸気系の付着、浮遊
燃料に着目して施すものであり、この補正機能は、第3
図の41〜43(詳しくは、41が平衡量演算手段、42が補正
係数演算手段、43が過渡補正量演算手段として機能する
部分である。)、第4図の50,53(50が燃料噴射量演算
手段、53が予測変数演算手段として機能する部分であ
る。)にて果たされる。In the prior application, in the process of obtaining such an injection pulse width TI, a correction corresponding to a more transient operating state is made by paying attention to intake system adhesion and floating fuel.
41 to 43 in FIG. 4 (specifically, 41 is a portion that functions as an equilibrium amount calculation means, 42 is a correction coefficient calculation means, and 43 is a portion that functions as a transient correction amount calculation means), 50, 53 (50 is fuel) in FIG. The injection amount calculation means, 53 is a part which functions as a prediction variable calculation means.).
こうした先願と同様の機能を概説すると、41では補正の
根拠となる吸気系の付着、浮遊燃料の平衡量M0を3つの
パラメータN,Tp,Twを用いて演算する。これは第5図に
示すように、テーブル検索値を用いての直線近似の補間
計算処理にて求められる。たとえば、実際の水温Twが基
準温度Tw0〜Tw4(Tw0>…>Tw4)にて分割されたどの温
度領域にあるかを判別し、いま仮にTw≧Tw1であるとす
ると、Twに最も近くてTwよりも高い温度である基準温度
Tw0と、同じくTwよりも低い温度である基準温度Tw1に対
する2次元テーブル(たとえばM01テーブルを第7図に
示す。)からそのときのN,Tpに応じたテーブル値M00,M0
1(Tw0,Tw1に対するM0)を求め、これらの値M00,M01
と、基準温度Tw0,Tw1、現在の温度Twを用いて次式の直
線補間計算式によりM0を計算するのである(ステップ60
〜63)。なお、基準温度Tw0〜Tw4に対するM00〜M04は、
NとTpとをパラメータとして予め実測から求められるも
のである。To outline the same function as in the previous application, in 41, the adhering amount of the intake system and the equilibrium amount M0 of floating fuel, which are the basis of the correction, are calculated using three parameters N, Tp, and Tw. As shown in FIG. 5, this is obtained by interpolation calculation processing of linear approximation using table search values. For example, it is determined in which temperature region the actual water temperature Tw is divided by the reference temperatures Tw0 to Tw4 (Tw0 >>...> Tw4), and if Tw ≧ Tw1 is assumed, then Tw is closest to Tw. Reference temperature that is higher than
From the two-dimensional table (for example, the M01 table is shown in FIG. 7) for Tw0 and the reference temperature Tw1 which is also lower than Tw, the table values M00 and M0 corresponding to N and Tp at that time are obtained.
1 (M0 for Tw0, Tw1) is calculated, and these values M00, M01
Using the reference temperatures Tw0, Tw1 and the current temperature Tw, M0 is calculated by the following linear interpolation calculation formula (step 60).
~ 63). Note that M00 to M04 for the reference temperatures Tw0 to Tw4 are
It is obtained from actual measurement using N and Tp as parameters.
M0=M00+(M01−M00)×(Tw0−Tw)/(Tw0−Tw1) ステップ42ではこのようにして求めたM0に対して、現時
点での吸気系の付着、浮遊燃料の予測変数Mが単位周期
当たり(たとえばクランク軸1回転毎)にどの程度の割
合で接近するかの割合を表す係数DKを係数DKTw,DKNの積
から演算する(第6図のステップ80〜82)。M0 = M00 + (M01−M00) × (Tw0−Tw) / (Tw0−Tw1) In step 42, the adhering intake system at the present time and the predictive variable M of the floating fuel are the units with respect to M0 obtained in this way. A coefficient DK representing the rate of approaching at each cycle (for example, every one rotation of the crankshaft) is calculated from the product of the coefficients DKTw and DKN (steps 80 to 82 in FIG. 6).
ここに、DKTwは前回の処理で求めた単位周期当たりの過
渡補正量DMと水温Twに基づき、予め第9図のように形成
されたテーブルの検索により求められる値で、たとえば
過渡補正量DMが大きくなるほど、速く過不足量を無くす
ために大きく設定されている。また、DKNは、NとTpと
に基づき同じく第8図のように形成されたテーブルの検
索により求められる値で、たとえば回転速度が小さくな
るほど、大きく設定されている。Here, DKTw is a value obtained by searching a table previously formed as shown in FIG. 9 on the basis of the transient correction amount DM per unit cycle and the water temperature Tw obtained in the previous process. For example, the transient correction amount DM is The larger it is, the larger it is set in order to quickly eliminate the excess / deficiency. Further, DKN is a value obtained by searching a table similarly formed as shown in FIG. 8 on the basis of N and Tp, and is set to be larger as the rotational speed decreases, for example.
ステップ43では、この係数DKをM0とその予測値Mとの差
に乗じる演算により単位周期あたりの過渡補正量DM(=
DK(M0−M))を求める。ここに、予測値Mは、その時
点での吸気系の付着、浮遊燃料の予測変数であり、した
がって(M0−M)は平衡量からの過不足量を示し、この
値(M0−M)がN,Tp,DM,Twをパラメータとして求められ
る係数DKにてさらに補正されるのである。In step 43, the coefficient DK is multiplied by the difference between M0 and the predicted value M to calculate the transient correction amount DM (=
Calculate DK (M0-M)). Here, the predicted value M is a predictive variable of the adhesion of the intake system and the floating fuel at that time, and therefore (M0-M) indicates the excess / deficiency amount from the equilibrium amount, and this value (M0-M) is It is further corrected by the coefficient DK obtained by using N, Tp, DM and Tw as parameters.
第4図はこうして求められた過渡補正量DKを加味して最
終的な燃料噴射パルス幅TIを演算する処理を示してお
り、50にて基本パルス幅Tpに補正がなされ燃料用基本パ
ルス幅TpF(=Tp+DM)が求められる。そして、先願で
は、このTpFが51において、従来のTpに置き換わるので
ある。FIG. 4 shows the process of calculating the final fuel injection pulse width TI in consideration of the transient correction amount DK thus obtained. At 50, the basic pulse width Tp is corrected and the basic fuel pulse width TpF is corrected. (= Tp + DM) is required. Then, in the prior application, this TpF is replaced with the conventional Tp at 51.
最後にステップ53では、次回の処理のために前回の予測
値M(旧M)に今回の過渡補正量DMを加えて次回の予測
値Mを演算する。なお、この第4図の処理は、例えば機
関クランク軸1回転毎にTIが算出されて噴射され、その
都度予測値Mが更新される。Finally, in step 53, the next predicted value M is calculated by adding the current transient correction amount DM to the previous predicted value M (old M) for the next processing. In the process of FIG. 4, for example, TI is calculated and injected for each revolution of the engine crankshaft, and the predicted value M is updated each time.
第10図〜第12図は加速時,減速時,加速途中でのギヤチ
ェンジ時の運転状態の変化に対応させて上記制御におけ
る各種の量の変化を信号波形として示したもので、加速
初期や減速初期に応答性良く燃料増量や燃料減量が行わ
れている。これにより、過渡時にあっても所定の空燃比
から外れることがなく、過渡時の空燃比制御の制御精度
が向上するのである。FIGS. 10 to 12 show changes in various amounts in the above control as signal waveforms corresponding to changes in the operating state during acceleration, deceleration, and gear change during acceleration, and are shown as signal waveforms. In the initial stage of deceleration, fuel is being increased or decreased with good responsiveness. As a result, the control accuracy of the air-fuel ratio control during the transition is improved without the deviation from the predetermined air-fuel ratio even during the transition.
ところで、このような空燃比補正は減速時の燃料カット
からのリカバリー(噴射再開)を行う時にも対応可能で
あり、第13図は燃料カットリカバリー時の空燃比補正に
対応した補正処理の一例を示し、第14図はその処理によ
る場合の第11図に相当する波形図である。なお、第13図
において、所定値MFCは零または非常に小さな値(一定
値)である。By the way, such air-fuel ratio correction can also be applied when performing recovery (injection restart) from fuel cut during deceleration, and FIG. 13 shows an example of correction processing corresponding to air-fuel ratio correction during fuel cut recovery. 14 is a waveform diagram corresponding to FIG. 11 in the case of the processing. Note that, in FIG. 13, the predetermined value MFC is zero or a very small value (constant value).
一般に燃料カットを行うと、その間に吸気系の付着、浮
遊燃料が機関に吸入されてしまうため、リカバリー時に
は再噴射燃料の一部によって新たな吸気系の付着、浮遊
燃料が形成される分だけ実質供給燃料量が不足して空燃
比が希薄化するが、吸気系の付着、浮遊燃料を考慮する
先願では、こうした空燃比の希薄化も回避される。Generally, when the fuel is cut, the intake system adheres and the floating fuel is sucked into the engine during the fuel cut. Although the supplied fuel amount becomes insufficient and the air-fuel ratio becomes leaner, such leaning of the air-fuel ratio can also be avoided in the prior application considering the adhesion of the intake system and floating fuel.
次に、この発明の特徴部分を説明すると、この発明の要
部は、始動時の空燃比制御にあり、始動時の冷却水温に
応じて予測値についての初期値を演算するようにした点
にある。すなわち、第5図のサブルーチンにおいて、M0
を演算するのに先立ち、この機能をステップ57〜59にて
実行させるのである。Next, the characteristic part of the present invention will be described. The main part of the present invention is in the air-fuel ratio control at the time of starting, and the initial value for the predicted value is calculated according to the cooling water temperature at the time of starting. is there. That is, in the subroutine of FIG. 5, M0
This function is executed in steps 57 to 59 prior to calculating.
ここに、ステップ57,58が始動時を検出する手段として
機能する部分であり、スタータスイッチ24からの信号が
ONとなり、かつこのON信号が初めてであることから始動
時が検出される。Here, steps 57 and 58 are parts that function as means for detecting the start time, and the signal from the starter switch 24 is
Since it is turned ON and this ON signal is the first time, the start time is detected.
ステップ59はこうした始動時に、冷却水温Twに応じて予
測値についての初期値を演算する手段として機能する部
分で、初期値M1はTwに応じて第15図のテーブルを検索す
ることにより求められる。Step 59 is a portion that functions as a means for calculating an initial value for the predicted value according to the cooling water temperature Tw at such a start, and the initial value M 1 is obtained by searching the table in FIG. 15 according to Tw. .
同図からも明らかなように、冷却水温Twが高いときに
は、吸気系に残留する吸気系の付着、浮遊燃料量も多い
ことを考慮して、M1(=f(Tw))を大きく予測(設
定)するのである。具体的には、第15図のデータは実験
により最適値を求める。As is clear from the figure, when the cooling water temperature Tw is high, M 1 (= f (Tw)) is predicted to be large in consideration of the fact that the intake system remaining in the intake system and the amount of floating fuel are large. Set). Specifically, the data shown in FIG. 15 is obtained by an experiment to find the optimum value.
次に、第16図に基づき、機関停止からまもない再始動時
につき、冷却水温に応じて予測値の初期化を行う動作を
導入した本実施例(一点鎖線で示す。)の作用を、吸気
系の付着、浮遊燃料の残留の如何に拘わらず初期値を零
とする場合(破線で示す。)との比較の上に説明する
と、同図は始動及び始動後の各種変数の量の信号波形を
示す。Next, based on FIG. 16, the operation of the present embodiment (indicated by the one-dot chain line) introducing the operation of initializing the predicted value according to the cooling water temperature at the time of restart immediately after the engine is stopped, Explaining in comparison with the case where the initial value is set to zero (indicated by the broken line) regardless of whether the intake system adheres or the floating fuel remains, the figure shows the signals of the amount of various variables after starting and after starting. The waveform is shown.
機関停止からまもない再始動時にあっては、始動と次の
始動までの期間が長く機関が冷間状態にある始動時と相
違して、機関停止時に吸気系に残留する吸気系の付着、
浮遊燃料が消失することなく存在する。At the time of a restart shortly after the engine is stopped, the period between the start and the next start is long, and unlike the start when the engine is in a cold state, the adhesion of the intake system remaining in the intake system when the engine is stopped,
Floating fuel exists without loss.
ところが、こうした吸気系の付着、浮遊があるにも拘わ
らず、初期値M1を零として制御が開始されると、吸気系
に残留する吸気系の付着、浮遊燃料量に相当する分が燃
料過多となる。However, in spite of the adhesion and floating of the intake system, if the control is started with the initial value M 1 set to zero, the intake system remaining in the intake system and the amount of floating fuel corresponding to the amount of floating fuel are excessive. Becomes
すなわち、Mは予測値といいつつも、始動開始時に残留
する吸気系の付着、浮遊燃料量を予測していないのであ
り、残留分だけ供給燃料量が過多となり、これにより、
同図に示すように再始動直後のCOの排出量を多くしてし
まうのである。That is, although M is a predicted value, it does not predict the adherence of the intake system and the amount of floating fuel remaining at the start of the start, and the supplied fuel amount becomes excessive by the residual amount.
As shown in the figure, CO emissions immediately after restart are increased.
これに対し、この実施例では、そのときの冷却水温Twを
用いて第15図に示すテーブルを検索することにより吸気
系に残留する吸気系の付着、浮遊燃料量を求め、この値
を予測値についての初期値M1(=f(Tw))として制御
を開始する。On the other hand, in this embodiment, by using the cooling water temperature Tw at that time, the table shown in FIG. 15 is searched to determine the amount of adhering intake air remaining in the intake system and the amount of floating fuel, and this value is the predicted value. The control is started with an initial value M 1 (= f (Tw)) for
すなわち、再始動時に残留する吸気系の付着、浮遊燃料
量を冷却水温を用いて的確に予測することにより、この
残留燃料量に相当する分だけ少なめに燃料供給を行うの
であり、これにより、たとえ加速直後に機関停止し吸気
系に多くの吸気系の付着、浮遊燃料を残留させたまま、
再始動することがあっても、燃料供給量が過剰となるこ
とはなく、始動時の運転状態に応じた適正値を得ること
ができ、したがって、有害排出物の増大を抑制するとと
もに、燃料過多による始動不良を防ぐことができるので
ある。That is, by accurately predicting the adhesion of the intake system and the amount of floating fuel remaining at the time of restart by using the cooling water temperature, the fuel is supplied a little less by the amount corresponding to this residual fuel amount. Immediately after acceleration, the engine stopped and many intake systems adhered to the intake system, leaving floating fuel remaining,
Even if the engine is restarted, the amount of fuel supply does not become excessive, and an appropriate value can be obtained according to the operating state at the time of start, thus suppressing the increase of harmful emissions and excess fuel. It is possible to prevent a start failure due to.
(発明の効果) 以上説明のとおり、この発明によれば、始動時の機関温
度に応じて吸気系の付着、浮遊燃料の予測値についての
初期値を演算するようにしたので、機関停止直後の再始
動時において、吸気系に吸気系の付着、浮遊燃料が多く
残留する機関高温時には、この残留分を見越して予め少
なめに噴射量が供給され、これにより、燃料の供給過多
による有害排出物の増大や始動不良を防ぐことができ
る。(Effects of the Invention) As described above, according to the present invention, the initial value of the predicted value of the adherence of the intake system and the floating fuel is calculated according to the engine temperature at the time of starting. At restart, when the intake system adheres to the intake system and the engine is at a high temperature where a large amount of suspended fuel remains, a small injection amount is supplied in advance in anticipation of this residual amount, which causes harmful emissions due to excessive fuel supply. It is possible to prevent increase and start failure.
第1図はこの発明の概念的構成を示したブロック図であ
る。第2図はこの発明の一実施例の機械的構成図であ
る。第3図〜第6図は前記実施例に対応した空燃比制御
の制御内容を表した流れ図である。第7図は前記空燃比
制御において吸気系の付着、浮遊燃料量の定常条件にお
ける平衡量M0を与えるテーブルの内容例を示した特性線
図、第8図,第9図は同じく前記空燃比制御において所
定の係数DKを与えるテーブルの内容例を示した特性線図
である。 第10図〜第12図は前記空燃比制御におけるパラメータな
いし係数等の変化と燃料噴射パルス幅の制御特性との関
係を信号波形として示した加速時,減速時,ギヤチェン
ジ時の波形図である。 第13図は前記空燃比制御を減速燃料カットからのリカバ
リー時に適用するようにした処理内容の一例を表した流
れ図、第14図はその処理による場合の第11図に相当する
波形図である。 第15図は前記空燃比制御に使用される予測値Mについて
の初期値M1を与えるテーブルの内容例を示した特性線図
である。第16図は前記空燃比制御におけるパラメータな
いし係数等の変化と噴射パルス幅の制御特性との関係を
信号波形として示した始動及び始動後の波形図である。 1……運転状態検出手段、2……基本噴射量演算手段、
3……平衡量演算手段、4……差値演算手段、5……補
正係数演算手段、6……過渡補正量演算手段、7……予
測変数演算手段、8……燃料量噴射量演算手段、9……
燃料供給手段、10……機関始動検出手段、11……初期値
演算手段、15……スロットル弁、16……吸気通路、17…
…燃料噴射弁、20……空気流量センサ、21……クランク
角センサ、22……水温センサ、23……空燃比センサ、24
……スタータスイッチ、25……スロットル弁開度セン
サ、30……コントロールユニット。FIG. 1 is a block diagram showing a conceptual configuration of the present invention. FIG. 2 is a mechanical block diagram of an embodiment of the present invention. 3 to 6 are flow charts showing the control contents of the air-fuel ratio control corresponding to the above embodiment. FIG. 7 is a characteristic diagram showing an example of the contents of a table that gives the equilibrium amount M0 under the steady condition of the intake system adhesion and floating fuel amount in the air-fuel ratio control, and FIGS. 8 and 9 are also the air-fuel ratio control. 6 is a characteristic diagram showing an example of the contents of a table that gives a predetermined coefficient DK in FIG. FIG. 10 to FIG. 12 are waveform charts at the time of acceleration, deceleration, and gear change, which show the relationship between changes in parameters or coefficients in the air-fuel ratio control and control characteristics of the fuel injection pulse width as signal waveforms. . FIG. 13 is a flow chart showing an example of processing contents in which the air-fuel ratio control is applied at the time of recovery from deceleration fuel cut, and FIG. 14 is a waveform diagram corresponding to FIG. 11 in the case of the processing. FIG. 15 is a characteristic diagram showing an example of contents of a table which gives an initial value M 1 for the predicted value M used in the air-fuel ratio control. FIG. 16 is a waveform diagram showing the relationship between changes in parameters or coefficients in the air-fuel ratio control and the control characteristics of the injection pulse width as signal waveforms and the waveforms after and after the start. 1 ... Operating state detection means, 2 ... Basic injection amount calculation means,
3 ... Balance amount calculation means, 4 ... Difference value calculation means, 5 ... Correction coefficient calculation means, 6 ... Transient correction amount calculation means, 7 ... Prediction variable calculation means, 8 ... Fuel quantity injection amount calculation means , 9 ……
Fuel supply means, 10 ... Engine start detection means, 11 ... Initial value calculation means, 15 ... Throttle valve, 16 ... Intake passage, 17 ...
... Fuel injection valve, 20 ... Air flow rate sensor, 21 ... Crank angle sensor, 22 ... Water temperature sensor, 23 ... Air-fuel ratio sensor, 24
...... Starter switch, 25 ...... Throttle valve opening sensor, 30 ...... Control unit.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 Q 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 Q 7536-3G
Claims (1)
数、機関負荷及び機関温度を含むパラメータから検出す
る運転状態検出手段と、機関の運転状態に基づいて燃料
の基本噴射量を演算する基本噴射量演算手段と、機関回
転数、機関負荷及び機関温度に基づいて吸気系の付着、
浮遊燃料の平衡量を演算する平衡量演算手段と、平衡量
演算手段で演算した付着、浮遊燃料の平衡量とその時点
での吸気系の付着、浮遊燃料の予測変数との差値を演算
する差値演算手段と、差値演算手段で演算した差値を燃
料噴射量の補正にどの程度反映させるかを示す補正係数
を、機関回転数、機関負荷及び機関温度に基づいて演算
する補正係数演算手段と、前記差値と前記補正係数とに
基づいて過渡補正量を演算する過渡補正量演算手段と、
過渡補正量演算手段で演算した過渡補正量と前記付着、
浮遊燃料の予測変数とを燃料噴射に同期して加算し、該
加算値で予測変数を更新する予測変数演算手段と、前記
基本噴射量演算手段で演算した基本噴射量と前記過渡補
正量演算手段で演算した過渡補正量とに基づいて燃料噴
射量を演算して噴射信号を出力する燃料噴射量演算手段
と、前記噴射信号に基づいて機関に燃料を供給する燃料
供給手段と、機関の始動を検出する機関始動検出手段
と、機関の始動時に機関温度に基づいて前記予測変数の
初期値を演算する初期値演算手段とを備えたことを特徴
とする内燃機関の空燃比制御装置。1. An operating state detecting means for detecting an operating state of an engine from parameters including at least an engine speed, an engine load and an engine temperature, and a basic injection for calculating a basic injection amount of fuel based on the operating state of the engine. The amount calculation means and the attachment of the intake system based on the engine speed, the engine load and the engine temperature,
Equilibrium amount calculation means for calculating the equilibrium amount of floating fuel, and the adhesion calculated by the equilibrium amount calculation means, the difference value between the equilibrium amount of floating fuel and the adhesion of the intake system at that time, and the predictive variable of floating fuel A difference value calculation means and a correction coefficient calculation for calculating a correction coefficient indicating how much the difference value calculated by the difference value calculation means is reflected in the correction of the fuel injection amount based on the engine speed, the engine load and the engine temperature. Means, and a transient correction amount calculation means for calculating a transient correction amount based on the difference value and the correction coefficient,
The transient correction amount calculated by the transient correction amount calculation means and the adhesion,
Prediction variable calculation means for adding a prediction variable of floating fuel in synchronism with fuel injection and updating the prediction variable with the added value, basic injection amount calculated by the basic injection amount calculation means, and transient correction amount calculation means The fuel injection amount calculation means for calculating the fuel injection amount based on the transient correction amount calculated in step 1 and outputting an injection signal, the fuel supply means for supplying fuel to the engine based on the injection signal, and the engine start An air-fuel ratio control apparatus for an internal combustion engine, comprising: engine start detection means for detecting; and initial value calculation means for calculating an initial value of the predictive variable based on the engine temperature when the engine is started.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6684786A JPH0670386B2 (en) | 1986-03-25 | 1986-03-25 | Air-fuel ratio controller for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6684786A JPH0670386B2 (en) | 1986-03-25 | 1986-03-25 | Air-fuel ratio controller for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62223429A JPS62223429A (en) | 1987-10-01 |
JPH0670386B2 true JPH0670386B2 (en) | 1994-09-07 |
Family
ID=13327646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6684786A Expired - Lifetime JPH0670386B2 (en) | 1986-03-25 | 1986-03-25 | Air-fuel ratio controller for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670386B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08121211A (en) * | 1994-10-27 | 1996-05-14 | Honda Motor Co Ltd | Fuel control device for internal combustion engine |
JP4010280B2 (en) * | 2003-05-27 | 2007-11-21 | トヨタ自動車株式会社 | Fuel injection amount control device for internal combustion engine |
JP2018162747A (en) * | 2017-03-27 | 2018-10-18 | 株式会社ケーヒン | Internal combustion engine control device |
-
1986
- 1986-03-25 JP JP6684786A patent/JPH0670386B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62223429A (en) | 1987-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4922877A (en) | System and method for controlling fuel injection quantity for internal combustion engine | |
US6959242B2 (en) | Engine fuel injection control device | |
US5647324A (en) | Engine air-fuel ratio controller | |
JP2003056382A (en) | Fuel injection controller for internal combustion engine | |
JPH0670386B2 (en) | Air-fuel ratio controller for internal combustion engine | |
US5634449A (en) | Engine air-fuel ratio controller | |
JP3879603B2 (en) | Engine air-fuel ratio control device | |
JPS6050974B2 (en) | Air fuel ratio control method | |
JPH09177578A (en) | Air-fuel ratio control device for engine | |
JPH0615828B2 (en) | Fuel injection control device for internal combustion engine | |
JP2884386B2 (en) | Fuel property detection device for internal combustion engine | |
JPH0656112B2 (en) | Fuel injection control device for internal combustion engine | |
JPH01305142A (en) | Fuel injection controller of internal combustion engine | |
JPH0670382B2 (en) | Air-fuel ratio controller for internal combustion engine | |
JPH0763111A (en) | Misfire detection device for engine | |
JPH01216040A (en) | Electronic control fuel injection device for internal combustion engine | |
JP2565345B2 (en) | Fuel supply device for internal combustion engine | |
JP3564876B2 (en) | Engine air-fuel ratio control device | |
JPH07116962B2 (en) | Air-fuel ratio controller for internal combustion engine | |
JP3564923B2 (en) | Engine air-fuel ratio control device | |
JP2540185Y2 (en) | Fuel injection control device for internal combustion engine | |
JPH0665856B2 (en) | Air-fuel ratio correction device for internal combustion engine | |
JP2750777B2 (en) | Electronic control fuel supply device for internal combustion engine | |
JP2962981B2 (en) | Control method of air-fuel ratio correction injection time during transient | |
JPH05106485A (en) | Fuel oil consumption control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |