JPS5841231A - Method of electronic controlling for fuel injection - Google Patents

Method of electronic controlling for fuel injection

Info

Publication number
JPS5841231A
JPS5841231A JP13779081A JP13779081A JPS5841231A JP S5841231 A JPS5841231 A JP S5841231A JP 13779081 A JP13779081 A JP 13779081A JP 13779081 A JP13779081 A JP 13779081A JP S5841231 A JPS5841231 A JP S5841231A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
air
engine
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13779081A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
山田 泰男
Shiro Nagasawa
長沢 四郎
Takao Niwa
丹羽 孝夫
Takeshi Gono
郷野 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP13779081A priority Critical patent/JPS5841231A/en
Priority to US06/413,900 priority patent/US4483301A/en
Publication of JPS5841231A publication Critical patent/JPS5841231A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control fuel injection appropriately without imapiring the engine performance, by controlling the fuel increasing and decreasing ratio according to the width of a datum fuel injection pulse by use of a means which controls the injection quantity of fuel through metering of air-flow rate, and making the air-fuel ratio lean in a low-load range to meet with the level of the load. CONSTITUTION:When an engine is started with a key switch 15 and a starter switch 14 turned ON, calculation of a mainr outine is started and the temperature of cooling water is read from an analogue input port 204. The quantity of correction for fuel is calculated from the result of the above calculation and the result is stored in a RAM206. Then, a CPU200 proceeds to performing an interruption processing routine by a signal from an interruption control section 202, and a datum injection quantity of fuel Tp determined by engine speed N, air-flow rate Q and a constant F is calaculated deriving the engine speed N from an engine speed counter 201 and the flow rate Q of intake air from the input port 204. The load is detected from the value Tp and the mode of operation is selected. On the basis of this selection, each quantity of correction is read out from a ROM207 through judgement of increase, feedback or decrease of fuel. Then, the air-fuel ratio is determined from the quantity of correction obtained by the main routine.

Description

【発明の詳細な説明】 零発@紘電子制御式燃料噴射方mKIlする0本尭−O
方法は、例えば、マスフロー1式の電子制御式燃料噴射
装置に用いられる。従来の構成では、燃料噴射弁の開弁
時間TIEエアフローメータの出力信号Qと、エンジン
回転速度NO関数として一義的にTl =に一+T、(
Kは定数、T、は無効噴射時間)として決定され、空燃
比が一定になるように制定されている。tたaSセンナ
、三元触媒を用いたシステムでは、上記の噴射/中ルス
でiiする空燃比をペースに排ガス中のO1濃度を検出
して、エンジンの負荷のほぼ全域にわたって理論空燃比
(λ:1)に閉ループ制御が行われている。最近ツエン
ジンへの要求としては、排出ガスの浄化は勿論のこと、
燃料消費効率の向上に対する要求もかなシ高くなってい
る。エンジンに供給する混合気の質という点から燃料消
費効率向上を考えた場合、空燃比(〜↑)がかなり大き
く寄与していることは周知の事実である。一般的には空
燃比が大きい(リーンである)1m、燃料消費効率は向
上すると考えられているが、実際にはエンジン本体に特
殊な細工をしない限り、ル↑=19〜20程度で失火が
始まるため、実用上使用可能な空燃比は18〜19まで
ということになる。
[Detailed description of the invention] Zero firing @Hiro electronically controlled fuel injection method mKIl 0-O
The method is used, for example, in a mass flow type electronically controlled fuel injection system. In the conventional configuration, Tl = 1 + T, (
K is determined as a constant and T is determined as an ineffective injection time), and is established so that the air-fuel ratio is constant. In a system using a taS sensor and a three-way catalyst, the O1 concentration in the exhaust gas is detected based on the air-fuel ratio set at the above injection/medium pulse, and the stoichiometric air-fuel ratio (λ :1) Closed loop control is performed. Recently, the requirements for twin engines include, of course, the purification of exhaust gas,
Demand for improved fuel consumption efficiency is also increasing. It is a well-known fact that when considering improvement in fuel consumption efficiency from the perspective of the quality of the air-fuel mixture supplied to the engine, the air-fuel ratio (~↑) makes a fairly large contribution. It is generally believed that the higher the air-fuel ratio (leaner) at 1 m, the higher the fuel consumption efficiency, but in reality, unless special modifications are made to the engine body, misfires occur at around ↑ = 19 to 20. Therefore, the air-fuel ratio that can be used practically is 18 to 19.

しかしながう、エンジンに供給する混合気の空燃比を薄
くするとトルクの低下が著しく、全開(wo’r )状
態では出力空燃比(鴛12〜13)と比べて大幅にトル
クが低下し、車両のドライバビリティ上#)壕p好まし
くない状態になる。現在のシステムでは厳密にはエンジ
ン負荷(マニホールド圧)に応じた制御は行われておら
ず、このような制御を行おうとし九場合、新たに吸気圧
センサ等の負荷検出装置が必要となる。tた、単に空燃
比をリーン、リッチと制御するのみではCo、HC。
However, when the air-fuel ratio of the air-fuel mixture supplied to the engine is made leaner, the torque decreases significantly, and in the fully open (wo'r) state, the torque decreases significantly compared to the output air-fuel ratio (12-13). #) In terms of vehicle drivability, the trench becomes unfavorable. Strictly speaking, current systems do not perform control according to engine load (manifold pressure), and if such control is attempted, a new load detection device such as an intake pressure sensor is required. However, simply controlling the air-fuel ratio to lean or rich will reduce the amount of Co, HC.

Nowなどの排出ガスの悪化を招くため、現在は全ての
エンジン負荷域で前述の閉ループ制御を行うている。す
表わち、空燃比をり、チ、あるいはり一ン状態に制御す
るということは三元触媒システムで蝶あtシ考えられな
かり九。
Currently, the above-mentioned closed-loop control is performed in all engine load ranges to avoid deterioration of exhaust gases such as Now. In other words, it is impossible to control the air-fuel ratio to -, -, or -1 with a three-way catalyst system.

前記の燃料制御方法では次の欠点がある。一般的に% 
HCI Co # NOx等の有害な排出ガスはエンジ
ンの負荷が大きい程、排出度合が高い、っまシ、高速走
行や加速時には多量に排出される。しかしながら、低速
で軽負荷の走行条件では元々の有害ガス発生割合が小さ
く、このような領域で理論空燃比に制御しなくても有害
ガスの発生量は少々い、すなわち、このような領域では
さらにリーンの空燃比で運転できるにもかかわらず理論
空燃比に設定しているため、燃料消費効率の見地からは
損な使い方をしている。
The above fuel control method has the following drawbacks. Typically%
HCI Co # The higher the load on the engine, the higher the amount of harmful exhaust gases such as NOx is emitted, and a large amount is emitted during high-speed driving and acceleration. However, under low-speed, light-load driving conditions, the original rate of harmful gas generation is small, and even if the air-fuel ratio is not controlled to the stoichiometric air-fuel ratio in such a region, the amount of harmful gas generated is small. Although it is possible to operate at a lean air-fuel ratio, it is set to the stoichiometric air-fuel ratio, which is a disadvantageous use from the standpoint of fuel consumption efficiency.

本発明の主な目的は、従来技術における前述の問題点に
かんがみ、マスクロ一方式電子燃料噴射装置の基本演算
ノ々ルス幅丁νがQを吸入空気量、Nをエンジン回転数
として、Φ乍にほぼ比例するヒラメータとしてTPO大
きさに対応して最終的な燃料噴射量に増量あるいは減量
を加えるという構想にtとづ龜、車両のドライバfリテ
ィを損なわずに適確な燃料噴射制御を行うことにある。
In view of the above-mentioned problems in the prior art, the main purpose of the present invention is to calculate the basic calculation nodal width ν of a maskro one-way electronic fuel injection system, where Q is the amount of intake air and N is the engine speed, Based on the concept of increasing or decreasing the final fuel injection amount in response to the TPO size as a hirameter that is approximately proportional to There is a particular thing.

を九、本発明O他の目的は、排気ガス対策として三元触
媒および03センサを用い、Co 、 IC、NOx 
O排出が多い高負荷域を従来の帰還制御をし、排気ガス
が比較的少ない軽負荷域を前述の如く負荷に応じてリー
ンに制御することにより、エミ、シ曹ンの浄化と燃料消
費効率の向上を図ることにある。
Another purpose of the present invention is to use a three-way catalyst and 03 sensor as an exhaust gas countermeasure, and to reduce CO, IC, and NOx.
By performing conventional feedback control in the high load range where O emissions are high, and by controlling the light load range where exhaust gas is relatively low in a lean manner according to the load as described above, emissions and carbon dioxide purification and fuel consumption efficiency are achieved. The aim is to improve the

本件において眸発明の一つの形態として、空気量を計量
して燃料噴射量を調節する電子制御式燃料噴射装置を用
い、基本燃料噴射/9ルス幅(TP)の大きさに応じて
燃料の増減量比を調節する、電子制御式燃料噴射制御方
法が提供される。
In this case, as one form of the invention, an electronically controlled fuel injection device that measures the amount of air and adjusts the amount of fuel injection is used, and the amount of fuel increases or decreases according to the size of the basic fuel injection/9 pulse width (TP). An electronically controlled fuel injection control method for adjusting a quantity ratio is provided.

また、本件においては発明の他の形態として、空気量を
計量して燃料噴射量を調節する電子制御式燃料噴射装置
を用い、基本燃料噴射ノ譬ルス幅(T、)の大きさに応
じて燃料増減量比を調節し、かつ、所定のエンジン負荷
に対応する基本燃料噴射パルス幅の所定値以上の領域に
おいては、olセンナおよび三元触媒を用いて閉ルーツ
制御を行へ該所定のエンシン負荷よシ軽い領域において
は基本燃料噴射/豐ルス幅の値に応じて空燃比をり一ン
に設定する電子制御式燃料噴射制御方法が提供される。
In addition, in this case, as another form of the invention, an electronically controlled fuel injection device that measures the amount of air and adjusts the amount of fuel injection is used, and according to the size of the basic fuel injection nozzle width (T, ), The fuel increase/decrease ratio is adjusted, and in a region where the basic fuel injection pulse width corresponding to a predetermined engine load is equal to or greater than a predetermined value, the predetermined engine is controlled to perform closed roots control using an ol senna and a three-way catalyst. An electronically controlled fuel injection control method is provided in which the air-fuel ratio is set to one level in accordance with the value of the basic fuel injection/flush width in a region where the load is lighter.

本発明の一実施例としての電子制御式燃料噴射制御方法
が適用される装置が第1図に示される。
An apparatus to which an electronically controlled fuel injection control method as an embodiment of the present invention is applied is shown in FIG.

エンジン(1)は自動車に積載される4ナイクル火花点
火機関で、燃焼用空気はエアクリーナ(2λ吸気管(3
)、スロットルパルf(4)を経て吸入する。また燃料
制御方法2oの出方にょシ、電磁式燃料噴射弁(ISl
)〜(56)を開弁作動させて各気筒に供給される。燃
焼後の排ガスは排気マニホールP(6)%排気管(7)
等を経て、大気に放出される。吸気管(3)にはエンジ
ン(1)に吸入される吸気量を検出し、吸気量に化シタ
アナログ電圧を出力する一テンシ璽メータ式吸気量セン
ナ(8)が設置されている。tた該センナの入口には、
吸気の温度を検出し吸気温に応じて抵抗値が変化するサ
ーミスタ式吸気温センサが設置されている。ti、エン
ジン(1)Kは冷却水温を検出し冷却水温に応じて抵抗
値が変化するt−iスタ式水温竜ンサ(10)が設置さ
れておシ、回転速度センナ(11)はエンジン(1)の
クランク軸の回転速度に応じた周波数(DI4ルス信号
を出力する。この回転速度センナとしては、たとえば、
点火装置の点火コイルを用いれば良く、コイルの一次側
端子からの点火・9ルス信号を回転速度信号とすれば良
い。また、排気系には排出がスの01濃度に応じて出力
する公知の酸素濃度センサ(12)%および理論空燃比
のときCo 、 HC。
The engine (1) is a 4N spark ignition engine installed in a car, and the combustion air is supplied through an air cleaner (2λ intake pipe (3
), inhale via throttle pulse f(4). In addition, the fuel control method 2o is based on the electromagnetic fuel injection valve (ISl).
) to (56) are opened and supplied to each cylinder. Exhaust gas after combustion is passed through exhaust manifold P (6)% exhaust pipe (7)
etc., and is released into the atmosphere. The intake pipe (3) is equipped with a tensile meter type intake air amount sensor (8) that detects the amount of intake air taken into the engine (1) and outputs an analog voltage corresponding to the amount of intake air. At the entrance of the senna,
A thermistor-type intake temperature sensor is installed that detects the temperature of intake air and whose resistance value changes depending on the intake air temperature. ti, engine (1) K is equipped with a ti star type water temperature sensor (10) that detects the coolant temperature and changes the resistance value according to the coolant temperature, and the rotation speed sensor (11) is installed in the engine (1). 1) Outputs a frequency (DI4 pulse signal) according to the rotational speed of the crankshaft. As this rotational speed sensor, for example,
The ignition coil of the ignition device may be used, and the ignition/9 pulse signal from the primary terminal of the coil may be used as the rotational speed signal. In addition, the exhaust system is equipped with a known oxygen concentration sensor (12) that outputs an output according to the concentration of CO2 and HC when the exhaust gas is at the stoichiometric air-fuel ratio.

NOxの三成分を同時に高い浄化率で浄化する三元触媒
装置(13)が設けられている。制御回路(20)は各
センサ(8)〜(12)の検出信号にもとづいて燃料噴
射量を演算する回路で、電磁式噴射弁(51)〜(56
)の開弁時間を制御することにより、空燃比を調整する
A three-way catalyst device (13) is provided that simultaneously purifies the three components of NOx at a high purification rate. The control circuit (20) is a circuit that calculates the fuel injection amount based on the detection signals of each sensor (8) to (12), and is a circuit that calculates the fuel injection amount based on the detection signal of each sensor (8) to (12).
), the air-fuel ratio is adjusted by controlling the valve opening time.

第2図によ多制御回路20について説明する。The multi-purpose control circuit 20 in FIG. 2 will be explained.

200は燃料噴射量を演算するマイクロデロセ。200 is a micro derosé that calculates the fuel injection amount.

す(CPU )である。201は回転数カウンタで、回
転速度(数)センサ11からの信号よジエンジン回転数
をカラン技する回転数カウンタである。
(CPU). Reference numeral 201 denotes a rotation number counter, which reads the signal from the rotation speed (number) sensor 11 and the engine rotation speed.

t+、この回転数カウンタ201は、エンジン回転に同
期して割り込み制御部202に割シ込み指令信号管送る
。割シ込み制御部202はこの信号を受けると、コモン
パス212を通じてCPU 200に割)込み信号を出
力する。デジタル入力デート203は、図示しないスタ
ータの作動をオンオフするスタータスイッチ14からの
スタータ信号等のデジタル信号をCPU 200に伝達
する。アナログ入力ポート204は、アナログマルチブ
レフサとA−D変換器から成り、吸気量センサ8、冷却
水温センサ9からの各信号をA−D変換して順次CPU
 200に読み込ませる機能を持つ、これら各ユニット
201,202,203,204の出力情報は、コモン
バス212奢通してCPtJ 200に伝達される。2
05は電源回路でおり、キースイッチ15を通してバッ
テリ16に接続されている。
t+, the rotation number counter 201 sends an interrupt command signal to the interrupt control section 202 in synchronization with the engine rotation. When the interrupt control unit 202 receives this signal, it outputs an interrupt signal to the CPU 200 via the common path 212. The digital input date 203 transmits to the CPU 200 a digital signal such as a starter signal from the starter switch 14 that turns on and off the operation of a starter (not shown). The analog input port 204 consists of an analog multiplexer and an A-D converter, converts each signal from the intake air amount sensor 8 and the cooling water temperature sensor 9 from A to D, and sequentially sends the signals to the CPU.
The output information of each of these units 201, 202, 203, and 204 having the function of being read into the CPtJ 200 is transmitted to the CPtJ 200 through the common bus 212. 2
05 is a power supply circuit, which is connected to a battery 16 through a key switch 15.

206は読堰り、書込みを行い得るランダムアクセスメ
モリ(RAM )である。207は!ログラムや各種の
定数等を配憶しておく読み出し専用メモリ(ROM )
である。208はレジスタを含む燃料噴射時間制御用カ
ウンタで、ダウンカウンタより成り、CPU200で演
算された電磁式燃料噴射弁51〜56の開弁時間、つま
り燃料噴射量を表すデジタル信号を実際の電磁式燃料噴
射弁51〜56の開弁時間を与えるパルス時間幅のノf
ルス信号に変換する。209は電磁式燃料噴射弁51〜
56を駆動する電力増幅部である。210はタイマで経
過時間を測定し、CPtT2O0に伝達する。
206 is a random access memory (RAM) that can be read and written. 207 is! Read-only memory (ROM) that stores programs and various constants, etc.
It is. 208 is a fuel injection time control counter including a register, which is composed of a down counter, and converts a digital signal representing the opening time of the electromagnetic fuel injection valves 51 to 56 calculated by the CPU 200, that is, the fuel injection amount, to the actual electromagnetic fuel. Nof of the pulse time width that gives the opening time of the injection valves 51 to 56
Convert to a pulse signal. 209 is an electromagnetic fuel injection valve 51~
56. 210 measures the elapsed time with a timer and transmits it to CPtT2O0.

回転数カウンタ201は、回転数センサ10の出力によ
)エンジン1回転に1回ニンジン回転数を測定し、その
測定の終了時に割り込み制御部202に割り込み指令信
号を供給する。割り込み制御部202は、その信号に応
答して割り込み信号を発生し、CPU200に燃料噴射
量の演算を行う割り込み処理ルーチンを実行させる。
The rotational speed counter 201 measures the carrot rotational speed once per engine rotation (based on the output of the rotational speed sensor 10), and supplies an interrupt command signal to the interrupt control section 202 at the end of the measurement. The interrupt control unit 202 generates an interrupt signal in response to the signal, and causes the CPU 200 to execute an interrupt processing routine for calculating the fuel injection amount.

第3図(−はCPU 200の概略フローチャートを示
すもので、このフローチャートにもとづきCPU200
の機能を説明すると共に構成全体の作動をも説明する。
FIG. 3 (- indicates a schematic flowchart of the CPU 200. Based on this flowchart, the CPU 200
The functions of the system will be explained as well as the operation of the entire configuration.

キースイッチ15並びにスタータスイッチ14がオンし
てエンジンlが始動されるとステ、f80のスタートに
てメインルーチンの演算処理が開始され、ステップ81
にて初期化の処理が実行され、ステ、グS2においてア
ナログ入力/−)204からの冷却水温に応じ九デジタ
ル値を読み込む。ステ、グS3ではその結果よシ燃料補
正蓋を演算し、結果をRAM 206に格納する。
When the key switch 15 and starter switch 14 are turned on and the engine 1 is started, the calculation process of the main routine is started at step 80, and step 81
Initialization processing is executed in step S2, and nine digital values are read in accordance with the cooling water temperature from the analog input (-) 204 in step S2. In step S3, the fuel correction lid is calculated based on the result, and the result is stored in the RAM 206.

ステラf83が終了するとステ、グS2に戻る。When Stella f83 ends, the process returns to step S2.

通常はCPU 200は第3図(a)の82〜S3のメ
インルーチンの処理を制御グロダラムに従って、くり返
し実行する。割り込み制御部202からの割り込み信号
が入力されると、CPU200はメインルーチンの処理
中であっても直ちにその処理を中断し、第3図(b)に
示されるステ、グ840の割シ込み処理ルーチンに移る
。ステ、fS41では回転数カウンタ201からのエン
ジン回転数Nを表わす信号を取り込み、次にステ、f8
42にてアナログ入力ポート204から吸入空気量Qを
表わす信号を敗り込む0次にステ、グ843にてエンシ
ン回転数N1吸入空気量および定数yから決まる基本的
壜燃料噴射量(基本噴射時間幅TP)を計算する。計算
式は’f p w iP X−である。
Normally, the CPU 200 repeatedly executes the main routine processing from 82 to S3 in FIG. 3(a) according to the control program. When an interrupt signal is input from the interrupt control unit 202, the CPU 200 immediately interrupts the main routine even if it is in progress, and executes the interrupt processing in step 840 shown in FIG. 3(b). Move on to the routine. The step fS41 takes in a signal representing the engine speed N from the rotation speed counter 201, and then the step f8
At step 42, a signal representing the intake air amount Q is input from the analog input port 204. At step 843, the basic bottle fuel injection amount (basic injection time) determined from the engine rotation speed N1 intake air amount and constant y is input. Calculate the width TP). The calculation formula is 'f p w iP X-.

次に、ステップ844では基本噴射量T、の[K応じて
増量、帰還、減量のいずれかを判断し、おのおのの補正
量をステップ845でROM 207よ〕読み出す、そ
の後、メインルーチンで求めた燃料噴射用の補正量をR
AM 206から読み出し、空燃比を決定する最終的な
補正計算を行なう、その後、ステツブ846を経てメイ
ンルーチンに復帰する。
Next, in step 844, the basic injection amount T is determined to be increased, returned, or decreased depending on K, and each correction amount is read out from the ROM 207 in step 845. After that, the fuel determined in the main routine is Set the correction amount for injection to R
A final correction calculation is made to determine the air/fuel ratio by reading from the AM 206, and the process then returns to the main routine via step 846.

次に、本発明における空燃比の負荷制御を説明する。t
ず、エンジンの負荷を検出する方法について説明する。
Next, load control of the air-fuel ratio in the present invention will be explained. t
First, a method for detecting engine load will be explained.

第4図は燃料噴射制御方式として、いわゆるL −J@
tronla形のものを用いた場合に各エンシン負荷で
同一の空燃比特性を得ようとした時の燃料噴射時間がど
うなるかを示したものである。一般的には、エンジン回
転数により体積効率が変化するためリニアにはならない
が、おる負荷に対する噴射時間はほぼ比例している。す
なわちψ情という値は、エンジンの負荷を表わしている
ノダラメータと考えてよい。
Figure 4 shows the so-called L-J@ fuel injection control system.
This figure shows what happens to the fuel injection time when trying to obtain the same air-fuel ratio characteristics at each engine load when a tronla type engine is used. In general, the volumetric efficiency changes depending on the engine speed, so it is not linear, but the injection time is almost proportional to the load. In other words, the value ψ can be thought of as a nodal meter that represents the engine load.

エンジンが全運転領域で取シ得る基本噴射量TPo大、
きさには制限がある。スロットル全開時におけるTνは
一定の値とはならない(回転による)ため除外して考え
、ニンジンがかな〉高負荷と考えられる領域(吸気管負
圧が−50〜−150mHg楢度)のところの代表T、
をTpHとし、スロットル全閉と考えられる領域(同じ
(−500wHHないし一600■Hg程度)の代表T
、をTPoとする。
The basic injection amount TPo that the engine can handle in all operating ranges is large.
There are limits to sharpness. Since Tν at full throttle is not a constant value (depending on the rotation), we will exclude it and consider it as a representative of the region considered to be high load (intake pipe negative pressure -50 to -150 mHg). T,
is TpH, and the representative T in the range where the throttle is considered to be fully closed (the same (approximately -500wHH to -600■Hg)
, is TPo.

Tデ0からTP!、をn等分し、各TP値を79ラメー
タとして画いたのが第4図で桑、る。またTPαはT、
、(TPα< ’r、nとなる大きさの丁pの値を表わ
し、およそ−400〜−2001gの負荷に相当する値
を遇ぶのが妥当である。各分割領域には、その運転状態
におけるTPo値に応じて増量、減量比が設定されてい
る(ステ、グ545)。また、中負荷では工ぽツシ田ン
上帰還制御を行う。
T de 0 to TP! , is divided into n equal parts, and each TP value is plotted as 79 lameter in Figure 4. Also, TPα is T,
, (TPα<'r,n), and it is appropriate to take a value corresponding to a load of approximately -400 to -2001g. The increase/decrease ratio is set according to the TPo value at (step 545).Furthermore, at medium load, factory feedback control is performed.

以上をまとめると、下表の如く表現できる。The above can be summarized as shown in the table below.

〔表〕〔table〕

T、愼    負荷分類  運転モードTt0≦Tp<
Tea   4!負荷  リーン制御T?α≦Tt<T
yB   中負荷  λ=1.帰還制御TFnりTP 
     高負荷  出力空燃比制御前述の70−チャ
ートが第3図および第5図に示される。すなわち、ステ
、fs 44でIfiTpの大きさで負荷を判定して運
転モードの選択を行い、′ ステ、7’845で各モー
ドの増量値、減量値もしくは帰還制御値を計算し、補正
量をセ、トシた後ステ、デ846を経て復帰する。この
−御は各噴射サイクル毎に決定される。このように決定
された空燃比の設定例が第6図および第7図に示される
。第6図は設定増減量を模式的に示したもので、T?。
T, 愼 Load classification Operation mode Tt0≦Tp<
Tea 4! Load lean control T? α≦Tt<T
yB Medium load λ=1. Feedback control TFnriTP
HIGH LOAD OUTPUT AIR FUEL RATIO CONTROL The aforementioned 70-charts are shown in FIGS. 3 and 5. That is, step fs44 determines the load based on the magnitude of IfiTp and selects an operation mode, and step 7'845 calculates the increase value, decrease value, or feedback control value for each mode, and calculates the correction amount. After going through Se and Toshi, he returned after going through Ste and De 846. This control is determined for each injection cycle. Examples of air-fuel ratio settings determined in this way are shown in FIGS. 6 and 7. Figure 6 schematically shows the setting increase/decrease, T? .

≦TP<↑?αではそれぞれの大きさに応じて最適な空
燃比になるようにリーン制御量を決め、TFα≦TP≦
TP1mの領域ではλ=1の帰還制御を行うため増減量
は設定しない。また% TP≧T、!lとなる高負荷で
は出力空燃比になるよう増ikgjLを決める(この場
合は基本空燃比がλ=1.00のときを基準にして考え
ている)。tR7図は、第6図のように設定した場合O
成るエンジン回転数のときの、吸気管圧力と空燃比がど
のようになるかを示す・ 本発明においては、前述の実施例のほか、撞々O変形形
態が考えられる。例えば、前述の実施例においては、制
御は開ループ制御であり九がエミ、シ嘗ンとの両立を考
えた場合、次のようなシステムも考えられる。三元触媒
%Olセンナを用いて空燃比の開ループ制御を行う公知
のシステムである負荷域のところ、すなわち、あらかじ
め設定し九基本噴射時間以上か否かで帰還又框前記制御
を切替えればエミッタ1ンをそれほど悪化させることな
く燃料消費効率の向上が可能である。この場合、工iツ
シ璽ンが多食に排出される高負荷域を帰還制御するはう
がi!ましい。
≦TP<↑? In α, the lean control amount is determined to achieve the optimal air-fuel ratio according to each size, and TFα≦TP≦
In the region of TP1m, since feedback control of λ=1 is performed, no increase or decrease is set. Also, %TP≧T,! At a high load of 1, the increase ikgjL is determined so as to reach the output air-fuel ratio (in this case, the basic air-fuel ratio is based on λ=1.00). The tR7 diagram shows O when set as shown in Figure 6.
This shows what the intake pipe pressure and air-fuel ratio become when the engine speed is: In addition to the above-mentioned embodiments, the present invention can also be considered as a straight-O variant. For example, in the above-mentioned embodiment, the control is open-loop control, and when consideration is given to compatibility with nine, two, and three systems, the following system may also be considered. This is a known system that performs open-loop control of the air-fuel ratio using a three-way catalyst %Ol sensor. It is possible to improve fuel consumption efficiency without significantly deteriorating the emitter capacity. In this case, feedback control is performed in the high-load area where a large amount of energy is excreted. Delicious.

本発明によれば、車両のドライバビリティを損わずに適
確な燃料噴射制御を行うことができ、あわせて、エミッ
シ雪ンの悪化防止および燃料消費効率の向上の利点を得
ることができる。
According to the present invention, it is possible to perform appropriate fuel injection control without impairing the drivability of the vehicle, and at the same time, it is possible to obtain the advantages of preventing deterioration of emission snow and improving fuel consumption efficiency.

【図面の簡単な説明】 IIEI図は本発明の一実施例としての電子制御式燃料
噴射制御方法が適用される装置の全体構成図、第2図は
第1図装置における制御回路ブロック回路図、1143
図は纂2図回路におけるマイクログロセ、すの実行内容
の概略70−チャートを示す図、第4図は基本燃料噴射
量が負荷の関数になってい第2図 第3図 (a)             (b)1「埋士西舘
和之 ゛弁岬!悼i4+1% エンジン回転速度(x10’rpm) 第5図
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure IIII is an overall configuration diagram of a device to which an electronically controlled fuel injection control method as an embodiment of the present invention is applied; FIG. 2 is a block diagram of a control circuit in the device shown in FIG. 1; 1143
The figure shows a schematic 70-chart of the execution contents of the microgrosse and suction in the circuit shown in Figure 2. Figure 4 shows that the basic fuel injection amount is a function of the load. ``Buried by Kazuyuki Nishidate, Ben Misaki! Mourning i4+1% Engine rotation speed (x10'rpm) Figure 5

Claims (1)

【特許請求の範囲】 L 空気量を計量して燃料噴射量を関節する電子制御式
燃料噴射装置を用い、基本燃料噴射パルス幅(Ty)0
大きさに応じて燃料0増減量比を関節する、電子制御式
燃料噴射制御方法。 $L1fi気量を計量して燃料噴射量を調卸する電子制
御式燃料噴射装置を用い、基本燃料噴射パルス幅(デシ
)の大11さに応じて燃料増減量比を関節し、かつ、所
定0工ンジy負荷に対応す為基本燃料噴射パルス幅の所
定値以上の領域におiては、Olセンナおよび三元触媒
を用いて閉ループ制御を行−1該所定の工ンジy負荷よ
I@い領域に)匹て辻基本燃料噴射パルス幅O11mK
応じて空燃比をり−yK設定する電子制御式燃料噴射制
御方法。
[Claims] L An electronically controlled fuel injection device that measures the amount of air and adjusts the amount of fuel injection is used, and the basic fuel injection pulse width (Ty) is 0.
An electronically controlled fuel injection control method that adjusts the fuel zero increase/decrease ratio according to the size. $L1fiUsing an electronically controlled fuel injection device that measures the air flow and adjusts the fuel injection amount, the fuel increase/decrease ratio is adjusted according to the basic fuel injection pulse width (decimal), and the fuel injection amount is adjusted to a specified level. In order to correspond to the 0-engine y load, closed-loop control is performed using an Ol senna and a three-way catalyst in the region i where the basic fuel injection pulse width is equal to or greater than a predetermined value. Basic fuel injection pulse width O11mK
An electronically controlled fuel injection control method that sets an air-fuel ratio -yK accordingly.
JP13779081A 1981-09-03 1981-09-03 Method of electronic controlling for fuel injection Pending JPS5841231A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13779081A JPS5841231A (en) 1981-09-03 1981-09-03 Method of electronic controlling for fuel injection
US06/413,900 US4483301A (en) 1981-09-03 1982-09-01 Method and apparatus for controlling fuel injection in accordance with calculated basic amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13779081A JPS5841231A (en) 1981-09-03 1981-09-03 Method of electronic controlling for fuel injection

Publications (1)

Publication Number Publication Date
JPS5841231A true JPS5841231A (en) 1983-03-10

Family

ID=15206903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13779081A Pending JPS5841231A (en) 1981-09-03 1981-09-03 Method of electronic controlling for fuel injection

Country Status (1)

Country Link
JP (1) JPS5841231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561403A (en) * 1983-08-24 1985-12-31 Hitachi, Ltd. Air-fuel ratio control apparatus for internal combustion engines
US4643151A (en) * 1985-01-08 1987-02-17 Hitachi, Ltd. Fuel control apparatus for an internal combustion engine
JPS6357834A (en) * 1986-08-27 1988-03-12 Japan Electronic Control Syst Co Ltd Fundamental fuel injection quantity setting device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561403A (en) * 1983-08-24 1985-12-31 Hitachi, Ltd. Air-fuel ratio control apparatus for internal combustion engines
US4643151A (en) * 1985-01-08 1987-02-17 Hitachi, Ltd. Fuel control apparatus for an internal combustion engine
JPS6357834A (en) * 1986-08-27 1988-03-12 Japan Electronic Control Syst Co Ltd Fundamental fuel injection quantity setting device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH08189396A (en) Air fuel ratio feedback control device for internal combustion engine
JPH045455A (en) Cooling device for internal combustion engine
JP3429910B2 (en) Control device for internal combustion engine
JPS5841231A (en) Method of electronic controlling for fuel injection
JPS62126236A (en) Air-fuel ratio control method for fuel feed device of internal combustion engine
JP2591069B2 (en) Fuel injection control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JPS6354888B2 (en)
JPS6254976B2 (en)
JPS61187570A (en) Intake secondary air feeder of internal-combustion engine
JPH045818B2 (en)
JPS6254979B2 (en)
JPS6232336B2 (en)
JPS61258925A (en) Ignition timing controller for internal-combustion engine
JPS5848746A (en) Apparatus for controlling air-fuel ratio of internal-combustion engine
JPS6360217B2 (en)
JPS5851240A (en) Air-fuel ratio control method for internal-combustion engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JP3879342B2 (en) Exhaust gas purification device for internal combustion engine
JP2518719B2 (en) Internal combustion engine cooling system
JPS6030443A (en) Fuel supply control method for engine
JPH01130032A (en) Fuel injection quantity controller for internal combustion engine
JP2712086B2 (en) Air-fuel ratio control method for internal combustion engine
JPH066929B2 (en) Air-fuel ratio controller for in-vehicle internal combustion engine
JPS6232337B2 (en)