JPS59144182A - 薄膜太陽電池 - Google Patents

薄膜太陽電池

Info

Publication number
JPS59144182A
JPS59144182A JP58018664A JP1866483A JPS59144182A JP S59144182 A JPS59144182 A JP S59144182A JP 58018664 A JP58018664 A JP 58018664A JP 1866483 A JP1866483 A JP 1866483A JP S59144182 A JPS59144182 A JP S59144182A
Authority
JP
Japan
Prior art keywords
layer
solar cell
diode
thickness
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58018664A
Other languages
English (en)
Other versions
JPS6314874B2 (ja
Inventor
Shinji Nishiura
西浦 真治
Yoshiyuki Uchida
内田 喜之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58018664A priority Critical patent/JPS59144182A/ja
Publication of JPS59144182A publication Critical patent/JPS59144182A/ja
Publication of JPS6314874B2 publication Critical patent/JPS6314874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 この発明は透明絶縁基板上に形成した薄膜太陽電池に関
する。
太陽電池素子の保繰のために逆パラタイオード−を接続
することが効果のあることはこハまで指摘されてぎた。
第1図はこの例を示す。各太陽電池素子1にそrぞれ対
応してタイオード2を逆並列に接続したものである。タ
イオードの順方向電圧は約0.5vであるので太陽電池
素子1には、0,5Vを越える逆バイアスがかかること
が阻止される。太陽電池素子1は透明絶縁基板3の上に
透明電極4、a−8i(アモルファスシリコン)膜5、
金属電極6を積み重ねて構成し、金属電極6を延長して
隣接セルの透明電極4にそれぞね電気的に接続すること
により直列接続さねている。太陽電池セル1が発電状態
にあり、開放電圧モードで動作している場合、クイオー
ドに逆バイアスがかかることになるので、タイオード2
の要求特性として逆耐圧が太陽電池素子1の開放電圧よ
り大きいことが重要である。逆耐圧が太ぎいクイオード
を用いねば、い(つか直列に接続さねた太陽電池の保護
を行うことができる。
このようにタイオードを太陽電池に逆並列接続すること
によって安定性の大きい太陽電池システムを形成できる
がダイオードをモジュール形成の際、いちいち組みこむ
のは、タイオードの調達。
半田付は等組立に関してコストが某むという欠点がある
本発明はこの欠点を除き5、保護ダイオードが逆並列接
続された太陽電池で構成容易な構造を提供することを目
的とする。
この目的は共通透明絶縁基板上に基板側力・ら透明tt
f+、a−3iのp層、i層、n層および金属電極が順
次積層さ才1てなる太陽電池素子およびタイオードが形
成さ八、その場合タイオードσ〕pM+ま太陽′電池素
子のp層の10倍以上の厚さを肩し、力・つ透明電極と
金属電極との接続によりタイオード力く太陽電池素子に
逆並列接続さjて〜・ることによって達成さrろ〇 以下図を引用して本発明の実施例につ℃・て説明する。
第2図は第1図に示したような太陽電池と同一構造のク
イオードを保護ダイオードとする場合の太陽電池と逆並
列タイオードの特性例を示す。
曲線2Iは太陽電池の電流電圧特性であり、点22カー
短絡電流、点23が開放電圧を示す。曲線20上逆並列
接続した場合のタイオードの特性で暗中σ〕ものである
。しかし暗中のa−8tクイオードは曲線24力−示寸
ように順方向特性が大きく立ち上がらず、電流が飽和す
る傾向を示す。約1dの面積を有するa−8tタイオー
ドにおいて、直列抵抗と入射光強度の関係を求めると第
1表のようであった。
第1表 すなわち、暗中で約500の直列抵抗を示したが、10
0mW/adのもとでは約05Ωの値を示した。このと
きのタイオードの特性を示したのが第2図の曲線25で
ある。この場合、光が入射しているために直列抵抗が小
さくダイオードの電流の立ち上がりが大きいので、a−
$1太陽電池に点26で示すより大ぎい逆バイアスが印
加されると、逆並列接続されているダイオード側に電流
が流れ、ダイオードに大きな逆バイアスがかかることを
防ぐ効果が発揮される。しかし、このタイオードは点2
7で示す光起電力を発生しているので、太陽電池の短絡
電流22からダイオードの電流27を差し引いた分が外
にとり出されることとなる。従って、点27の値をでき
るだけ0に近づける必要がある。
これについて検討した結果、ダイオードの面積を太陽電
池の面積より小さくすること、およびダイオードの9層
膜厚を厚(することが有効であることが分かった。a−
8i太陽電池または逆並列クイオードが透明電極の側か
らa−8ip層、a−8iノンド一プ層、a−8in層
、金属電極の構造をしている。
このうちp層を厚くすることによって、短絡電流22及
びそねに相当する点27が第3図に示すように減少する
ことが見い出された。9層膜厚を2oooiとすると、
p層膜厚zoo Aの場合に比較して、短絡電流が15
%程度となる。そしてこの場合、直列抵抗についてはあ
まり変化セず、100mW/cdでo、74Ωの抵抗が
得られた。きらに9層膜厚と1層膜厚を同じ条件にして
試料を作成し、光を照射して直列抵抗を測定すると第1
表と同じ結果が得られた。
本発明はこねらの検討結果に基づき出力電流の大きい太
陽電池を構成するものである。
第4図(al〜(e)に本発明の第一の実施例を示す。
(81図は平面図で一点鎖線で透明電極パターン、破線
でアモルファスシリコンパターン、実線とハツチングで
金属電極パターンを示した。このA−A’での断面図が
(b)図で、B −B’での断面図が(01図である。
第1図と共通の部分には同一の符号が付ざtlている。
ガラス基板等の透明絶縁基板3上に太陽電池部の透明電
極パターン40.41.42.43.44と保護ダイオ
ード部の透明電極パターン45.46.47.48゜4
9を形成する。次lcp形a−8i層を全面に形成する
この厚さを2000〜3000 X′□とする。次に保
護ダイオード部のa−8tパターンと同一の形状のレジ
ストパターンを形成して、プラズマエッチによりp形a
−8i層をエツチングし、約1oo Aまで厚さをうす
(する。このコントロールは精密さを要求するので次の
方法で実施した。ガラス基板のp形a−8i層と反対側
に1oooi程度の金属層を形成した。この膜は光反射
用に用いる。こねをエツチング槽内に入ねレーザニビー
ム(Arレザー4880 R>で照射しこの反射光をモ
ニタリングしながらエツチングを進めた。エンチングは
CF4ガスを用いて行った。
ガス圧数Torrのもとてのエツチングにより、当初微
弱であった反射光が数分経過後強度を増し、p層の膜厚
の減少と共に強度が変化することが見出された。p層が
100 人□の値となるも反射光の強度のところでエツ
チングを終了した。p形a−8i層の吸収係数は、この
レーザービームのもとにおいては5x10’(m−’)
である。レーザービームはa−8i層に入射し、a−8
i層内に減衰しつつ透明電極に入る。
ここでは透明度が大きいのでほとんど吸収されない。次
にガラスにはいるがここでもほとんど吸収さ4ない。た
だ透明膜あるいはガラスとはいえ、膜のつ(り方、ガラ
スのつくり方により吸収率の大きい場合があるのでこの
波長における吸収率を考慮に入ねる必要があるのは当然
のことである。
ガラス板を透過すると蒸淘された金属膜で反射される。
反射率はほとんど1であるが、精密には反射率を事前に
チェ4りしてお(必要がある。こうしてビームはガラス
、透明電極を通り、a−8i層で減すいして検出器にと
りこまれる。膜厚100 Xの場合、a−8t内の光路
長としては200λとなる。この場合には反射光は照射
光の約37チとなっている。
入射光の入射角は垂直が計算上容易であるが、角度は任
意に選べることはいうまでもない。この後、ダイオード
パターン上のレジストを剥離し、グロー放電によりa−
8iのノンドープ層を約05μ形成した。ノンドープ層
形成に先だって、約5分H2で放電し、さらに約50X
p形a−8i層を形成すると太陽電池特性として好まし
いものが得らねた。次にa−8in層を約500人形成
し、エツチング法を用いて(a)図のごとくパターンを
形成する。こうして形成されたのがfb1図のa−8i
層5θ、 51.52. ’53.54と(c)図のa
−8i層55.56.57.58.59である。なおガ
ラス基板3の光入射側に作成した金属反射膜は、a−8
4のエツチングの際自動的に除かれる。次に金属電極パ
ターンを形成する。(b)図の金属電極60゜61、6
2.63.64、(C)図の金属電極65.66、67
、68゜69がそれであるが、(31図に示すように例
えば60と66というように互に連結さねている。金属
電極60〜64は太陽電池素子のn側電極である。金属
電極65〜69はダイオードのn側電極である。(b)
図に示すように金属電極60〜63は隣接の太陽電池素
子の透明電極41〜44とそねそれ電気的に接続されて
おり、各太陽電池素子が直列接続さねる。金属電祢60
〜63はタイオードのn側電極66〜69を介して隣接
クイオードのp側電極である5T3A電@45〜48と
それぞれ電気的に接続されることにより保護タイオード
2が直列接続されていることになる。この結果太陽電池
素子1が直列接続さね、タイオード2が太陽電池素子と
逆並列接続さねている構成となる。また上記の結果1坪
より保握クイオードのp層は2〜3000Aも厚く発生
電流が少な(、直列抵抗が/JSさいため太陽電池に逆
バイアスがががったときタイオードに多くの電流を流す
構造とすることができた。この結果安定した太陽電池を
作成することができた。
第5図に第二の実施例を示す。太陽電池のセル面積が大
きくなるにつねて面内ばらつき等により特性のばらつき
が発生する。逆耐圧特性も同様に面積が大きくなると共
に小さくなる傾向がある。
太陽電池と逆並列接続する保護ダイオードは今回のよう
なタイオードに光入射させる構造の場合、ダイオード、
太陽電池共に互に相手の開放電圧程度の逆バイアスに耐
えなけわばならない。それ&礼順方向電流を流しても開
放電圧程度の順方向ドpンブが生ずるからである。こハ
を避けるために太陽電池をV個、例えば第5図のよ1v
c3個直接接続したものにダイオード1個逆並列接続す
ると太陽電池の逆耐圧はグイオートの開放電圧の%程度
でよ(なり、太陽電池面積が犬さくなって逆耐圧が多少
低下してもそtt’v補うことができろ。このダイオー
ド1個に対する太陽電池の直列数は3ケにとどまらない
。太陽電池がVocモードにあるとき、ダイオードには
逆バイアスがかがるので直列数はこねとのからみで決め
られねばならない。第5図(a) VC平面図を示した
。一点鎖線が透明電極パターン、破線がa−8iMパタ
ーンで、このa−8’i層のうちダイオードの部分のp
層は2000〜3ooo Aと太陽電池素子部に比較し
て十分厚くしておく。実線とハンチングで示したものは
金属電極パターンである。(b)図は(31図のc −
c’線における断面図で太陽電池素子部を示し、第4図
(blと同様である。(01図は(a)図のD −D’
線における断面図で保護ダイオード部を示す。透明電極
層4A、 4B、’4C,a−8t層5A。
5B、  5C1金属電極層6A、  6B、  6C
が電極6Bと電極4A電極6Cと電極4Bが電気的に接
続するように形成さね、保護ダイオードが直列接続され
た構造となっている。金属電極60と金属電極6B、ま
た金属電極63と金属電極6Cが電気的に接続された構
造であるので、タイオード20のp側電極4Bと太陽電
池素子13のn側電極63が、タイオード20のn側室
i6Bと太陽電池素子11のp側電極41と電気的につ
ながっているので、直列接続さ才また太陽電池素子11
.、1.2゜13とダイオード20が逆並列接続さねて
いる。
この結果、ダイオードの面積は太陽電池1ケの面積で発
生する電流を流しうる面積があjばよい−ので、第一の
実施例に比較してガラス基板上に占めるタイオードの面
積が小さくなり、太陽電池の面積効率が上昇し、発電出
力が太き(なる効果がある。
以上述べたように、本発明は共通透明基板上に基板側か
らa−8t層のpin構造を有する太陽電池素子と、同
じ<a−8t層のpin構造であるがp層の膜厚が太陽
電池素子のp層の膜厚の10倍以上であるようにダイオ
ードを形成し、そのダ・rオードを太陽電池素子に逆並
列接続するもの1C1太陽電池素子部もダイオード部も
光に照射さねた状態で発電効率の良好で安定性の高い薄
膜−太陽電池を得ることがでさ、その効果はすこぶる犬
である。
【図面の簡単な説明】
第11スは従来の薄膜太陽電池の構造の一例と保護タイ
オードの接続の概念を示す斜視図、第2図は同一構造で
構成される太陽電池と逆並列接続ダイオードの電流−電
圧特性線図、第3区は短絡電流と1層膜厚との関係線図
、第4図(al〜(c)は本発明による薄膜太陽電池の
一実施例を示し、(alは平面図、(b)ばそのA−A
’線断面図、(c)はB−B’i断面図、第5図(a)
〜(c)は別の実施例を示し、(a)は平面図、(b)
はそのc −c’線断面図、(c)はD−D’線断面図
である。 3・・・透明絶縁基板、40〜49.4A、 4B、 
4C・・・透明It極、50〜59.5A、 5B、 
5C・・・a−8A層、60〜69’、 6A。 6B、 6C・・・金属電極。 3 T 1 に 7′2  暖 f 3 区 1   ) 3 74 囚 7 s 図

Claims (1)

    【特許請求の範囲】
  1. 1)共通透明絶縁基板上に基板側から透明電極、a−8
    iのp層、i層、n層および金属電極がj−次積層さ4
    てなる太陽電池素子およびタイオードが形成さね、その
    場合ダイオードのp層は太陽電池素子のp層の10倍以
    上の厚さを有し、かつ透明電極と金属電極との接続によ
    りタイオードが太陽電池素子と逆並列接続さねたことを
    特徴とする薄膜太陽電池。
JP58018664A 1983-02-07 1983-02-07 薄膜太陽電池 Granted JPS59144182A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018664A JPS59144182A (ja) 1983-02-07 1983-02-07 薄膜太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018664A JPS59144182A (ja) 1983-02-07 1983-02-07 薄膜太陽電池

Publications (2)

Publication Number Publication Date
JPS59144182A true JPS59144182A (ja) 1984-08-18
JPS6314874B2 JPS6314874B2 (ja) 1988-04-01

Family

ID=11977875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018664A Granted JPS59144182A (ja) 1983-02-07 1983-02-07 薄膜太陽電池

Country Status (1)

Country Link
JP (1) JPS59144182A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140550U (ja) * 1985-02-20 1986-08-30
JP2009527123A (ja) * 2006-09-04 2009-07-23 エルジー エレクトロニクス インコーポレイティド バイパスダイオードを包含する薄膜型太陽電池セル及びその製造方法
CN102479855A (zh) * 2010-11-30 2012-05-30 财团法人工业技术研究院 具电流控制的太阳能电池模块及其制造方法
JP2017183651A (ja) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 太陽電池モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140550U (ja) * 1985-02-20 1986-08-30
JP2009527123A (ja) * 2006-09-04 2009-07-23 エルジー エレクトロニクス インコーポレイティド バイパスダイオードを包含する薄膜型太陽電池セル及びその製造方法
CN102479855A (zh) * 2010-11-30 2012-05-30 财团法人工业技术研究院 具电流控制的太阳能电池模块及其制造方法
JP2017183651A (ja) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
JPS6314874B2 (ja) 1988-04-01

Similar Documents

Publication Publication Date Title
JP4201241B2 (ja) 集積型薄膜光電変換モジュールの作製方法
JP5147818B2 (ja) 光電変換装置用基板
US4517403A (en) Series connected solar cells and method of formation
US7847186B2 (en) Silicon based thin film solar cell
US4737196A (en) Amorphous solar cell
JP2007525006A (ja) 母線の下方に電気絶縁層を備えた太陽電池
TW201104888A (en) Solar battery module and method for manufacturing the same
US4564808A (en) Direct determination of quantum efficiency of semiconducting films
JP2006229052A (ja) 太陽電池とその製造方法及びこれに用いる短絡部除去装置
Fortunato et al. Material properties, project design rules and performances of single and dual-axis a-Si: H large area position sensitive detectors
JPS62209872A (ja) 光電変換素子
JPS59144182A (ja) 薄膜太陽電池
JP2007035914A (ja) 薄膜光電変換装置
JPS59224183A (ja) 半導体装置
JPH11112010A (ja) 太陽電池およびその製造方法
JP2005322707A (ja) 集積型太陽電池
Phang et al. Comments on the experimental determination of series resistance in solar cells
JP2884171B2 (ja) アモルファス太陽電池
Marti et al. High efficiency photovoltaic conversion with spectrum splitting on GaAs and Si cells located in light confining cavities
Ioannides Characterisation of monolithic tandem solar cells containing strain balanced quantum well sub-cells
JP3469061B2 (ja) 太陽電池
JPH0439234B2 (ja)
Meyers et al. Elemental vapor deposited polycrystalline CdTe thin film photovoltaic modules
JPH03263878A (ja) 光起電力装置
JPH08181340A (ja) 太陽電池素子及びその製造方法