JPS59113315A - Control method of magnetic bearing - Google Patents

Control method of magnetic bearing

Info

Publication number
JPS59113315A
JPS59113315A JP22111882A JP22111882A JPS59113315A JP S59113315 A JPS59113315 A JP S59113315A JP 22111882 A JP22111882 A JP 22111882A JP 22111882 A JP22111882 A JP 22111882A JP S59113315 A JPS59113315 A JP S59113315A
Authority
JP
Japan
Prior art keywords
gap
command
controlled
control
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22111882A
Other languages
Japanese (ja)
Other versions
JPS6319734B2 (en
Inventor
Yoshinori Kamiya
神谷 嘉則
Kiyoshi Ishida
石田 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP22111882A priority Critical patent/JPS59113315A/en
Publication of JPS59113315A publication Critical patent/JPS59113315A/en
Publication of JPS6319734B2 publication Critical patent/JPS6319734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control

Abstract

PURPOSE:To improve stability of control by performing electrification control for electromagnets, arranged in opposition to each other, on the basis of value of a gap and a bias current command or the like, in an opposition type control form magnetic bearing. CONSTITUTION:The captioned device makes two electromagnets 2-11 (22, 23). arranged in opposition to each other so as to hold a rotary body 1 (controlled body 21) between them, to float said body by means of their magnetic attractive force and support it, that is to say, each of electromagnet 22, 23 is controlled, to float and support the controlled body 21, through PID adjusting meter 25, electric current conversion parts 26, 27 according to deviation between a target gap x0 and a detected gap x1 from a gap detector 24. At this time, the value obtained, through multiplying by gap x1 the sum of output I0 of PID adjusting meter 25 and a bias current command Ib from a commander 35 by means of multipliers 33, 34, is inputted to the current converter 26, while the value obtained, through multiplying by gap X2, the balance after subtracting command Ib from command I0 is inputted to the current converter 27.

Description

【発明の詳細な説明】 本発明は対向式制御形磁気軸受装置における磁気吸引力
を制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling magnetic attraction force in an opposed control type magnetic bearing device.

対向式制御形磁気軸受装しとは、第1図に例示したよう
な回転物体1あるいは被制御体を挾むように対向して配
置した2個の電磁石2と3,4と5.6と7,8と9,
10と11の磁気吸引力によって回転物体1又は被制御
体全浮遊させ、空中に支持する装置であって、摩耗を生
じないので長寿命になること、潤滑油を必要としないと
と等のすぐれた特色を有する反面、安定した空中支持が
むずかしいという問題がある。
The opposed control type magnetic bearing system is composed of two electromagnets 2 and 3, 4 and 5, 6 and 7, which are arranged facing each other so as to sandwich a rotating object 1 or a controlled object as illustrated in FIG. 8 and 9,
This is a device that suspends the rotating object 1 or the controlled object entirely by the magnetic attraction forces of 10 and 11 and supports it in the air.It has the advantages of long life as it does not cause wear and does not require lubricating oil. However, there is a problem in that stable aerial support is difficult.

なお、対向式というのは磁石−個による釣り下げ式に対
している。また制御形というのは永久磁石による無制御
形に対して各々区別するために使われる。
Note that the facing type is in contrast to the hanging type using magnets. Also, the term "controlled type" is used to distinguish between non-controlled types using permanent magnets.

従来の対向式制御形磁気軸受装置は、會・)9下げ式制
御形磁気軸受全単純に2つ組み合せただけのもので、釣
り下は式においても従来技術では安定した空中支持性能
が得られていなかったので、対向式でも当然良好な制御
性能は得られていなかった1゜ 理W4を容易にするため従来例を第2図に示して説明す
る。
Conventional opposed-type controlled magnetic bearing devices are simply a combination of two lower-type controlled magnetic bearings, and stable aerial support performance cannot be obtained with conventional technology even in the lower-angle type. Therefore, in order to facilitate the 1 degree process W4, in which good control performance was naturally not obtained even with the opposing type, a conventional example will be described with reference to FIG. 2.

図は被制御体21(回転しているか否か、又、回転して
いる場合は軸方向支持型(スラスト型)か半径方向支持
型(ジャーナル型)かは問わない)を挾むように電磁石
22.23’E設けてその磁気吸引力によって空中支持
している様子を概念的に示したものである。
The figure shows an electromagnet 22. 23'E is installed and is supported in the air by its magnetic attraction force.

+  2 この制御系目標ギャップXQに、ギャップ検出器1tI
24で検出した検出ギャップX!が一致するように制御
される系であり、ギャップ偏差ΔXは、  PID調節
計25をへて電流変換部26.27に入力され、電磁石
22.23へ流すべき電流11.I、  に変換される
よう構成されている。
+ 2 At this control system target gap XQ, a gap detector 1tI
Detection gap X detected in 24! The gap deviation ΔX is inputted to the current converter 26.27 through the PID controller 25, and the current 11. It is configured to be converted into I, .

第2図において、電流変換部27と電磁石23を除去し
て%電磁石22を被制御体21の鉛直上方に配置すれば
釣り下げ式となるので、従来の対向式は単純に釣り下は
式全2つ組み合わせただけであることがわかる。
In FIG. 2, if the current converter 27 and electromagnet 23 are removed and the % electromagnet 22 is placed vertically above the controlled object 21, a hanging type will be obtained. It turns out that it's just a combination of two things.

ところで、電磁石が物体を吸引する力は次の(1)式に
て表わされることは周知である。
By the way, it is well known that the force with which an electromagnet attracts an object is expressed by the following equation (1).

但し F:電磁吸引力 B:磁束密度 A:磁極面積 116 :真空透磁率 N:巻き数 l:電流 X:ギャップ(電磁石と物体の距離) 上記(1)式の部分もブロック線図化して表現したのが
第3図である。
However, F: Electromagnetic attractive force B: Magnetic flux density A: Magnetic pole area 116: Vacuum permeability N: Number of turns l: Current X: Gap (distance between electromagnet and object) The part of equation (1) above is also expressed in a block diagram. The result is shown in Figure 3.

ブロック28は、被制御体21の質量をmとし、入力を
F1出力全△Xとする伝達関数、ブロック29.30は
乗算器(2:の場合、同一人力を乗算しているので自乗
器となる。)、ブロック31゜32のXI、X2は、そ
れぞれX6+△X 、  X6−△Xによって定まる仁
とを点線矢印にて示している。
Block 28 is a transfer function in which the mass of the controlled body 21 is m and the input is the F1 output total ΔX, and blocks 29 and 30 are multipliers (in the case of 2:, since the same human power is multiplied, it is a squarer). ), XI and X2 of blocks 31 and 32 are respectively indicated by dotted line arrows with the value determined by X6+ΔX and X6−ΔX.

すなわち、電流と電磁吸引力、ギャップと電磁吸引力と
はそれぞれ非線形関係になっている。この非線形特性が
制御?不安定にする大きな原因であることも周知の事実
である。
That is, the current and the electromagnetic attraction force, and the gap and the electromagnetic attraction force each have a nonlinear relationship. Is this nonlinear characteristic controlled? It is also a well-known fact that this is a major cause of instability.

本発明は、以上述べた従来の問題点を解消する仁とを目
的としてなされたもので、対向式磁気軸受装置の特徴で
ある。被制御体に働く力は2個の電磁石のTト4磁吸引
力の和になるということをたくみに利用して非線形特性
を除去するようにしたものである。
The present invention has been made with the object of solving the above-mentioned conventional problems, and is a feature of an opposed magnetic bearing device. The nonlinear characteristic is removed by cleverly utilizing the fact that the force acting on the controlled object is the sum of the four magnetic attraction forces of the two electromagnets.

以下第4図に具体的実施例を示して説明する。A specific example will be described below with reference to FIG.

従来装置では、PID調節計25の出力である制御電流
指令1.が、そのまま電流変換部26.27に入力され
ていたが、本発明では、乗算器33゜34とバイアス電
流指令器35を備え、制御電流指令工0にバイアス電流
指令Ib を71II算したものにギャップx1に乗じ
た値を電流変換部26に入力し。
In the conventional device, the control current command 1. which is the output of the PID controller 25. was input as is to the current converter 26, 27, but in the present invention, multipliers 33 and 34 and a bias current command unit 35 are provided, and the bias current command Ib is calculated by 71II to the control current command 0. The value multiplied by the gap x1 is input to the current converter 26.

制御電流指令1.からバイアス電流指令Ib ′fr減
算したものにギャップx2を乗じた値全電流変換部27
に入力するよう構成したものである。
Control current command 1. The value obtained by subtracting the bias current command Ib'fr from the value multiplied by the gap x2.
It is configured so that it can be input.

このような構成にするととにより、制御電流指令I。と
被制御体21に働く力Fとは線形関係となる。今こ\で
電流変換部26.27の伝達関数G(S)を簡単ycす
るためG(S)=1とするとl1=(Io +I b)
Xxs   −−−(2112=(I。−I b ) 
x X2  ++、+、+ 8.+ (3)となる。
With such a configuration, the control current command I. and the force F acting on the controlled body 21 have a linear relationship. Now, to simply yc the transfer function G(S) of the current converter 26.27, if G(S) = 1, l1 = (Io + I b)
Xxs---(2112=(I.-Ib)
x X2 ++, +, + 8. + (3).

被制御体21に働(力Fは(1)式よりとなり、この(
4)式に12) 、 (3>式を代入すると=KF((
IO+Ib)2−(Io−Ib)” )−4KpI b
Io  −”・−(5)となる。すなわちKF、Ibは
共に足載なので、被制御体21に働く力Fと制御電流指
令IOとは線形関係が得られたことVCなる。
The (force F) acting on the controlled body 21 is obtained from equation (1), and this (
Substituting equation 12) and (3> into equation 4) yields =KF((
IO+Ib)2-(Io-Ib)")-4KpIb
Io -''.-(5) That is, since both KF and Ib are foot-loaded, the force F acting on the controlled body 21 and the control current command IO have a linear relationship VC.

な;、ブロック36は倍算器で、xzk式2 xo −
xlによってみちびくためのものであるので、x2のギ
ャップ検出器全独自に備え、X2にブロック24に入力
ぐせれば不要である。
The block 36 is a multiplier, and the xzk formula 2 xo −
Since it is intended to be guided by xl, it is unnecessary if the gap detector for x2 is provided independently and inputted to block 24 for X2.

以上述べたように、本発明Kjれば、制&l]電流指令
と被制御体に働く力を線形化できるので、制御の安定性
全大幅に向上できるため、きわめて高性能な磁気軸受装
置?提供できる。
As described above, with the present invention, the control current command and the force acting on the controlled object can be linearized, so the control stability can be greatly improved, resulting in an extremely high-performance magnetic bearing device. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1図は、磁気軸受装置の一例を示す針祝図、紀2図は
従来の制御方法のブロック図、第3図は従来例のくわし
いブロック図、第4図は本発明の具体的実施例のブロッ
ク図でりる。 21・・・被ffi!I御体、22.23・・・電磁石
、24・・・ギャップ(すきま)検出器、25・・・P
ID調節計、26 、21・・・電流変換部、29.3
0,33゜34・・・乗算器、35・・・バイアス電流
指令器、36・・・倍算器。
Figure 1 is a diagram showing an example of a magnetic bearing device, Figure 2 is a block diagram of a conventional control method, Figure 3 is a detailed block diagram of the conventional example, and Figure 4 is a specific example of the present invention. This is the block diagram. 21...ffi! I body, 22.23...electromagnet, 24...gap detector, 25...P
ID controller, 26, 21...Current converter, 29.3
0,33° 34... Multiplier, 35... Bias current command unit, 36... Multiplier.

Claims (1)

【特許請求の範囲】[Claims] 対向式制御形磁気軸受装置において、一方の電磁石に与
える指令電流としてその電磁石と被制御体とのギャップ
(すきま)値に、制御電流指令にノ々イアス電流指令を
加算したもの全米じたものを与え、他方の電磁石に与え
る指令電流としては、その電磁石と被制御体とのギャッ
プ値に、制御電流指令からバイアス電流指令を減算した
もの會乗じたものを与えることを特徴とする磁気軸受装
置の制御方法。
In an opposed control type magnetic bearing device, the command current given to one electromagnet is the gap value between that electromagnet and the controlled object, plus the control current command and the noisy current command. and the command current given to the other electromagnet is given by multiplying the gap value between the electromagnet and the controlled object by the value obtained by subtracting the bias current command from the control current command. Control method.
JP22111882A 1982-12-18 1982-12-18 Control method of magnetic bearing Granted JPS59113315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22111882A JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22111882A JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Publications (2)

Publication Number Publication Date
JPS59113315A true JPS59113315A (en) 1984-06-30
JPS6319734B2 JPS6319734B2 (en) 1988-04-25

Family

ID=16761752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22111882A Granted JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Country Status (1)

Country Link
JP (1) JPS59113315A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152411A (en) * 1984-08-22 1986-03-15 Yaskawa Electric Mfg Co Ltd Controller for magnetic bearing apparatus
JPS62118705A (en) * 1985-10-15 1987-05-30 ハネウエル・インコーポレーテッド Magnetic hanger and method for driving the same
JPS6313917A (en) * 1986-07-03 1988-01-21 Ebara Res Co Ltd Control device for magnetic bearing
JPS63171723U (en) * 1987-04-30 1988-11-08
JPH0243523U (en) * 1988-08-11 1990-03-26
JPH02154828A (en) * 1988-12-06 1990-06-14 Yaskawa Electric Mfg Co Ltd Vibration suppressing/controlling device for machine
JPH02164288A (en) * 1988-12-17 1990-06-25 Yaskawa Electric Mfg Co Ltd Non-contact supporting device
WO1991004836A1 (en) * 1988-08-12 1991-04-18 Henkel Kommanditgesellschaft Auf Aktien Process for the treatment of corks
JPH0537526U (en) * 1991-10-23 1993-05-21 三菱自動車エンジニアリング株式会社 Vehicle triangular window device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152411A (en) * 1984-08-22 1986-03-15 Yaskawa Electric Mfg Co Ltd Controller for magnetic bearing apparatus
JPS62118705A (en) * 1985-10-15 1987-05-30 ハネウエル・インコーポレーテッド Magnetic hanger and method for driving the same
JPS6313917A (en) * 1986-07-03 1988-01-21 Ebara Res Co Ltd Control device for magnetic bearing
JPH0536649B2 (en) * 1986-07-03 1993-05-31 Ebara Mfg
JPS63171723U (en) * 1987-04-30 1988-11-08
JPH0243523U (en) * 1988-08-11 1990-03-26
JPH0534336Y2 (en) * 1988-08-11 1993-08-31
WO1991004836A1 (en) * 1988-08-12 1991-04-18 Henkel Kommanditgesellschaft Auf Aktien Process for the treatment of corks
JPH02154828A (en) * 1988-12-06 1990-06-14 Yaskawa Electric Mfg Co Ltd Vibration suppressing/controlling device for machine
JPH02164288A (en) * 1988-12-17 1990-06-25 Yaskawa Electric Mfg Co Ltd Non-contact supporting device
JPH0537526U (en) * 1991-10-23 1993-05-21 三菱自動車エンジニアリング株式会社 Vehicle triangular window device

Also Published As

Publication number Publication date
JPS6319734B2 (en) 1988-04-25

Similar Documents

Publication Publication Date Title
US3512852A (en) Stabilized levitation of magnetic elements
US3860300A (en) Virtually zero powered magnetic suspension
US3791704A (en) Trimming apparatus for magnetic suspension systems
US2193602A (en) Device for accelerating electrons to very high velocities
JPS59113315A (en) Control method of magnetic bearing
FR2511558B1 (en) EQUIPMENT FOR THE STORAGE OF ENERGY IN KINETIC FORM AND THE RETURN OF SAME IN ELECTRICAL FORM, AND METHOD FOR IMPLEMENTING SUCH EQUIPMENT
Richards et al. Magnetic Suspension and Propulsion Systems for High‐Speed Transportation
Johnson et al. Adaptive variable bias magnetic bearing control
Kuvshinov et al. Electron magnetohydrodynamics of magnetized, inhomogeneous plasma
JPH0343766B2 (en)
JPS5553161A (en) Magnetic polar construction
JPH0112970B2 (en)
Sivrioglu et al. Adaptive output backstepping control of a flywheel zero-bias AMB system with parameter uncertainty
GB1074587A (en) Improvements relating to magnet assemblies
JPH0343767B2 (en)
Sarma et al. Nonlinear analysis of magnetic bearings for space technology
US5467243A (en) Electromagnet control system
JPH02219455A (en) Linear motor supporting mechanism
JPS6277883A (en) Attraction type magnetic levitation electromagnet device
JPS61171918A (en) Magnetic bearing
JPH069171B2 (en) Electromagnetic actuator
Gliddon et al. Perturbation of a model F2-region by a small arbitrary time-dependent electrodynamic drift
JPH0513365B2 (en)
GB1213962A (en) Turn-off permanent magnet
Lu et al. A variable structure identifier for servo systems under uncertain loading