JPH02219455A - Linear motor supporting mechanism - Google Patents

Linear motor supporting mechanism

Info

Publication number
JPH02219455A
JPH02219455A JP1036246A JP3624689A JPH02219455A JP H02219455 A JPH02219455 A JP H02219455A JP 1036246 A JP1036246 A JP 1036246A JP 3624689 A JP3624689 A JP 3624689A JP H02219455 A JPH02219455 A JP H02219455A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator
levitation
thrust
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1036246A
Other languages
Japanese (ja)
Inventor
Mutsuji Kobayashi
小林 睦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1036246A priority Critical patent/JPH02219455A/en
Publication of JPH02219455A publication Critical patent/JPH02219455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute a power saving contactless mechanism by forming a levitation permanent magnet of laminated piezoelectric elements, through an operational gap with respect to a stator, at the opposite side from a stator for thrusting a mover through a thrust generating magnetic circuit. CONSTITUTION:A mover 24 is mounting a thrust generating magnetic circuit 29 comprising magnetic poles 25a-25d, a coil 26, a permanent magnet 27, and a yoke 28 and moves in the longitudinal direction of the stator 21. A gap G1 is detected 36 and controlled 37 then power amplification 38 is carried out and a laminated piezoelectric elements 34 are controlled. The piezoelectric elements 34 are fixed to the movable table 33 of a base 30 and a gap G2 is formed with respect to the stator 21 through a yoke 32 and a levitation permanent magnet 31. Linear guides 35 comprising two rows of ceramic balls are arranged at the opposite sides of the mover 24 such that they can be displaced freely only in the straight direction. By such arrangement, a contactless power saving mechanism requiring no lubrication can be formed.

Description

【発明の詳細な説明】 概要 リニアモータの支持機構に関し、 小形、省電力で長寿命の非接触式リニアモータ支持機構
を提供することを目的とし、 永久磁石又はコイルによる少なくとも1個の起磁力源を
含む推力発生用磁気回路を有し、磁気力又は電流力によ
って可動子が固定子上を直進する推力を得るリニアモー
タにおいて、前記推力発生用磁気口°ノ各をベースに取
り付け、該推力発生用磁気圏路の反対側に固定子に対向
して動作空隙を隔てて浮上用永久磁石を設け、該浮上用
永久磁石を積層形圧電効果素子を介して前記ベースに取
り付けて構成する。
[Detailed Description of the Invention] Summary Regarding a support mechanism for a linear motor, the purpose is to provide a non-contact type linear motor support mechanism that is small, power-saving, and has a long life.At least one magnetomotive force source using a permanent magnet or a coil is provided. In a linear motor that has a magnetic circuit for generating thrust including a thrust generating circuit and generates a thrust that causes the mover to move straight on the stator by magnetic force or electric current force, each of the magnetic openings for generating thrust is attached to the base, and the magnetic circuit for generating thrust is attached to the base. A levitation permanent magnet is provided on the opposite side of the magnetosphere path, facing the stator, with an operating gap in between, and the levitation permanent magnet is attached to the base via a laminated piezoelectric effect element.

産業上の利用分野 本発明はリニアモータの支持機構に関し、特に磁気力に
より推力発生用ギャップを支持する磁気浮上型支持機構
を有する真空用或いは宇宙用等のリニアモータの支持機
構に関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a support mechanism for a linear motor, and more particularly to a support mechanism for a linear motor for use in vacuum or space applications, which has a magnetically levitated support mechanism that supports a thrust generating gap using magnetic force.

制御対象を1次元若しくは2次元平面上で移動させたり
、位置決めしたりする装置は、回転型のモータと回転運
動を直線運動に変換するメカニズムを使ったものが多い
。これに対して最近は制御対象を直接モータに取り付け
、これを直線駆動するリニアモータの開発が進んでいる
。リニア直流モータ、リニアパルスモータ及びリニアm
導%−タ等の小形リニアモータは、直交座標系の産業ロ
ボットや組立搬送装置及びタイプライタのキャリッジ駆
動等に見られるように、負荷質量を搭載して直進動作す
るFA、OA機器に多く用いられている。
2. Description of the Related Art Many devices that move or position a controlled object on a one-dimensional or two-dimensional plane use a rotary motor and a mechanism that converts rotational motion into linear motion. In contrast, recent advances have been in the development of linear motors in which a controlled object is attached directly to the motor and the motor is driven in a straight line. Linear DC motor, linear pulse motor and linear m
Small linear motors such as electric motors are often used in FA and OA equipment that carries a load mass and moves in a straight line, such as in industrial robots with orthogonal coordinate systems, assembly and transfer equipment, and typewriter carriage drives. It is being

これらのリニアモータでは、固定子に対して可動子を所
定のギャップで支持する必要があり、長寿命の推力発生
用ギャップ支持機構が要望されている。
In these linear motors, it is necessary to support the mover with respect to the stator with a predetermined gap, and a gap support mechanism for generating thrust with a long life is desired.

従来の技術 第9図は従来のリニアモータの支持機構の一部破断正面
図であり、第10図はその側面図である。
Prior Art FIG. 9 is a partially cutaway front view of a conventional linear motor support mechanism, and FIG. 10 is a side view thereof.

図において、1は固定子であり、鉄等の強磁性体基板2
上に等ピッチ間隔で複数のスケール歯3が設けられて構
成されている。4は可動子であり、鉄等の強磁性体から
形成された4個の磁極5as5b、5c、5dを有して
おり、磁極5b、5c、5dの歯は磁極5aの歯に対し
てそれぞれτ/2、τ/4.3τ/4だけ位相がずれて
配置されている。磁極5a〜5dにはそれぞれコイル6
が巻かれており、その上部には永久磁石7が設けられて
いる。又、2個の永久磁石7に渡り強磁性体のヨーク8
が設けられている。
In the figure, 1 is a stator, and 2 is a ferromagnetic substrate made of iron or the like.
A plurality of scale teeth 3 are provided on the top at equal pitch intervals. Reference numeral 4 denotes a mover, which has four magnetic poles 5as5b, 5c, and 5d made of a ferromagnetic material such as iron, and the teeth of the magnetic poles 5b, 5c, and 5d are each τ relative to the teeth of the magnetic pole 5a. They are arranged with a phase shift of /2, τ/4.3τ/4. Coils 6 are connected to the magnetic poles 5a to 5d, respectively.
is wound, and a permanent magnet 7 is provided on top of it. In addition, a ferromagnetic yoke 8 extends between two permanent magnets 7.
is provided.

9はステンレス等の非磁性体フレームであり、このフレ
ームに上述したコイル6、永久磁石7等から構成される
一次側磁気回路アセンブリが取り付けられている。非磁
性体フレーム9には2本の孔通し軸10が固定されてお
り、この軸10にギャップ支持用ローラ11が回転自在
に取り付けられている。ローラ11は固定子1のローラ
転勤面14に当接し推力発生用ギャップGを支持するよ
うになっている。又、非磁性体フレーム9には垂直方向
に4個の軸12が固定されており、この軸12にローラ
13が回転自在に取り付けられている。ローラ13は強
磁性体基板2の側面に当接し、固定子1の直進案内をし
ている。
Reference numeral 9 denotes a non-magnetic frame made of stainless steel or the like, and a primary side magnetic circuit assembly comprising the above-mentioned coil 6, permanent magnet 7, etc. is attached to this frame. Two hole-through shafts 10 are fixed to the non-magnetic frame 9, and a gap support roller 11 is rotatably attached to the shafts 10. The roller 11 comes into contact with the roller transfer surface 14 of the stator 1 and supports the thrust generating gap G. Furthermore, four shafts 12 are vertically fixed to the non-magnetic frame 9, and rollers 13 are rotatably attached to the shafts 12. The roller 13 is in contact with the side surface of the ferromagnetic substrate 2 and guides the stator 1 in a straight line.

このように従来のリニアモータでは、ギャップ支持用ロ
ーラ11が固定子1のローラ転動面14に当接し、推力
発生用ギャップGを支持して可動子4を固定子1に対し
て直進駆動するようにしている。
In this way, in the conventional linear motor, the gap support roller 11 comes into contact with the roller rolling surface 14 of the stator 1, supports the thrust generation gap G, and drives the movable element 4 in a straight line relative to the stator 1. That's what I do.

発明が解決しようとする課題 従来のようなギャップ支持用ローラによる支持機構では
、推力発生用永久磁石による可動子と固定子の磁気吸引
力が推力の10倍程度と大きい為に、支持機構の負担が
大きくなり、固定子のローラ転動面が剥離(フレーキン
グ)する等、支持機構の寿命が短いという問題があった
。又、大きな負荷のかかるギャップ支持用ローラには潤
滑油が必要であり、その飛散や蒸発のため真空用や宇宙
用のリニアモータの支持機構等には不向きである。
Problems to be Solved by the Invention In the conventional support mechanism using gap support rollers, the magnetic attraction force between the mover and the stator due to the thrust generating permanent magnet is about 10 times as large as the thrust force, which places a burden on the support mechanism. There was a problem in that the life of the support mechanism was shortened, such as the increase in the amount of friction, resulting in peeling of the rolling surface of the rollers of the stator (flaking), etc. Furthermore, the gap support rollers, which are subjected to a large load, require lubricating oil, and because of the scattering and evaporation of lubricating oil, the lubricating oil is not suitable for support mechanisms of linear motors for vacuum or space applications.

この問題を解決するため、リニアモータカーに見られる
ように電磁石による磁気浮上方式も最近検討が始まって
いる。この方式の模式図を第11図に示す。同図に於い
て、15は固定子であり、ヨーク16が設けられている
。可動子17は推力発生用磁気回路18、直進案内用電
磁石19及び浮上用電磁石20を有している。このリニ
アモータは、浮上用電磁石20による磁気吸引力で可動
子17を固定子15に対して浮上させ、推力発生用磁気
回路18による推力により可動子17を直進駆動するも
のである。
To solve this problem, studies have recently begun on magnetic levitation using electromagnets, as seen in linear motor cars. A schematic diagram of this system is shown in FIG. In the figure, 15 is a stator, and a yoke 16 is provided. The movable element 17 has a thrust generating magnetic circuit 18, a linear guide electromagnet 19, and a levitation electromagnet 20. This linear motor levitates the movable element 17 relative to the stator 15 by the magnetic attraction force generated by the levitation electromagnet 20, and drives the movable element 17 in a straight line by the thrust generated by the thrust generating magnetic circuit 18.

しかしこの構成であると、搭載負荷質量が変動したり、
推力発生用磁気回路に使用する永久磁石の磁気吸引力の
大きい用途では、コイル抵抗によるジコール熱損(銅損
)が大きくなりがちである。
However, with this configuration, the onboard load mass may fluctuate,
In applications where the permanent magnet used in the magnetic circuit for thrust generation has a large magnetic attraction force, dicol heat loss (copper loss) due to coil resistance tends to become large.

これを防ぐため、超電導コイルを電磁石として用いると
、コイルの冷却等のため装置が大型化してしまうという
問題がある。
If a superconducting coil is used as an electromagnet to prevent this, there is a problem in that the device becomes larger due to cooling of the coil, etc.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とする所は、小形、省電力で長寿命の非接触式リ
ニアモータ支持機構を提供することである。
The present invention has been made in view of these points, and its purpose is to provide a non-contact type linear motor support mechanism that is compact, power-saving, and has a long life.

課題を解決するための手段 推力発生用磁気回路をベースに取り付け、この推力発生
用磁気回路の反対側に固定子に対して動作空隙を隔てて
浮上用永久磁石を設ける。そして、浮上用永久磁石を積
層形圧電効果素子を介してベースに取り付けることによ
り、リニアモータの支持機構を構成する。
Means for Solving the Problems A magnetic circuit for generating thrust is attached to a base, and a permanent magnet for levitation is provided on the opposite side of the magnetic circuit for generating thrust, with an operational gap in between the stator. A support mechanism for the linear motor is constructed by attaching the levitation permanent magnet to the base via the laminated piezoelectric effect element.

可動子と固定子との間のギャップの変化を検出する検出
手段を設け、この検出手段の検出値に基づいて前記積層
形圧電効果素子に印加する電圧を変化させる制御手段を
設けるのが望ましい。又、浮上用永久磁石によるより大
きな磁気力変化を要する場合には、積層形圧電効果素子
と浮上用永久磁石との間に変位拡大機構を設けるように
する。
It is desirable to provide a detection means for detecting a change in the gap between the movable element and the stator, and to provide a control means for changing the voltage applied to the laminated piezoelectric effect element based on the detected value of the detection means. Furthermore, if a larger change in magnetic force is required by the levitation permanent magnet, a displacement magnification mechanism is provided between the laminated piezoelectric effect element and the levitation permanent magnet.

作   用 本発明は浮上用永久磁石を変位させることによって、動
作空隙で生ずる磁気力を変化させ、可動子を磁気的に浮
上させ、長寿命の非接触式リニアモータ支持機構を提供
するものである。浮上用永久磁石の変位に対する磁気力
の変化は大きく、磁気力自体も大きくする必要がある。
Function The present invention changes the magnetic force generated in the operating gap by displacing the levitation permanent magnet, magnetically levitates the mover, and provides a long-life non-contact type linear motor support mechanism. . The change in magnetic force with respect to the displacement of the levitation permanent magnet is large, and the magnetic force itself also needs to be large.

そこで、この浮上用永久磁石を変位させるのに適合した
小変位で発生力の大きな小形変位素子として、積層形圧
電効果素子を用いるようにしている。圧電効果素子は変
位を維持するときに電流はほとんど流れず、電気機械変
換効率も高いので、省電力の支持機構を実現することが
できる。又、変位の応答性も速い利点がある。
Therefore, a laminated piezoelectric effect element is used as a small displacement element suitable for displacing the levitation permanent magnet and capable of generating a large force with a small displacement. Since almost no current flows through the piezoelectric effect element when maintaining displacement and the electromechanical conversion efficiency is high, it is possible to realize a power-saving support mechanism. It also has the advantage of fast displacement response.

検出手段により推力発生用ギャップの変化を検出し、こ
の検出値に基づいて制御手段により積層形圧電効果素子
に印加する電圧をフィードバック制御して、推力発生用
ギャップの変化に応じて動作空隙を変化させるようにす
る。
The detection means detects a change in the thrust generation gap, and the control means feedback-controls the voltage applied to the laminated piezoelectric effect element based on this detected value, and changes the operating gap according to the change in the thrust generation gap. Let them do it.

実  施  例 以下本発明の実施例を図面を参照して詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1実施例断面図であり、第2図はそ
の側面図である。この第1実施例は平板状片側リニアパ
ルスモータに本発明の支持機構を取り付けた例を示して
いる。21は固定子であり、鉄等の強磁性体基板22上
に等ピッチ間隔で複数のスケール歯23が形成されて構
成されている。
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a side view thereof. This first embodiment shows an example in which the support mechanism of the present invention is attached to a flat plate-shaped one-sided linear pulse motor. A stator 21 is composed of a plurality of scale teeth 23 formed at equal pitches on a ferromagnetic substrate 22 made of iron or the like.

24は推力発生用磁気回路29を有する可動子である。24 is a movable element having a magnetic circuit 29 for generating thrust.

推力発生用磁気回路29は鉄等の強磁性体から形成され
た4個の磁極25 a、 25 b、 25c、25d
を有しており、磁極25b、25C。
The thrust generating magnetic circuit 29 includes four magnetic poles 25 a, 25 b, 25 c, and 25 d made of a ferromagnetic material such as iron.
It has magnetic poles 25b and 25C.

25dの歯は磁極25aの歯に対してそれぞれT/2、
τ/4.3τ/4だけ位相がずれて配置されている。磁
極25a〜25bにはそれぞれコイル26が巻かれてお
り、その上部には推力発生用永久磁石27が設けらてれ
いる。又、2個の永久磁石27に渡り強磁性体のヨーク
28が設けらてれいる。ヨーク28はベース30に取り
付けられている。
The teeth of 25d are T/2, respectively, with respect to the teeth of magnetic pole 25a.
They are arranged with a phase shift of τ/4.3τ/4. A coil 26 is wound around each of the magnetic poles 25a to 25b, and a thrust generating permanent magnet 27 is provided above the coil 26. Further, a ferromagnetic yoke 28 is provided across the two permanent magnets 27. Yoke 28 is attached to base 30.

推力発生用磁気回路29の反対側に、固定子21に対向
して動作空隙G2を隔てて、2個の浮上用永久磁石31
が配置されている。浮上用永久磁石31の背面にはヨー
ク32が貼られており、このヨーク32と固定子21と
の間で閉磁路を形成する。このため浮上用永久磁石31
には磁気吸弓力が作用する。浮上用永久磁石31のヨー
ク32は可動台33に取り付けられており、この可動台
33の内側に積層形圧電効果素子34が設けらてれいる
。積°層形圧電効果素子34の一端は可動台33により
支持されており、他端にはベース30が搭載されている
。ベース30は上述したように推力発生用磁気回路29
に固定されている。圧電効果素子34は浮上用永久磁石
31の磁気吸引力により、常に圧縮方向に力を受けてい
る。
On the opposite side of the thrust generating magnetic circuit 29, two levitation permanent magnets 31 are arranged opposite to the stator 21 and separated by an operating gap G2.
is located. A yoke 32 is attached to the back surface of the levitation permanent magnet 31, and a closed magnetic path is formed between the yoke 32 and the stator 21. For this reason, the levitation permanent magnet 31
A magnetic bow force acts on the. The yoke 32 of the levitation permanent magnet 31 is attached to a movable table 33, and a laminated piezoelectric effect element 34 is provided inside this movable table 33. One end of the laminated piezoelectric effect element 34 is supported by a movable table 33, and a base 30 is mounted on the other end. As described above, the base 30 has a thrust generating magnetic circuit 29.
Fixed. The piezoelectric effect element 34 is always subjected to a force in the compression direction due to the magnetic attraction force of the levitation permanent magnet 31.

積層形圧電効果素子33に電圧を印加することで、浮上
用永久磁石31を上下方向に変位させ、動作空隙G2を
変えるようにする。このときの磁気吸引力の変化により
、推力発生用ギャップG1の大きさを調整できるように
なっている。
By applying a voltage to the laminated piezoelectric effect element 33, the floating permanent magnet 31 is displaced in the vertical direction, and the operating gap G2 is changed. The size of the thrust generation gap G1 can be adjusted by changing the magnetic attraction force at this time.

可動子24の両側面には、それぞれ2列の循環式セラミ
ック球によるリニアガイド35が取り付けられている。
On both sides of the movable element 24, linear guides 35 made up of two rows of circulating ceramic balls are attached, respectively.

横方向には本質的に大きな荷重が作用せず、リニアガイ
ド35は直進案内のみのため無潤滑で済む。このリニア
ガイド35は、可動子24の横方向の変位と共に、ロー
リング(m揺れ)、ヨーイング(偏揺れ)の3自由度を
拘束する。進行方向の自由度は推力発生用磁気回路によ
り制御する。
Essentially, no large load acts in the lateral direction, and the linear guide 35 only provides linear guidance, so no lubrication is required. This linear guide 35 restrains the lateral displacement of the movable element 24 as well as the three degrees of freedom of rolling (m-swing) and yawing (yaw). The degree of freedom in the direction of movement is controlled by a magnetic circuit for thrust generation.

従って、浮上用永久磁石31の変位により制御するのは
、6自由度の内で残る縦方向の変位とピッチング(縦揺
れ)の2自由度のみである。この2自由度の制御のため
、可動子24の前後2カ所に例えば容量式変位計36を
設け、この容量式変位計36により推力発生用ギャップ
G1を検出し、この検出値を制御回路37に入力する。
Therefore, what is controlled by the displacement of the levitation permanent magnet 31 is only the remaining two degrees of freedom of the six degrees of freedom: vertical displacement and pitching. For this two-degree-of-freedom control, for example, a capacitive displacement meter 36 is provided at two locations in the front and rear of the movable element 24, the thrust generation gap G1 is detected by the capacitive displacement meter 36, and this detected value is sent to the control circuit 37. input.

制御回路37の出力を電力増幅回路38で増幅し、積層
形圧電効果素子31に印加する電圧を推力発生用ギャッ
プG1の変化に応じて変化させ、積層形圧電効果素子3
4を変位させる。このように本実施例では、容量式変位
計36によるギヤツブ検出→制御回路37→電力増幅→
積層形圧電効果素子34の変位、による浮上用永久磁石
31の変位のための2つの閉ループ系を形成している。
The output of the control circuit 37 is amplified by the power amplifier circuit 38, and the voltage applied to the laminated piezoelectric effect element 31 is changed according to the change in the thrust generation gap G1.
Displace 4. In this way, in this embodiment, gear detection by capacitive displacement meter 36 → control circuit 37 → power amplification →
Two closed loop systems are formed for the displacement of the levitation permanent magnet 31 due to the displacement of the laminated piezoelectric effect element 34.

積層形圧電効果素子34は、例えば−辺5 mmの正方
形で厚さ0.4關の圧電セラミックを60枚積層してお
り、印加電圧500Vにおいて無負荷時50μm変位し
く伸び)、全熱変位しないように拘束すると59kgf
の力を発生する。一方、推力発生用や浮上用の永久磁石
による磁気吸引力F1 は第3図の単純化した磁気回路
モデルで考えると次式のようになる。
The laminated piezoelectric effect element 34 is, for example, a laminate of 60 pieces of piezoelectric ceramic having a square shape with a side of 5 mm and a thickness of 0.4 mm, and is elongated by 50 μm under no load at an applied voltage of 500 V), and does not undergo any thermal displacement. When restrained like this, it weighs 59 kgf.
Generates the force of. On the other hand, the magnetic attraction force F1 due to the permanent magnets for thrust generation and levitation is expressed by the following equation when considered using the simplified magnetic circuit model shown in FIG.

ここで、 φ:磁束 μ0:空隙の透磁率ζ永久磁石のりコイル透磁率S、:
空隙対向面積 Sl:永久磁石の断面積 HC:永久磁石の保磁力 11:永久磁石の厚さ β、:空隙幅 第4図は磁気吸引力と積層形圧電効果素子発生力の釣り
合い状態を示すグラフであり、圧電素子印加電圧を変え
た時の圧電素子の発生力と変位との関係、及び浮上用永
久磁石の磁気吸引力と動作空隙との関係を一つのグラフ
に示したものである。
Here, φ: Magnetic flux μ0: Permeability of air gap ζ Permeability of permanent magnet glue coil S,:
Opposing area of air gap Sl: Cross-sectional area of permanent magnet HC: Coercive force of permanent magnet 11: Thickness of permanent magnet β, : Gap width Figure 4 is a graph showing the balance between the magnetic attraction force and the force generated by the laminated piezoelectric effect element. This is a graph showing the relationship between the force generated by the piezoelectric element and the displacement when the voltage applied to the piezoelectric element is changed, and the relationship between the magnetic attraction force of the levitation permanent magnet and the operating gap.

第4図のグラフに示すように、積層形圧電効果素子への
印加電圧を増減することにより、積層形圧電効果素子の
発生力と浮上用永久磁石による磁気吸引力とを釣り合わ
せ、動作空隙を増減することができる。
As shown in the graph in Figure 4, by increasing or decreasing the voltage applied to the multilayer piezoelectric effect element, the force generated by the multilayer piezoelectric effect element and the magnetic attraction force of the levitation permanent magnet are balanced, and the operating gap is reduced. It can be increased or decreased.

第5図は浮上用永久磁石と推力発生用永久磁石の磁気吸
引力と動作空隙及び推力発生用ギャップの関係を一つの
グラフにまとめて示している。式(1)において、推力
発生用永久磁石ではI!、大、S1小とし、浮上用永久
磁石においてはSm大、βヨ小とする。この時第5図に
示すように、両者の特性曲線の傾きに差ができる。両者
の永久磁石の磁気吸引力が等しい動作空隙と推力発生用
ギャップにおいて、力の釣り合いが保たれることになる
。例えば第5図では、両磁石の磁気吸引力が等しい時に
は、推力発生用ギャップが50μmと小さくなり、動作
空隙は0.3+nmと大きくなっている。
FIG. 5 shows the relationship between the magnetic attraction force of the levitation permanent magnet and the thrust generating permanent magnet, the operating gap, and the thrust generating gap in one graph. In equation (1), in the thrust generating permanent magnet, I! , large and S1 small, and for the levitation permanent magnet, Sm is large and β yo is small. At this time, as shown in FIG. 5, there is a difference in the slopes of the two characteristic curves. Force balance is maintained in the operating gap and the thrust generation gap where the magnetic attraction forces of both permanent magnets are equal. For example, in FIG. 5, when the magnetic attraction forces of both magnets are equal, the thrust generation gap is as small as 50 μm, and the operating gap is as large as 0.3+nm.

第6図は本発明の第2実施例概略構成図を示しており、
積層形圧電効果素子44のみでは変位がまだ小さい場合
に、梃の原理による変位拡大機構43を一対設けている
例である。推力発生用磁気回路29は上述した第1実施
例と同様であるのでブロックで示してあり、固定子21
のスケール歯も省略されている。浮上用永久磁石41の
背面にはヨーク42が貼られており、ヨーク42は梃の
原理を利用した変位拡大機構43及び積層形圧電効果素
子44を介してベース40に取り付けられている。第6
図において、40a、40bが梃の支点となり、l、 
  !!2、m、、m2 を第6図に示すように取ると
、変位拡大率は(mI/11)x (mz /L )で
ある。この実施例によれば搭載負荷質量が大きく変わっ
ても、浮上用永久磁石41の変位を大きく取ることで磁
気吸引力を大きく変えて、浮上用永久磁石41による支
持を可能としている。
FIG. 6 shows a schematic configuration diagram of a second embodiment of the present invention,
This is an example in which a pair of displacement amplifying mechanisms 43 based on the lever principle are provided when the displacement is still small with only the laminated piezoelectric effect element 44. The thrust generating magnetic circuit 29 is shown as a block because it is the same as that in the first embodiment described above, and the stator 21
The scale teeth are also omitted. A yoke 42 is attached to the back surface of the levitation permanent magnet 41, and the yoke 42 is attached to the base 40 via a displacement magnifying mechanism 43 using the lever principle and a laminated piezoelectric effect element 44. 6th
In the figure, 40a and 40b are the fulcrums of the lever, l,
! ! 2, m, , m2 as shown in FIG. 6, the displacement magnification rate is (mI/11)x (mz/L). According to this embodiment, even if the mounted load mass changes greatly, by increasing the displacement of the levitation permanent magnet 41, the magnetic attraction force can be greatly changed, and support by the levitation permanent magnet 41 is made possible.

第7図は本発明の第3実施例概略構成図を示している。FIG. 7 shows a schematic configuration diagram of a third embodiment of the present invention.

この実施例は平板状両側式リニアモータの片側に積層形
圧電効果素子を用いた例である。
This embodiment is an example in which a laminated piezoelectric effect element is used on one side of a flat plate-like double-sided linear motor.

上側の推力発生用磁気回路29は可動子を構成し、その
構成は第1図及び第2図に示した第1実施例と同様であ
るので詳細な説明を省略する。又、固定子21°の表裏
両面には等ピッチ間隔のスケール歯が形成されているが
、簡単化のため図面上では省略されている。下側の推力
発生用磁気回路45は4個の磁極及びコイルを含んでお
り、それぞれの磁極上には浮上兼推力発生用永久磁石4
6が設けられている。永久磁石46の背面にはヨーク4
7が貼られており、各々のヨーク47は強磁性体部材4
8により連結されている。強磁性体部材48は可動台4
9に取り付けられており、この可動台49と上側の推力
発生用磁気回路29が取り付けられたベース50との間
に積層形圧電効果素子51が設けられている。この実施
例は第1図に示した第1実施例の下側の浮上用永久磁石
のヨークを連結し、浮上用永久磁石を推力発生用永久磁
石と兼用したものである。
The upper thrust generating magnetic circuit 29 constitutes a movable element, and its configuration is the same as that of the first embodiment shown in FIGS. 1 and 2, so a detailed explanation will be omitted. Also, scale teeth are formed at equal pitches on both the front and back surfaces of the stator 21°, but are omitted in the drawing for the sake of simplicity. The lower thrust generation magnetic circuit 45 includes four magnetic poles and coils, and a levitation and thrust generation permanent magnet 4 is mounted on each magnetic pole.
6 is provided. A yoke 4 is attached to the back of the permanent magnet 46.
7 is attached, and each yoke 47 is attached to a ferromagnetic member 4.
8. The ferromagnetic member 48 is the movable base 4
A laminated piezoelectric effect element 51 is provided between the movable base 49 and a base 50 to which the upper thrust generating magnetic circuit 29 is attached. In this embodiment, the yoke of the lower levitation permanent magnet of the first embodiment shown in FIG. 1 is connected, and the levitation permanent magnet also serves as a thrust generating permanent magnet.

第8図は本発明の第4実施例概略構成図を示している。FIG. 8 shows a schematic configuration diagram of a fourth embodiment of the present invention.

この実施例は第7図の上下の磁気回路を更に側面の両側
にも用いたものである。第8図において、52は推力発
生用磁気回路であり、ベース53に取り付けられている
。54は固定子であり、4つの面に設けられているスケ
ール歯は省略されている。55は浮上兼推力発生用永久
磁石であり、それぞれの磁気回路は浮上用兼推力発生用
永久磁石56を含んでいる。浮上用兼推力発生用永久磁
石56のヨークは可動台57、積層形圧電効果素子58
を介してベース53に取り付けられている。この実施例
においては、第1図及び第2図に示した第1実施例のリ
ニアガイド35は無く、完全磁気浮上型支持機構である
。可動子進行方向以外の5自由度を浮上用兼推力発生用
永久磁石56の変位によって制御している。
In this embodiment, the upper and lower magnetic circuits shown in FIG. 7 are further used on both side surfaces. In FIG. 8, 52 is a thrust generating magnetic circuit, which is attached to a base 53. 54 is a stator, and scale teeth provided on four surfaces are omitted. 55 is a permanent magnet for levitation and thrust generation, and each magnetic circuit includes a permanent magnet 56 for levitation and thrust generation. The yoke of the permanent magnet 56 for levitation and thrust generation is a movable table 57 and a laminated piezoelectric effect element 58.
It is attached to the base 53 via. In this embodiment, the linear guide 35 of the first embodiment shown in FIGS. 1 and 2 is not provided, and a complete magnetic levitation type support mechanism is used. The five degrees of freedom other than the moving direction of the mover are controlled by the displacement of a permanent magnet 56 for levitation and thrust generation.

上述した各実施例は平板状のリニアモータについて説明
したが、本発明の支持機構は円筒状リニアモータにも適
用可能である。又推力発生用磁気回路としてリニアパル
スモータで説明したが、リニアパルスモータに限らず、
リニア直流モータやリニア誘導モータにも適用可能であ
る。
Although each of the above-mentioned embodiments describes a flat linear motor, the support mechanism of the present invention is also applicable to a cylindrical linear motor. Also, although we have explained using a linear pulse motor as a magnetic circuit for generating thrust, it is not limited to linear pulse motors.
It is also applicable to linear DC motors and linear induction motors.

発明の効果 本発明のリニアモータの支持機構は以上詳述したように
構成したので、小形、省電力で長寿命の非接触式リニア
モータの支持機構を提供できるという効果を奏する。非
接触式であるため、潤滑油を必要とすることなく、真空
用や宇宙用のリニアモータの支持機構にも適用可能であ
る。
Effects of the Invention Since the linear motor support mechanism of the present invention is configured as described in detail above, it is possible to provide a non-contact type linear motor support mechanism that is small, power saving, and has a long life. Since it is a non-contact type, it does not require lubricating oil and can be applied to support mechanisms for linear motors for vacuum and space applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例断面図、 第2図は第1実施例側面図、 第3図は永久磁石と空隙の磁気回路モデルを示す説明図
、 第4図は磁気吸引力と積層形圧電効果素子発生力の釣り
合いを示すグラフ、 第5図は浮上用永久磁石と推力発生用永久磁石の磁気吸
引力と動作空隙及び推力発生用ギャップとの関係を示す
グラフ、 第6図は本発明の第2実施例概略構成図、第7図は本発
明の第3実施例概略構成図、第8図は本発明の第4実施
例概略構成図、第9図は従来例の一部破断正面図、 第10図は従来例側面図、 第11図は電磁石による磁気浮上の従来例模式図である
。 ■・・・固定子、 4・・・可動子、 5a〜25d・・・磁極、 6・・・コイル、 7・・・推力発生用永久磁石、 8・・・ヨーク、 9・・・推力発生用磁気回路、 0・・・ベース、 l・・・浮上用永久磁石、 2・・・ヨーク、 3・・・可動台、 4・・・積層形圧電効果素子、 5・・・リニアガイド、 6・・・容量式変位計、 1・・・浮上用永久磁石、 3・・・変位拡大機構、 4・・・積層形圧電効果素子、 5・・・浮上用兼推力発生用磁気回路、・・・積層形圧
電効果素子、 ・・・推力発生用磁気回路、 ・・・浮上用兼推力発生用磁気回路、 ・・・積層形圧電効果素子。
Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2 is a side view of the first embodiment, Fig. 3 is an explanatory diagram showing a magnetic circuit model of a permanent magnet and an air gap, and Fig. 4 is a diagram showing the magnetic attraction force and A graph showing the balance of the forces generated by the laminated piezoelectric effect element. Figure 5 is a graph showing the relationship between the magnetic attraction force of the levitation permanent magnet and the thrust generation permanent magnet and the operating gap and the thrust generation gap. 7 is a schematic diagram of the second embodiment of the present invention, FIG. 7 is a schematic diagram of the third embodiment of the present invention, FIG. 8 is a schematic diagram of the fourth embodiment of the present invention, and FIG. 9 is a part of the conventional example. FIG. 10 is a side view of a conventional example, and FIG. 11 is a schematic diagram of a conventional example of magnetic levitation using electromagnets. ■...Stator, 4...Mover, 5a-25d...Magnetic pole, 6...Coil, 7...Permanent magnet for thrust generation, 8...Yoke, 9...Thrust generation Magnetic circuit for use, 0... Base, l... Permanent magnet for levitation, 2... Yoke, 3... Movable base, 4... Laminated piezoelectric effect element, 5... Linear guide, 6 ... Capacitive displacement meter, 1. Permanent magnet for levitation, 3. Displacement magnification mechanism, 4. Laminated piezoelectric effect element, 5. Magnetic circuit for levitation and thrust generation.・Laminated piezoelectric effect element, ... magnetic circuit for thrust generation, ... magnetic circuit for levitation and thrust generation, ... multilayer piezoelectric effect element.

Claims (3)

【特許請求の範囲】[Claims] (1)永久磁石又はコイルによる少なくとも1個の起磁
力源を含む推力発生用磁気回路(29)を有し、磁気力
又は電流力によって可動子(24)が固定子(21)上
を直進する推力を得るリニアモータにおいて、 前記推力発生用磁気回路(29)をベース(30)に取
り付け、 該推力発生用磁気回路(24)の反対側に固定子(21
)に対向して動作空隙(G2)を隔てて浮上用永久磁石
(31)を設け、 該浮上用永久磁石(31)を積層形圧電効果素子(34
)を介して前記ベース(30)に取り付けたことを特徴
とするリニアモータの支持機構。
(1) It has a thrust generating magnetic circuit (29) including at least one magnetomotive force source made of a permanent magnet or a coil, and the mover (24) moves straight on the stator (21) by magnetic force or current force. In the linear motor that generates thrust, the thrust generation magnetic circuit (29) is attached to the base (30), and the stator (21) is attached to the opposite side of the thrust generation magnetic circuit (24).
), a levitation permanent magnet (31) is provided across an operating gap (G2), and the levitation permanent magnet (31) is connected to a laminated piezoelectric effect element (34).
) A support mechanism for a linear motor, characterized in that it is attached to the base (30) via a support mechanism.
(2)前記可動子(24)と固定子(21)との間の推
力発生用ギャップ(G1)の変化を検出する検出手段(
36)を設け、該検出手段の検出値に基づいて前記積層
形圧電効果素子(34)に印加する電圧を変化させる制
御手段(37)を設けたことを特徴とする請求項1記載
のリニアモータの支持機構。
(2) Detection means (
36) and a control means (37) for changing the voltage applied to the laminated piezoelectric effect element (34) based on the detection value of the detection means. support mechanism.
(3)積層形圧電効果素子(44)と浮上用永久磁石(
41)との間に変位拡大機構(43)を設けたことを特
徴とする請求項1又は2記載のリニアモータの支持機構
(3) Laminated piezoelectric effect element (44) and levitation permanent magnet (
3. The linear motor support mechanism according to claim 1, further comprising a displacement amplifying mechanism (43) between the linear motor support mechanism (41) and the linear motor support mechanism (41).
JP1036246A 1989-02-17 1989-02-17 Linear motor supporting mechanism Pending JPH02219455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036246A JPH02219455A (en) 1989-02-17 1989-02-17 Linear motor supporting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036246A JPH02219455A (en) 1989-02-17 1989-02-17 Linear motor supporting mechanism

Publications (1)

Publication Number Publication Date
JPH02219455A true JPH02219455A (en) 1990-09-03

Family

ID=12464417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036246A Pending JPH02219455A (en) 1989-02-17 1989-02-17 Linear motor supporting mechanism

Country Status (1)

Country Link
JP (1) JPH02219455A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603239B1 (en) * 1999-07-30 2003-08-05 Forschungszentrum Julich Gmbh Micromanipulator with piezoelectric movement elements
EP1424767A2 (en) * 2002-11-29 2004-06-02 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
US6885117B2 (en) 2002-11-29 2005-04-26 Asml Netherlands B.V. Magnetic actuator under piezoelectric control
JP2009296874A (en) * 2008-06-04 2009-12-17 Korea Inst Of Science & Technology Linear stepping motor
CN109546837A (en) * 2017-09-22 2019-03-29 发那科株式会社 Electric motor structure selecting apparatus and method for selecting and computer-readable medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603239B1 (en) * 1999-07-30 2003-08-05 Forschungszentrum Julich Gmbh Micromanipulator with piezoelectric movement elements
EP1424767A2 (en) * 2002-11-29 2004-06-02 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
US6885117B2 (en) 2002-11-29 2005-04-26 Asml Netherlands B.V. Magnetic actuator under piezoelectric control
EP1424767A3 (en) * 2002-11-29 2006-06-21 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
CN100336140C (en) * 2002-11-29 2007-09-05 Asml荷兰有限公司 Magnetic actuator under piezoelectric control
JP2009296874A (en) * 2008-06-04 2009-12-17 Korea Inst Of Science & Technology Linear stepping motor
CN109546837A (en) * 2017-09-22 2019-03-29 发那科株式会社 Electric motor structure selecting apparatus and method for selecting and computer-readable medium
JP2019058041A (en) * 2017-09-22 2019-04-11 ファナック株式会社 Motor configuration selection device, motor configuration selection method, and program
US10673314B2 (en) 2017-09-22 2020-06-02 Fanuc Corporation Motor configuration selection device, motor configuration selection method, and non-transitory computer-readable medium storing program
CN109546837B (en) * 2017-09-22 2020-08-14 发那科株式会社 Motor structure selection device and method, and computer-readable medium

Similar Documents

Publication Publication Date Title
JP4587870B2 (en) Magnet unit, elevator guide device, and weighing device
JP5387570B2 (en) Multi-degree-of-freedom actuator and stage device
US4689529A (en) Linear stepping motor
JPS61218355A (en) Magnetically levitating actuator having rotation positioning function
US6003230A (en) Magnetic positioner having a single moving part
JP2004172557A (en) Stage apparatus and its control method
JPH03178747A (en) Two-dimensional motor type stage device
JP4021158B2 (en) XY table in semiconductor manufacturing equipment
JPH02219455A (en) Linear motor supporting mechanism
da Silva et al. An attraction-type magnetic bearing with control in a single direction
JP4940428B2 (en) Non-contact magnetic levitation method using magnetic material and non-contact magnetic levitation apparatus using the same
JP2625717B2 (en) Magnetic levitation transfer device
JPH0741992B2 (en) Magnetic levitation carrier
Vikrant et al. A novel actuator based on near-field acoustic levitation and electromagnetic actuation
JPS6032581A (en) Magnetically levitating linear guide
CN114598119B (en) Reluctance type two-dimensional scanning movement device
JPH0628504B2 (en) Non-contact type actuator
JP4831719B2 (en) Magnetically levitated XY surface linear synchronous motor
JPH0615441Y2 (en) Magnetic levitation device
JPS6360636B2 (en)
KR102661559B1 (en) A magnetic bearing assembly as well as a linear guideway assembly implementing one or more such magnetic bearing assemblies.
JPH03293586A (en) Positioning table apparatus
JPS6032580A (en) Magnetically levitating linear guide
JP2707364B2 (en) Hydrostatic bearing device
JP2717174B2 (en) Non-contact linear actuator