JPS6360636B2 - - Google Patents

Info

Publication number
JPS6360636B2
JPS6360636B2 JP12171181A JP12171181A JPS6360636B2 JP S6360636 B2 JPS6360636 B2 JP S6360636B2 JP 12171181 A JP12171181 A JP 12171181A JP 12171181 A JP12171181 A JP 12171181A JP S6360636 B2 JPS6360636 B2 JP S6360636B2
Authority
JP
Japan
Prior art keywords
electromagnet
fixing body
electromagnets
reference axis
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12171181A
Other languages
Japanese (ja)
Other versions
JPS5822587A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12171181A priority Critical patent/JPS5822587A/en
Publication of JPS5822587A publication Critical patent/JPS5822587A/en
Publication of JPS6360636B2 publication Critical patent/JPS6360636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 本発明は相対移動自在な基準軸と電磁石固定体
を磁気吸引力によつて非接触状態に保つ磁気浮上
案内機構に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic levitation guide mechanism that maintains a relatively movable reference shaft and an electromagnet fixing body in a non-contact state by magnetic attraction.

従来から工作機械や情報通信装置の記憶装置、
例えば磁気デイスク装置、光デイスク装置におい
ては、正確な位置決めを行なう案内機構が用いら
れている。この案内機構としてはその性能を低下
させる摩擦力を可能な限り小さくする必要があ
り、そのため油圧や空気圧によつて可動体を金属
接触無しに支える構造の軸受を用いたものが実用
化されている。
Traditionally, storage devices for machine tools and information communication equipment,
For example, a magnetic disk device or an optical disk device uses a guide mechanism for accurate positioning. For this guide mechanism, it is necessary to minimize the frictional force that degrades its performance, and for this reason, systems using bearings that support the movable body without metal contact using hydraulic or air pressure have been put into practical use. .

しかし、斯かる案内機構の軸受はコンプレツサ
ーや配管系の保守作業が重要であり、信頼性を左
右する大きな要因となつている。また、この種の
案内機構は高精度な位置決めを必要とする集積回
路の加工装置にも使用されるが、かかる加工装置
においては塵埃を極度に嫌うため、潤滑媒体の使
用には細心の注意を払う必要があり、しかも真空
中での加工作業のため空気軸受を用いた案内機構
の使用が不可能な場合も生じる。
However, maintenance work on the compressor and piping system is important for bearings in such guide mechanisms, and this is a major factor that affects reliability. This type of guide mechanism is also used in integrated circuit processing equipment that requires highly accurate positioning, but such processing equipment is extremely sensitive to dust, so extreme care must be taken when using lubricating media. Furthermore, since the machining work is carried out in a vacuum, it may not be possible to use a guide mechanism using air bearings.

そこで、最近ではこのような不都合を解決する
手段として第1図に示す磁気浮上案内機構が提案
されている。すなわち、1は可動体、2は案内
で、可動体1はその上下面に、磁極面を斜線で示
す、例えば4個の電磁石3〜6がそれぞれ配設さ
れ、両側面に同じく磁極面を斜線で示す例えば2
個の電磁石7,8がそれぞれ配設されることによ
り合計12個の電磁石を備えている。この場合、上
面と下面および左側面と右側面の電磁石同士は対
称な位置に配設され、かつ個々の電磁石3,4,
5…は案内2との隙間を検出する検出器9(但し
図においては電磁石3に対してのみ示す)を備え
ている。各電磁石3,4,5…のコイル電流は付
随する検出器9からの信号によつて制御され、こ
の時の磁気吸引力により可動体1を案内2に対し
て非接触状態で支持し、案内2との隙間を一定に
保つ。そして、可動体1はリニアモータ(図示せ
ず)等の手段による駆動力によつて移動軸10の
方向に動かされる。
Therefore, recently, a magnetic levitation guide mechanism shown in FIG. 1 has been proposed as a means to solve this problem. That is, 1 is a movable body, 2 is a guide, and the movable body 1 is provided with, for example, four electromagnets 3 to 6, whose magnetic pole faces are indicated by diagonal lines on the upper and lower surfaces, and the magnetic pole faces are also indicated by diagonal lines on both sides. For example, 2
A total of 12 electromagnets are provided by arranging two electromagnets 7 and 8, respectively. In this case, the electromagnets on the top and bottom surfaces, the left side and the right side are arranged in symmetrical positions, and the individual electromagnets 3, 4,
5... is equipped with a detector 9 (however, only the electromagnet 3 is shown in the figure) for detecting the gap with the guide 2. The coil current of each electromagnet 3, 4, 5... is controlled by the signal from the accompanying detector 9, and the magnetic attraction force at this time supports the movable body 1 with respect to the guide 2 in a non-contact state, and guides the movable body 1. Keep the gap between 2 and 2 constant. The movable body 1 is moved in the direction of the movement axis 10 by a driving force such as a linear motor (not shown).

このような磁気浮上案内機構によれば可動体1
を案内2に対して非接触に支持することができ、
前述した潤滑媒体を使用する案内機構の欠点を除
くことができ、また可動体1の上下面、すなわち
重力方向の面に夫々4個の電磁石を対称に配置
し、軸受剛性を大きくしているので、電磁石の吸
引力によつて非接触に拘束されている方向に外乱
が作用しても案内2との隙間の変動を小さく抑え
ることが可能となる。
According to such a magnetic levitation guide mechanism, the movable body 1
can be supported without contacting the guide 2,
The disadvantages of the guide mechanism that uses a lubricating medium as described above can be eliminated, and four electromagnets are arranged symmetrically on the upper and lower surfaces of the movable body 1, that is, the surfaces in the direction of gravity, increasing the bearing rigidity. Even if a disturbance acts in a direction that is restrained in a non-contact manner by the attractive force of the electromagnet, it is possible to suppress fluctuations in the gap with the guide 2 to a small value.

しかし、このような磁気浮上案内機構は電磁石
3,4,5…の数が多く、かつ基準となる案内面
が上下、左右の4面で、それぞれを別々に精度高
く仕上げる必要があるため、コストアツプの原因
となり、未だ改良の余地であつた。
However, such a magnetic levitation guide mechanism has a large number of electromagnets 3, 4, 5, etc., and has four reference guide surfaces: top, bottom, left and right, and each needs to be finished with high precision separately, resulting in increased costs. There was still room for improvement.

そこで、本発明は一方向の直進を行なわせ、残
り5自由度を磁気力によつて非接触に拘束するた
めの直進案内を最少の磁石個数である6個で実現
することにより、構造簡易にして安価に製作で
き、また可動体を確実に非接触支持し、安定に案
内し得るようにした磁気浮上案内機構を提供すべ
くなされたもので、その特徴とするところは、平
行に配設された一対の基準軸と、両側合わせて合
計6個の分岐部を有し、前記一方の基準軸の側に
最少2個、最大4個の分岐部が設けられ、これら
分岐部が一方の基準軸を挾んでその両側から対向
し、他方の側に残り個数の分岐部が設けられ、こ
れら分岐部が他方の基準軸を挾んでその両側から
対向するように、前記一対の基準軸間にこれら両
基準軸の軸線方向に相対移動自在に配設された電
磁石固定体と、この電磁石固定体の各先端部に、
当該先端部に対応する基準軸に対して対向するよ
うそれぞれ配設された6個の電磁石と、各基準軸
に対してその側方より対向するように前記電磁石
固定体の両側にそれぞれが互いに独立した向きを
なすように振分けて配設され、該電磁石固定体と
各基準軸との隙間を検出する合計5個の変位検出
器とを備え、各基準軸を挾んでその両側に配置さ
れる電磁石は、その磁気吸引力の方向を、前記一
対の基準軸の軸線方向からみた場合、互いに交差
し、対応する基準軸を互いに引き合うよう該基準
軸に作用し、前記電磁石のコイル電流を前記変位
検出器の信号によつて制御することにより一対の
基準軸と電磁石固定体を非接触状態に保つように
したものである。
Therefore, the present invention simplifies the structure by realizing straight-line guidance for moving straight in one direction and restraining the remaining 5 degrees of freedom in a non-contact manner by magnetic force using the minimum number of magnets, 6. This mechanism was designed to provide a magnetic levitation guide mechanism that can be manufactured at low cost, reliably supports a movable body in a non-contact manner, and can guide the movable body stably. It has a pair of reference shafts, and a total of six branch parts on both sides, and a minimum of two and a maximum of four branch parts are provided on the side of one reference shaft, and these branch parts are connected to one reference shaft. The remaining number of branch parts are provided on the other side, and these branch parts are arranged between the pair of reference shafts so that they sandwich the other reference shaft and face each other from both sides. An electromagnet fixing body is arranged so as to be relatively movable in the axial direction of the reference shaft, and at each tip of this electromagnet fixing body,
six electromagnets each arranged to face a reference axis corresponding to the tip; and six electromagnets arranged independently of each other on both sides of the electromagnet fixing body so as to face each reference axis from the side. The electromagnets are arranged in such a way that they are oriented in the same direction, and are equipped with a total of five displacement detectors for detecting gaps between the electromagnet fixing body and each reference axis, and are arranged on both sides of each reference axis. When viewed from the axial direction of the pair of reference shafts, the magnetic attraction forces intersect with each other and act on the reference shafts so as to attract the corresponding reference shafts to each other, and the coil current of the electromagnet is used to detect the displacement. The pair of reference shafts and the electromagnet fixing body are kept in a non-contact state by controlling them using signals from the device.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第2図は本発明に係る磁気浮上案内機構の第1
実施例を示す斜視図、第3図は同機構の正面図、
第4図は同機構の右側面図である。これらの図に
おいて、20,21は断面形状が同一で、それぞ
れ二等辺三角形もしくは正三角形に形成された一
対の基準軸で、これらの基準軸20,21は上下
方向に一定の間隙をおいて平行に配設され固定体
を構成している。上方の基準軸20は下方の基準
軸21と対向するように上下逆に配置されてい
る。
FIG. 2 shows the first part of the magnetic levitation guide mechanism according to the present invention.
A perspective view showing the embodiment, FIG. 3 is a front view of the same mechanism,
FIG. 4 is a right side view of the mechanism. In these figures, reference axes 20 and 21 are a pair of reference axes having the same cross-sectional shape and each formed into an isosceles triangle or an equilateral triangle, and these reference axes 20 and 21 are parallel to each other with a certain gap in the vertical direction. It is arranged in a fixed body and constitutes a fixed body. The upper reference shaft 20 is arranged upside down so as to face the lower reference shaft 21.

一対の基準軸20,21の間には可動体を構成
する電磁石固定体22が後述する電磁石の磁気吸
引力によつて基準軸20,21と非接触状態を保
つて配設されている。この電磁石固定体22は、
3個の電磁石部材24A,24B,24Cと、こ
れら電磁石部材24A,24B,24Cを一体的
に結合する左右一対の結合部材25A,25Bと
を備え、各電磁石部材24A,24B,24Cは
それぞれ略V字形に形成された継鉄124a,1
24b,124cと、これら継鉄124a,12
4b,124cの両端コ字部に励磁コイル26a
〜31aを巻回して形成される一対の電磁石26
と27,28と29,30と31とでそれぞれ構
成されている。そして、各電磁石部材24A,2
4B,24Cは継鉄124a,124b,124
cの屈曲部において電磁石固定体22の移動方
向、すなわち基準軸20,21の軸線方向(Z方
向)に重ねられ、かつ前後2つの電磁石部材24
A,24Cが上方の基準軸20,21を下方から
挾む如く継鉄124a,124cの屈曲部を下に
して配置され、中央の電磁石部材24Bが下方の
基準軸21を上方から挾む如く継鉄124bの屈
曲部を上にして配置される。なお、第2図および
第4図は構成を分り易くするため、結合部材25
A,25Bを省略して示している。
An electromagnet fixing body 22 constituting a movable body is disposed between the pair of reference shafts 20, 21 so as to maintain a non-contact state with the reference shafts 20, 21 by the magnetic attraction force of the electromagnet, which will be described later. This electromagnet fixing body 22 is
It includes three electromagnetic members 24A, 24B, 24C and a pair of left and right coupling members 25A, 25B that integrally couple these electromagnetic members 24A, 24B, 24C, and each electromagnet member 24A, 24B, 24C has a diameter of about V. Yoke 124a, 1 formed into a letter shape
24b, 124c, and these yokes 124a, 12
Excitation coil 26a is installed at both ends of 4b and 124c.
A pair of electromagnets 26 formed by winding ~31a
, 27, 28, 29, 30, and 31, respectively. And each electromagnetic member 24A, 2
4B, 24C are yokes 124a, 124b, 124
The two electromagnet members 24 in the front and rear are overlapped in the moving direction of the electromagnet fixing body 22, that is, in the axial direction (Z direction) of the reference shafts 20 and 21 at the bent part of c.
A, 24C are arranged with the bent portions of the yokes 124a, 124c facing down so as to sandwich the upper reference shafts 20, 21 from below, and the central electromagnet member 24B is arranged so as to sandwich the lower reference shaft 21 from above. The bent portion of the iron 124b is placed upward. In addition, in FIGS. 2 and 4, the connecting member 25 is shown in order to make the configuration easier to understand.
A and 25B are omitted from the illustration.

電磁石部材24A,24Cに設けられた一対の
電磁石26と27および28と29は、その磁極
面が基準軸20の各斜面と対向し、電磁石部材2
4Bに設けられた一対の電磁石30および31
は、その磁極面が基準軸21の各斜面と対向して
いる。このため、基準軸20,21の前方から見
て左右にそれぞれ3個の電磁石27,29,31
および26,28,30が配置され、対をなす左
右の電磁石26と27,28と29および30と
31同士の磁気吸引力の方向37,38は第3図
に示すように一定の角度で交差している。
The pair of electromagnets 26 and 27 and 28 and 29 provided in the electromagnet members 24A and 24C have their magnetic pole faces facing each slope of the reference shaft 20, and the electromagnet members 2
A pair of electromagnets 30 and 31 provided in 4B
has its magnetic pole face facing each slope of the reference shaft 21. For this reason, three electromagnets 27, 29, 31 are placed on the left and right sides when viewed from the front of the reference shafts 20, 21.
, and 26, 28, and 30 are arranged, and the directions 37 and 38 of the magnetic attraction force between the left and right electromagnets 26 and 27, 28 and 29, and 30 and 31 that form a pair intersect at a constant angle as shown in FIG. are doing.

前記電磁石固定体22には前述した6個の電磁
石26〜31に加えて5個の変位検出器32〜3
6がこれら電磁石26〜31の配置とほぼ対称的
に配設されている。これら5個の変位検出器32
〜36はそれぞれ円柱状に形成され、その一つの
変位検出器32が電磁石26と28の間の空間に
配置され、残り4つの変位検出器33〜36が電
磁石30と31の両側に配設されている。各電磁
石26〜31の励磁コイル26a〜31aに供給
されるコイル電流は制御装置(図示せず)により
前記変位検出器32〜36の信号によつて制御さ
れ、これによつて電磁石26〜31と基準軸2
0,21との間の隙間39を一定に保ち、電磁石
固定体22を基準軸20,21に対して非接触に
支持している。
The electromagnet fixing body 22 includes five displacement detectors 32 to 3 in addition to the six electromagnets 26 to 31 described above.
6 are arranged almost symmetrically with the arrangement of these electromagnets 26-31. These five displacement detectors 32
36 are each formed in a cylindrical shape, one displacement detector 32 is placed in the space between the electromagnets 26 and 28, and the remaining four displacement detectors 33 to 36 are placed on both sides of the electromagnets 30 and 31. ing. The coil currents supplied to the excitation coils 26a to 31a of the electromagnets 26 to 31 are controlled by the signals from the displacement detectors 32 to 36 by a control device (not shown), thereby controlling the excitation coils 26a to 31a of the electromagnets 26 to 31. Reference axis 2
0 and 21 is kept constant, and the electromagnet fixing body 22 is supported without contacting the reference shafts 20 and 21.

すなわち、本発明においては第2図に示すよう
に電磁石固定体22の移動方向(Z方向)を除く
x、yの2方向の移動と、θ、φ、Ψの3方向の
回転の自由度を非接触状態で安定に拘束する機能
を最少6個の電磁石26〜31で実現したもので
ある。しかも、本発明の磁気浮上案内機構は重力
方向について上下両方向に磁気吸引力を作用させ
ているので、電磁石固定体22を重力に無関係に
非接触状態で支持し得、したがつて1g以上の加
速度が外力によつて作用しても、非接触支持機能
が何ら損われることはない。
That is, in the present invention, as shown in FIG. 2, the degrees of freedom of movement in two directions x and y, excluding the moving direction (Z direction) of the electromagnet fixing body 22, and rotation in three directions θ, φ, and Ψ are provided. The function of stably restraining in a non-contact state is achieved using a minimum of six electromagnets 26 to 31. Moreover, since the magnetic levitation guide mechanism of the present invention applies magnetic attraction force both up and down in the direction of gravity, it is possible to support the electromagnet fixing body 22 in a non-contact state regardless of gravity, and therefore, it is possible to support the electromagnet fixing body 22 in a non-contact state regardless of gravity. The non-contact support function will not be impaired in any way even if external force is applied.

第5図〜第8図は本発明の第2実施例を示すも
ので、第5図は斜視図、第6図は正面図、第7図
は左側面図、第8図は右側面図である。本実施例
においては前後2個の電磁石部材24A,24C
を基準軸20,21の右側に、中央の電磁石部材
24Bを基準軸20,21の左側に位置させて重
ね合せたものである。そのため、本実施例では4
個の電磁石26,27,29,30と1個の変位
検出器32が基準軸20,21の右側に配置さ
れ、残り2個の電磁石28,31と4個の変位検
出器33〜36が基準軸20,21の左側に配設
されている。なお、基準軸20を挾んで対向する
電磁石26,27と28および基準軸21を挾ん
で対向する電磁石29,30と31の磁気吸引力
の方向37,38は上記第2実施例と同様一定の
角度で交差している。また、この場合においては
対をなす電磁石26,29と継鉄124aとで電
磁石部材24Aを構成し、同様に電磁石28,3
1および継鉄124bとで電磁石部材24Bを、
そして電磁石27,30と継鉄124cとで電磁
石部材24Cをそれぞれ構成している。
Figures 5 to 8 show a second embodiment of the present invention, with Figure 5 being a perspective view, Figure 6 being a front view, Figure 7 being a left side view, and Figure 8 being a right side view. be. In this embodiment, two electromagnetic members 24A and 24C, front and rear, are used.
are placed on the right side of the reference shafts 20, 21, and the central electromagnet member 24B is placed on the left side of the reference shafts 20, 21. Therefore, in this example, 4
Electromagnets 26, 27, 29, 30 and one displacement detector 32 are arranged on the right side of the reference shafts 20, 21, and the remaining two electromagnets 28, 31 and four displacement detectors 33 to 36 are placed as a reference. It is arranged on the left side of the shafts 20 and 21. Note that the directions 37 and 38 of the magnetic attraction forces of the electromagnets 26, 27 and 28 facing each other with the reference shaft 20 in between and the electromagnets 29, 30 and 31 facing each other with the reference shaft 21 in between are constant as in the second embodiment. intersect at an angle. In this case, the electromagnets 26, 29 and the yoke 124a form a pair to constitute an electromagnet member 24A, and similarly the electromagnets 28, 3
1 and the yoke 124b to form an electromagnet member 24B,
The electromagnets 27 and 30 and the yoke 124c each constitute an electromagnet member 24C.

このような構成においても電磁石固定体22を
非接触状態で支持し得ることは明らかであろう。
It will be obvious that even in such a configuration, the electromagnet fixing body 22 can be supported in a non-contact manner.

第9図および第10図は本発明の第3実施例を
示す斜視図および正面図である。本実施例におい
ては一対の基準軸20,21の断面形状を異なら
すと共に電磁石部材24A,24B,24Cを傾
けてその上下端部をそれぞれ基準軸20,21の
中心軸40に関し左右に位置させたものである。
このため、各電磁石部材24A,24B,24C
の対をなす電磁石26と30,28と29および
27と31はそれぞれ基準軸20,21の反対側
に位置され、これによつて中心軸40の左右にそ
れぞれ3個の電磁石28,30,31および2
6,27,29が配置され、その磁極が各基準軸
20,21の斜面に対向している。この場合、第
10図に示すように基準軸20に対向する電磁石
26の磁気吸引力の方向37と基準軸21に対向
する電磁石30の磁気吸引力の方向41とは平行
でないように配置する必要があり、従つて基準軸
20の電磁石26が対向する斜面と、基準軸21
の電磁石30が対向する斜面とは平行であつては
ならない。
9 and 10 are a perspective view and a front view showing a third embodiment of the present invention. In this embodiment, the pair of reference shafts 20, 21 have different cross-sectional shapes, and the electromagnetic members 24A, 24B, 24C are tilted so that their upper and lower ends are positioned on the left and right sides with respect to the central axis 40 of the reference shafts 20, 21, respectively. It is something.
For this reason, each electromagnetic member 24A, 24B, 24C
The pairs of electromagnets 26 and 30, 28 and 29, and 27 and 31 are located on opposite sides of the reference shafts 20 and 21, respectively, so that three electromagnets 28, 30, 31 are placed on the left and right sides of the central axis 40, respectively. and 2
6, 27, and 29 are arranged, and their magnetic poles face the slopes of the respective reference axes 20, 21. In this case, as shown in FIG. 10, it is necessary to arrange the electromagnet 26 so that the direction 37 of the magnetic attraction force facing the reference axis 20 is not parallel to the direction 41 of the magnetic attraction force of the electromagnet 30 facing the reference axis 21. Therefore, the slope facing the electromagnet 26 of the reference shaft 20 and the reference shaft 21
The electromagnet 30 must not be parallel to the opposing slope.

すなわち、基準軸20,21にそれぞれ3個の
電磁石が対向配置され、かつ基準軸20,21の
左右についても各3個の電磁石が配置される第3
実施例においては、上述した制約のある構成にし
なければ、安定な浮上状態が得られず、このこと
は理論的に証明され得る。なお、前記第1および
第2実施例においては電磁石26〜31の配置が
異なるため、このような制約を受けることはな
い。
That is, three electromagnets are arranged facing each other on the reference shafts 20 and 21, and three electromagnets are arranged on each of the left and right sides of the reference shafts 20 and 21.
In the embodiment, a stable floating state cannot be obtained unless the configuration has the above-mentioned restrictions, and this can be theoretically proven. Note that in the first and second embodiments, the electromagnets 26 to 31 are arranged differently, so they are not subject to such restrictions.

第11図は本発明の第4実施例を示す要部拡大
正面図である。本実施例は複数枚のけい素鋼板を
電磁石固定体22の移動方向に重ね合せて基準軸
20を形成し、かつこの基準軸20のインダクタ
ンス形の変位検出器32が対向する表面部分、す
なわち「コ」字形電磁石26の継鉄の磁極間に対
向する部分に、該基準軸20の全長に亘つて延在
する長尺板状の電気良導体42を埋込配置したも
のである。
FIG. 11 is an enlarged front view of main parts showing a fourth embodiment of the present invention. In this embodiment, a reference shaft 20 is formed by overlapping a plurality of silicon steel plates in the moving direction of the electromagnet fixing body 22, and the surface portion of the reference shaft 20 that is opposed to the inductance type displacement detector 32, that is, A long plate-shaped electrical conductor 42 extending over the entire length of the reference shaft 20 is embedded in a portion of the U-shaped electromagnet 26 facing between the magnetic poles of the yoke.

可動体としての電磁石固定体22はリニアモー
タ、ボイスコイルモータ(図示せず)等の駆動手
段によつて移動され得るが、磁性体の基準軸20
が通常の鉄のような良導体であると、電磁石26
の磁束が通つているために、これが相対的に動く
と、基準軸20の面上に渦電流が発生し、これと
磁束作用で電磁石固定体22の移動方向の駆動力
に対し速度に比例したブレーキ力が発生し、高速
駆動に対し障害となり、性能を低下させる。そこ
で、上述した通り電磁石固定体22の案内面を構
成する基準軸20をけい素鋼板の積層体あるいは
軟磁性フエライト材とすることにより渦電流を無
くし、前述の性能低下を防ぎ得る。但し、この場
合には磁気浮上機能のための変位検出に比較的安
価でかつ入手の容易なインダクタンス変化形の変
位検出器が使用できなくなる不都合を有し、これ
を解決すべく前記電気良導体42が基準軸20に
設けられる。
The electromagnet fixed body 22 as a movable body can be moved by a driving means such as a linear motor or a voice coil motor (not shown).
If is a good conductor such as ordinary iron, then the electromagnet 26
Because the magnetic flux passes through it, when it moves relatively, an eddy current is generated on the surface of the reference shaft 20, and due to this and the magnetic flux, the driving force in the moving direction of the electromagnet fixing body 22 is proportional to the speed. Braking force is generated, which becomes an obstacle to high-speed driving and reduces performance. Therefore, as described above, by making the reference shaft 20 constituting the guide surface of the electromagnet fixing body 22 a laminate of silicon steel plates or a soft magnetic ferrite material, eddy currents can be eliminated and the above-mentioned performance deterioration can be prevented. However, in this case, a relatively inexpensive and easily available inductance variable type displacement detector cannot be used to detect displacement for the magnetic levitation function.To solve this problem, the electrically conductive material 42 is It is provided on the reference axis 20.

第12図および第13図は本発明の第5実施例
を示す斜視図および正面図である。本実施例は円
柱体からなる一対の基準軸43,44を使用した
ものである。円柱体からなる基準軸43,44は
その直径、母線の平坦性を比較的容易にかつ精度
高く加工することができ、かつ軸間距離を正確に
定めて組立てることができる利点を有するため、
高精度な磁気浮上案内機構を得るに適した構造と
云える。なお、電磁石26〜31および変位検出
器32〜36は第2図〜第4図に示した第1実施
例と同様に配置されるため、その説明を省略す
る。
FIG. 12 and FIG. 13 are a perspective view and a front view showing a fifth embodiment of the present invention. This embodiment uses a pair of reference shafts 43 and 44 made of cylindrical bodies. The reference shafts 43 and 44 made of cylindrical bodies have the advantage that the diameter and flatness of the generating line can be machined relatively easily and with high precision, and that the distance between the shafts can be accurately determined and assembled.
This structure can be said to be suitable for obtaining a highly accurate magnetic levitation guide mechanism. Note that the electromagnets 26 to 31 and the displacement detectors 32 to 36 are arranged in the same manner as in the first embodiment shown in FIGS. 2 to 4, so a description thereof will be omitted.

第14図は本発明の第6実施例を示す斜視図で
ある。本実施例は円柱状からなる一対の基準軸4
3,44を用い、第5図〜第8図に示した第2実
施例と同様に電磁石26〜31および変位検出器
32〜36を配置したものである。
FIG. 14 is a perspective view showing a sixth embodiment of the present invention. In this embodiment, a pair of reference shafts 4 each having a cylindrical shape are used.
3 and 44, and electromagnets 26 to 31 and displacement detectors 32 to 36 are arranged similarly to the second embodiment shown in FIGS. 5 to 8.

第15図はさらに本発明の第7実施例を示す斜
視図で、円柱状からなる一対の基準軸43,44
を用い、第9図および第10図に示した第3実施
例と同様に電磁石26〜31と変位検出器32〜
36を配置したものである。
FIG. 15 is a perspective view showing a seventh embodiment of the present invention, in which a pair of cylindrical reference shafts 43 and 44 are shown.
using the electromagnets 26 to 31 and the displacement detectors 32 to 31 as in the third embodiment shown in FIGS.
36 are arranged.

なお、本発明においては全ての実施例において
一対の基準軸20,21を固定体とし、電磁石2
6〜31および変位検出器32〜36を備えた電
磁石固定体22を可動体とした場合について説明
したが、これらは相対的に動かすことが可能であ
るから、逆に一対の基準軸20,21を可動体と
し、電磁石固定体22を固定体としても全く同一
の機能を得ることができることは勿論である。ま
た、その決定に際しては比較的複雑な構造の方を
固定体とすることにより、軽量化や配線等につい
ての制約を取り除くことができる有利さも得られ
る。
In addition, in all embodiments of the present invention, the pair of reference shafts 20 and 21 are fixed bodies, and the electromagnet 2
6 to 31 and displacement detectors 32 to 36 is a movable body. Of course, it is possible to obtain exactly the same function by using the electromagnet fixing body 22 as a movable body and using the electromagnet fixed body 22 as a fixed body. In addition, when determining this, by using a relatively complex structure as the fixed body, it is advantageous to be able to reduce weight and remove restrictions on wiring, etc.

以上説明したように本発明に係る磁気浮上案内
機構は、浮上機構を坦う電磁石と変位検出器を6
個と5個の最少固数にすることが可能であるか
ら、部品点数および電磁石電流の制御装置の削
減、製造、組立て時間の短縮に役立ち、かつ精度
の高い部品形状の使用が可能で、安定性に優れ、
性能の高い磁気浮上案内機構を提供することがで
きる。
As explained above, the magnetic levitation guide mechanism according to the present invention has six electromagnets and a displacement detector that carry the levitation mechanism.
Since it is possible to reduce the number of fixed parts to a minimum of 5 pieces, it is useful for reducing the number of parts and electromagnet current control devices, shortening manufacturing and assembly time, and it is possible to use highly accurate parts shapes, making it stable. Excellent in sex,
A magnetic levitation guide mechanism with high performance can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気浮上案内機構の従来例を示す概略
構成図、第2図は本発明に係る磁気浮上案内機構
の第1実施例を示す斜視図、第3図はその正面
図、第4図はその右側面図、第5図〜第8図は本
発明の第2実施例を示す斜視図、正面図、左側面
図および右側面図、第9図および第10図は本発
明の第3実施例を示す斜視図および正面図、第1
1図は本発明の第4実施例を示す要部拡大正面
図、第12図および第13図は本発明の第5実施
例を示す斜視図および正面図、第14図は本発明
の第6実施例を示す斜視図、第15図は本発明の
第7実施例を示す斜視図である。 20,21……基準軸、22……電磁石固定
体、24A〜24C……電磁石部材、25A,2
5B……結合部材、26〜31……電磁石、26
a〜31a……励磁コイル、32〜36……変位
検出器、37,38,41……磁気吸引力の方
向、42……電気良導体、43,44……円柱体
からなる基準軸、124a〜124c……継鉄。
Fig. 1 is a schematic configuration diagram showing a conventional example of a magnetic levitation guide mechanism, Fig. 2 is a perspective view showing a first embodiment of the magnetic levitation guide mechanism according to the present invention, Fig. 3 is a front view thereof, and Fig. 4 5 to 8 are perspective views, front views, left side views, and right side views showing the second embodiment of the present invention, and FIGS. 9 and 10 are the third embodiment of the present invention. A perspective view and a front view showing an example, 1st
FIG. 1 is an enlarged front view of main parts showing a fourth embodiment of the present invention, FIGS. 12 and 13 are perspective views and front views showing a fifth embodiment of the present invention, and FIG. 14 is a sixth embodiment of the present invention. FIG. 15 is a perspective view showing a seventh embodiment of the present invention. 20, 21... Reference axis, 22... Electromagnet fixing body, 24A to 24C... Electromagnet member, 25A, 2
5B...Coupling member, 26-31...Electromagnet, 26
a~31a... Excitation coil, 32~36... Displacement detector, 37, 38, 41... Direction of magnetic attraction force, 42... Good electrical conductor, 43, 44... Reference axis made of cylindrical body, 124a~ 124c...Yoke.

Claims (1)

【特許請求の範囲】 1 平行に配設された一対の基準軸と、両側合わ
せて合計6個の分岐部を有し、前記一方の基準軸
の側に最少2個、最大4個の分岐部が設けられ、
これら分岐部が一方の基準軸を挾んでその両側か
ら対向し、他方の側に残り個数の分岐部が設けら
れ、これら分岐部が他方の基準軸を挾んでその両
側から対向するように、前記一対の基準軸間にこ
れら両基準軸の軸線方向に相対移動自在に配設さ
れた電磁石固定体と、この電磁石固定体の各先端
部に、当該先端部に対応する基準軸に対して対向
するようにそれぞれ配設された6個の電磁石と、
各基準軸に対してその側方より対向するように前
記電磁石固定体の両側にそれぞれが互いに独立し
た向きをなすように振分けて配設され、該電磁石
固定体と各基準軸との隙間を検出する合計5個の
変位検出器とを備え、各基準軸を挾んでその両側
に配置される電磁石は、その磁気吸引力の方向
を、前記一対の基準軸の軸線方向からみた場合、
互いに交差し、対応する基準軸を互いに引き合う
よう該基準軸に作用し、前記電磁石のコイル電流
を前記変位検出器の信号によつて制御することに
より一対の基準軸と電磁石固定体を非接触状態に
保つことを特徴とする磁気浮上案内機構。 2 基準軸がけい素鋼板の積層体で構成され、変
位検出器に対応する表面部に電気良導体が該基準
軸の長手方向全長に設けられていることを特徴と
する特許請求の範囲第1項記載の磁気浮上案内機
構。 3 基準軸が円柱体であることを特徴とする特許
請求の範囲第1項または第2項記載の磁気浮上案
内機構。
[Scope of Claims] 1 A pair of reference shafts arranged in parallel, and a total of six branch parts on both sides, with a minimum of two and a maximum of four branch parts on the side of one reference axis. is established,
These branch parts sandwich one reference axis and face each other from both sides, and the remaining number of branch parts are provided on the other side, and these branch parts sandwich the other reference axis and face each other from both sides. An electromagnet fixing body is disposed between a pair of reference axes so as to be relatively movable in the axial direction of both reference axes, and an electromagnet fixing body is provided at each tip of the electromagnet fixing body to face the reference axis corresponding to the tip. Six electromagnets each arranged as follows,
They are arranged on both sides of the electromagnet fixing body so as to face each reference axis from the side, and are arranged so that they are oriented independently from each other, and detect the gap between the electromagnet fixing body and each reference axis. When viewed from the axial direction of the pair of reference axes, the direction of the magnetic attraction force of the electromagnets, which are arranged on both sides of each reference axis, is as follows:
The pair of reference shafts and the electromagnet fixing body are brought into a non-contact state by acting on the reference axes so as to intersect with each other and attracting the corresponding reference axes to each other, and by controlling the coil current of the electromagnet by the signal of the displacement detector. A magnetic levitation guide mechanism that maintains 2. Claim 1, characterized in that the reference shaft is composed of a laminate of silicon steel plates, and a good electrical conductor is provided along the entire length of the reference shaft in the longitudinal direction on the surface portion corresponding to the displacement detector. Magnetic levitation guide mechanism as described. 3. The magnetic levitation guide mechanism according to claim 1 or 2, wherein the reference axis is a cylindrical body.
JP12171181A 1981-08-03 1981-08-03 Magnetic floating guide mechanism Granted JPS5822587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12171181A JPS5822587A (en) 1981-08-03 1981-08-03 Magnetic floating guide mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12171181A JPS5822587A (en) 1981-08-03 1981-08-03 Magnetic floating guide mechanism

Publications (2)

Publication Number Publication Date
JPS5822587A JPS5822587A (en) 1983-02-09
JPS6360636B2 true JPS6360636B2 (en) 1988-11-25

Family

ID=14817981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12171181A Granted JPS5822587A (en) 1981-08-03 1981-08-03 Magnetic floating guide mechanism

Country Status (1)

Country Link
JP (1) JPS5822587A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616243B2 (en) * 1984-08-27 1994-03-02 株式会社東芝 Non-contact positioning device
JP4894634B2 (en) * 2007-03-29 2012-03-14 日本精工株式会社 Lubricating joint parts for linear guide devices, linear guide devices
RU2566507C1 (en) * 2014-10-31 2015-10-27 Акционерное общество "НИИЭФА им. Д.В. Ефремова" (АО "НИИЭФА") Superconducting electromagnetic device, magnetic suspension and vehicle equipped with such device
CN106292736A (en) * 2016-08-19 2017-01-04 联想(北京)有限公司 A kind of control method, controller and electronic equipment

Also Published As

Publication number Publication date
JPS5822587A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
US4882837A (en) Precision automatic assembly apparatus including face to face magnets and an air core coil therebetween
US4900962A (en) Magnetic translator bearings
JP4587870B2 (en) Magnet unit, elevator guide device, and weighing device
US5925956A (en) Stage construction incorporating magnetically levitated movable stage
US4857781A (en) High-speed non-contact linear motor with magnetic levitation
JPH0463625B2 (en)
KR960000832B1 (en) Linear actuator
WO1999018650A1 (en) Magnetic positioner having a single moving part
JPS6146684B2 (en)
JPS6360636B2 (en)
JPS62171518A (en) Non-contact positioning device
JP3456308B2 (en) Magnetic levitation stage
JPS62165019A (en) Magnetic levitation slide
JP2568128B2 (en) Levitation device using non-contact guide magnetism
JP3011813B2 (en) Moving stage
JP3212801B2 (en) Linear motor
JPH0340566B2 (en)
JPH02219455A (en) Linear motor supporting mechanism
JPH0741992B2 (en) Magnetic levitation carrier
JP2566997B2 (en) Non-contact positioning device
JPS598010Y2 (en) magnetic bearing
KR100434975B1 (en) Positioning System of Nano-Meter Stage and Method Thereof
JPS58133185A (en) Magnetic floating guidance device
JPS5854284B2 (en) magnetic bearing
JPS6032581A (en) Magnetically levitating linear guide